TVZ3100卫星校时钟

TVZ3100卫星校时钟
TVZ3100卫星校时钟

TVZ系列产品

TVZ3100卫星校时钟

使用说明书

2002年

1 青岛市广播电视科学研究所

尊敬的用户:

感谢您使用青岛市广播电视科学研究所生产的

TVZ3100型卫星校时钟

在安装调试前,请先阅读本说明书,

当您遇到问题时

请随时与我们联系——

青岛市广播电视科学研究所

地址:青岛市宁夏路200号

邮编:266071

电话/传真:+86-532-5701770 5701709

http:\\https://www.360docs.net/doc/6118007618.html,

E-mail:hinac@https://www.360docs.net/doc/6118007618.html,

一.产品简介

TVZ3100型卫星校时钟是青岛市广播电视科研所在GPS

2 青岛市广播电视科学研究所

时码接收的基础上推出的。全球定位系统(GPS)是美国军方的半开放(中开放AC码)的一全球性网络系统,它由24颗具有星载原子钟的半同步轨道卫星组成,UTC定时精度优于1微秒。

二.产品特点

※全自动工作。

※具有软件判断功能,直观指示信号搜索、跟踪和失锁等状态,并依此控制输出信号是否开通。

※具备SZ、RS232、RS422、EBU等格式的输出接口,以及标准六响报时输出,可校准各种具有标准时间接口的广播电视设备和电信、地铁、航空等行业的通讯电子设备。

※具有1PPS信号输出,可同步其它时钟系统。

三.性能指标

◇初始跟踪时间:在足够的信噪比下,不长于3分钟

◇定时精度:1μs

◇SZ码输出57位,串行BCD反码

◇EBU码输出引脚1、2,平衡式

3 青岛市广播电视科学研究所

◇RS232输出接口类型:单向输出,3脚数据,5脚地;数据格式:4800bps,8位数据,一个停止位,无奇偶校验,每秒发送一次,共9个字,依次是同步字(16进制AA)、

00、年、月、日、星期、时、分、秒。其中年、月、日、

星期、时、分、秒为BCD码

◇RS422输出接口类型:单向输出,3脚正信号,8脚负信号,1脚地;数据格式:同RS232

◇报时输出接口类型:卡侬座 2、3脚信号,1脚地,前5响800Hz,最后1响1600Hz,整点前5秒开始一秒一报

◇天线馈线长度:标配为50米

◇功耗:10W(220V)

◇整机重量:6.5Kg

◇机箱尺寸:440×370×44㎜。

四.基本工作原理

TVZ3100型卫星校时钟采用专用的卫星接收机GPS接收并解调AC码得到时码和秒脉冲,作为时间系统的参考标准,同步系统时钟。系统采用简捷可靠的接收和驱动电路,保证纳秒级的输出信号延时;系统输出切换采用多通道容错技术和硬

4 青岛市广播电视科学研究所

5 青岛市广播电视科学研究所

件控制切换技术,提高了系统的可靠性。

TVZ3100型卫星校时钟的组成及简介:

系统由以下几大模块组成:

图中1是GPS 卫星信号接收机主板,采用高增益专用天

线。

图中2是时间显示系统,能显示年月日时分秒等,如有

特殊要求,还可显示更高分辨率如十分之一秒的时间码。

图中3是外接晶振等级可根据用户要求选用。

图中4是秒脉冲控制处理单元,它采用三通道亢余容错

技术,系统内钟、接收机时钟以及被同步的外接高稳晶振分频

1PPS )

时间码

后的秒信号同时送到此模块,由硬件电路进行时码和秒脉冲的比较、判别和处理,以保证输出秒脉冲和钟面的清晰度和可靠性。当信号出现失效时仍能保证中高精度的输出,使系统正常运转。

图中5是中心控制和处理单元,它能完成所有的时码转换、显示及多种控制功能。

五.操作使用

1.前后面板说明:

1 2 3 4

图 1

图 2

图1是前面板示意图,图中1是电源开关,图中2是LCD 钟面显示单元(显示年月日星期时分秒)图中3是GPS跟踪

6 青岛市广播电视科学研究所

卫星状态指示,指示灯闪烁表示已跟踪上至少三颗卫星,图中4是调整按键,左边第一键是循环右移键,中间键是数字加一键,右边键是允许键。

图2是后面板示意图,从左至右依次为:“天线输入”、“强制输出”、“SZ输出”、“1PPS输出”、“RS422输出”、“RS232输出”、“EBU输出”、“报时输出”

2.使用方法:

(1)第一次安装调试时,系统跟踪时间较长,通常在合格天线环境下大约3分钟左右。通电后,系统开始搜索卫星,液晶屏右下角显示“SCH”字符予以提示,状态指示灯为红色常亮。

跟踪成功后,液晶屏显示“TRK”字符,状态灯变为绿色并以秒频闪烁。以运行过程中,发生不能同时跟踪上三颗卫星时,状态指示灯变为红色常亮,液晶屏显示“LOSE”。

如果发现系统长期不能跟踪,则需要调整接收卫星天线并检查天线周边环境是否有干扰源和屏蔽物并采取相应措施。

(2)操作:

①“强制输出”:该键在每次加电前确认其状态!

7 青岛市广播电视科学研究所

该设备既可以独立做为时钟前端,亦

可做为时钟系统前端的一部分与

GS-2配套使用。在独立使用时,将“强

制输出”置于“开”的位置,这样只

要设备一加电,各输出端口即可输出

时间信号。

与高稳钟配套使用时,将“强制输出”

置于“关”的位置,在没有跟踪时,

各输出端口不输出时间信号以保证高

稳钟运行精度。

②按键操作:在正常跟踪状态下,所有按键均无需

操作!

按住“允许”键,按“→”移位键选择

数据后,被选择的数据位闪烁,再按

一次,右移一位。

确定修改的数据位后,按“+”进行数

据调整,每按一次“+”键,被选中位

的数据加“-”。

8 青岛市广播电视科学研究所

3.设备安装:

本机安装极其简单,接收天线为全向半球波束,应尽量安装在室外不受遮蔽的场合。设备采用19″标准机箱,安装到机架后,接通电源查看系统是否正常,观察系统是否能自动校时即可。

注意:

本机接收天线及其馈线不得随意转接加长,否则将影响信号的质量,导致校时不正常。本机配置标准馈线长度为50米,需加长者请与供货方联系。

9 青岛市广播电视科学研究所

北斗卫星时间同步系统的重要性

北斗卫星时间同步系统的重要性 概述 电脑时间走时不准时常有的事,不准确的电脑时钟对时网络结构以及其中的应用程序的安全性会产生较大的影响,尤其是那些对没有实现网络同步而导致的问题比较敏感的网络质量或应用程序。 要得到最佳的网络表现,就得向系统提供标准的时间信息,这时可以选用北斗卫星时间同步系统来实现时间统一,千万不要等到出了问题才认识到时间同步的重要性。如果没有时间同步,网络指令是没法正常运行的,时间同步直接影响网络指令的领域有:记录文件安全、审核和监控、网络错误检查和复原、文件时间戳目录服务、文件及指令存取安全与确认、分散式计算、预设操作、真实世界世界值等等。 北斗授时 北斗授时是通信网络安全组网的根本保证就同步网而言,我国的频率同步网采用的是多基准混合同步方式,即全网部署多个1级基准时钟设备,并且需配置高性能的卫星授时接收机,以保证全网的定时性能。我国的时间同步网则采用分布式组网方式,即在每个时间同步设备上均需配置高性能的卫星授时接收机,以保证全网的时间精度。 就移动通信网络而言,CDMA基站、CDMA2000基站、TD-SCDMA基站等均需要高精度的时间同步,目前是在每个基站上配置GPS授时模块。如果基站与基站之间的时间同步不能达到一定要求,将可能导致在选择器中发生指令不匹配,从而导致通话连接不能正常建立,影响无线业务的接续质量。 北斗授时性能可以满足通信网络的需求,基于北斗/GPS双模的授时设备最早在2003年进入通信领域,在2008年之前主要提供频率同步服务,此后可同时提供时间同步和频率同步服务。根据近十年的多次测试情况,可以看出北斗设备在正常情况下可以满足通信网中对频率同步和时间同步的要求,尤其是2008年以后生产的北斗设备其性能普遍达到了GPS卫星接收机设备的水平,完全可以满足通信网中各种通信设备对频率同步和时间同步的需求。 北斗卫星同步时间的意义 利用北斗卫星,才可在全球范围内用超短波传播时号;用超短波传播时号不

【CN109785587A】一种基于北斗卫星定位的监测装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910184431.0 (22)申请日 2019.03.12 (71)申请人 湖南联智桥隧技术有限公司 地址 410019 湖南省长沙市望城经开区沿 河路二段168号 (72)发明人 梁晓东 邱志勇 杨振武 周雨峰  丁磊  (74)专利代理机构 长沙七源专利代理事务所 (普通合伙) 43214 代理人 郑隽 吴婷 (51)Int.Cl. G08B 21/10(2006.01) G01B 21/02(2006.01) G01S 19/14(2010.01) (54)发明名称 一种基于北斗卫星定位的监测装置 (57)摘要 本发明提供了一种基于北斗卫星定位的监 测装置,包括监控装置、数据处理箱以及反馈装 置,其中监控装置和数据处理箱连接,数据处理 箱和反馈装置连接;所述监控装置用于监测滑坡 位移;所述数据处理箱根据监控装置所监测到的 滑坡位移的情况控制反馈装置进行动作,实现滑 坡监测。应用本发明的技术方案,效果是:可以实 时对坡体进行监测,经过将滑坡位移进行放大处 理使得微小的滑坡量也可以直接监测出来,监测 的精度高,同时将监测的数据及时的传送给监测 人员以便及时采取相应的处理措施,起到保护人 们生命和财产安全的作用。权利要求书1页 说明书5页 附图1页CN 109785587 A 2019.05.21 C N 109785587 A

权 利 要 求 书1/1页CN 109785587 A 1.一种基于北斗卫星定位的监测装置,其特征在于,包括监控装置、数据处理箱以及反馈装置,其中监控装置和数据处理箱连接,数据处理箱和反馈装置连接;所述监控装置用于监测滑坡的位移;所述数据处理箱根据监控装置所监测到的滑坡位移的情况控制反馈装置进行动作,实现滑坡监测。 2.根据权利要求1所述的基于北斗卫星定位的监测装置,其特征在于,所述数据处理箱包括拉力传感器模块(31)、处理模块(32)、控制模块(33)以及输出模块(34)且各模块之间电连接;所述拉力传感器模块(31)用于接收监控装置的滑坡位移信号,所述处理模块(32)用于放大滑坡位移信号,所述控制模块用于根据放大信号控制输出模块(34)动作,所述输出模块通过牵引绳(4)连接所述反馈装置实现反馈装置根据放大信号动作。 3.根据权利要求2所述的基于北斗卫星定位的监测装置,其特征在于,所述反馈装置包括电机(5)、安装箱(6)、北斗定位天线(7)以及安装座(8);所述安装座(8)上设有用于安装电机(5)的型腔,所述电机设置于型腔内,所述安装箱(6)设置于电机(5)上,所述北斗定位天线(7)由电机(5)驱动进行运动;所述安装箱(6)内相对设置第一导体(61)和第二导体(62),其中第一导体(61)与电机(5)电连接,第二导体通过弹簧设置于所述安装箱上,所述牵引绳(4)和第二导体连接实现牵引绳(4)带着第二导体与第一导体贴合或者分开,从而实现电机通电或断电,进而实现电机(5)带着北斗定位天线(7)运动,所述北斗定位天线将运动前和运动后的位置信息传输给监测人员,从而实现滑坡检测。 4.根据权利要求3所述的基于北斗卫星定位的监测装置,其特征在于,所述反馈装置还包括传送带(9)和支架(10),所述传送带(9)两端均设置转轴且其中的一个转轴与电机(5)的输出轴连接,从而实现电机驱动传送带(9)运动;所述支架(10)设置于安装座(8)上,用于支撑所述传送带和转轴;所述北斗定位天线(7)设置于传送带上且跟随所述传送带运动。 5.根据权利要求3或4所述的基于北斗卫星定位的监测装置,其特征在于,所述安装电机(5)的型腔的侧面设有检修口(51)。 6.根据权利要求2所述的基于北斗卫星定位的监测装置,其特征在于,所述监控装置包括用于监测滑坡位移的定位器(1),所述定位器的顶部设有信号发射头(11),侧面设有拉环(12);所述拉环(12)通过拉绳(2)与所述拉力传感器模块(31)连接实现将监测到的滑坡位移传递给数据处理箱。 7.根据权利要求6所述的基于北斗卫星定位的监测装置,其特征在于,所述拉绳(2)包括拉绳本体和安装套(21),所述拉绳本体设置于安装套内且所述拉绳本体可以相对于安装套运动。 8.根据权利要求7所述的基于北斗卫星定位的监测装置,其特征在于,所述拉绳精度为毫米级别。 2

GPS时钟技术方案

GPS时钟系统 目录 5、GPS时钟系统 (2) 5.1系统功能 (2) 5.1.1卫星接收转换系统 (2) 5.1.2 中心母钟 (2) 5.1.2.1高精度石英基准时钟 (2) 5.1.2.2信号处理切换 (2) 5.1.2.3中心监控及故障报警 (3) 5.1.2.4系统信息显示 (3) 5.1.2.5中心传输接口 (3) 5.1.2.6内部在线不间断电源 (3) 5.1.3监控计算机(软件名称:UNITIME) (3) 5.1.3.1硬件要求 (4) 5.1.3.2系统监控软件 (4) 5.1.4子钟 (4) 5.1.4.1指针式子钟 (4) 5.1.4.2数显式子钟的功能 (5) 5.2 系统组成 (5) 5.2.1卫星接收转换器 (5) 5.2.2中心母钟 (6) 5.2.3监控计算机(软件名称:UNITIME) (7) 5.2.4数字式日历子钟 (7) 5.2.5指针式子钟 (8) 5.3系统部署 (8) 5.4系统连接 (8)

5、GPS时钟系统 5.1系统功能 5.1.1卫星接收转换系统 卫星接收转换系统为整个时钟系统提供绝对准确的时间基准,其核心是全球卫星定位系统(GPS)信号接收天线和信号接收转换器,自动接收并以GPS时间信号作为系统标准时间信号。 GPS接收转换系统是以目前形成的全球卫星定位系统(GPS)的卫星信号传输网络为基础,接收并分析卫星信号进而获得时间信息。GPS时间信号的特点是覆盖全球、精度高、无累积误差,是全球统一的时间标准。经GPS 接收转换系统处理后,时间信号以两种方式向时钟系统及其它应用设备发送信号,两种方式的信号在设备上均采用: 1、标准秒脉冲信号:精度为110nS,信号无累积误差; 2、全时标信号:信号含年、月、日、时、分、秒数字信号。 5.1.2 中心母钟 中心母钟是整个时钟系统的核心,通过GPS卫星时间接收器接收标准时间,并传输给系统内各级时钟设备,使整个时钟系统保持同步并监测管理系统的运行状况。如果系统需要,可以采用主备冗余设计,在系统需要时,自动切换。 5.1.2.1高精度石英基准时钟 由高精度的石英振荡器通过分频及译码电路产生高精度时间信息,作为中心母钟的自身时间基准。当GPS时间信号不能完整获得时,系统将采用中心母钟自身的时间基准同步系统。中心母钟的自身时间基准精度高于0.1秒/天。 5.1.2.2信号处理切换 信号处理切换单元接收来自卫星接收转换系统的标准时间信号,用以同步自身时间精度,并将同步信号通过系统接口传送给子钟、监控计算机和其它系统,同时与之相关联设备的工作信息、指令也需经信号处理单元处理后再进行相应的馈送、显示、动作等。 当GPS接收转换系统的标准时间信号无法完整获得时,时间信号处理

卫星时钟服务器简述

卫星时钟服务器简述 一、卫星时钟服务器原理及构成 卫星时钟服务器主要是由接收单元、时钟单元和输出单元3部分组成。接收单元以接收的无线和有线时间基准信号作为外部时间基准(例如GPS、北斗卫星信号和IRIG-B 码等),接收单元含内部时钟源(晶体钟或原子钟)。时钟单元从接收单元获取时间源,并按照优先级选择一路时间源为当前使用的时间源。时钟单元使用选中的时间源对内部时钟对时。使内部时钟源与外部源同步,然后以内部时钟控制输出单元输出信号。输出单元输出各类时间同步信号和时间信息。 卫星时钟同步系统利用RS232接口接收gps卫星传来的信号,然后经过CPU中央处理单位的规约转换,将当地的时间转换成满足各种要求的接口标准。譬如 (RS232/RS422/RS485)和时间编码输出(IRIG-B码,ASCII码等)。现行的gps卫星和时钟同步系统支持硬件对时(脉冲节点PPS、PPM、PPH)、软件对时(串口报文)、编码对时(IRIG-B码)和网络NTP对时,满足国内外不同设备的对时接口要求。 卫星时钟服务器,从字面意思来了解就是从卫星上获取时间,通过内部的科技手段处理后,从设备上输出多路网口,多路路串口时间信息和经纬度位置信息。 其中1路网口通过NTP/SNTP协议可以在同一时间给不同的物理隔离的局域网进行授时。同时也可以进行跨网段授时,互不影响,也可以互为冗余备份。 每路串口有标准的GPS时间信息,输出的方式为标准GPS语句和经纬度位置信息。 目前,世界上主要的卫星导航授时系统且技术相对成熟的有美国的GPS、俄罗斯的GLONASS、欧洲的Galileo和我国的北斗卫星导航授时系统。这些卫星授时系统可以提供10纳秒级的授时精度。 二、卫星时钟服务器厂家现状 国内从事卫星时钟服务器的厂家不是很多,其中专注时间频率研究生产销售的厂家更是少之又少。这些单位有三大类:专门代理销售国际高端授时产品的公司、中途转行捎带做授时产品的公司以及自成立之日起就一直专注于时间频率产品的厂家。 代理销售国际高端授时产品的这些公司,别的不说,在价格上就要高出市场很多。毕竟,这些产品不属于他们。他们也只能得到一小部分利润。再者,如果设备出现问题,他们也提供不了大力的技术支持。产品的核心科技依然掌握在人家那些原本公司手中。 有些公司因为自身就是做电力相关的产品,为了配套使用会代理或研发出自己的授

北斗校时服务器在网络摄像机时间同步的解决方案

北斗校时服务器在网络摄像机时间同步的解决方案关键词:北斗校时服务器,校时服务器,北斗校时装置 网络摄像机相比于模拟摄像机的功能多增加了数字化压缩控制器和基于WEB管理界面的操作系统和内部时钟系统(可自行走时、也可获取外部时间作为基准),使得拍摄到的视频经处理后,通过有线网或者无线网送至终端用户显示出来或者存储。网络摄像机则需要北斗校时服务器来提供标准的时间,而用户可在PC终端或者是手机终端使用标准的客户端软件实现实时监控目标现场的情况,并可对图像及视频资料进行实时编辑和存储,同时还可以控制摄像机的云台和镜头,进行全方位地监控。 视频监控系统一般由网络摄像机、传输设备、后端存储、网络硬盘录像机及显示设备这五大部分组成,与时间关联最紧密的是网络摄像机和网络硬盘录像机。 1、网络摄像机问题:有的网络摄像机就没有网络硬盘录像机,例如家用网络摄像头,或是设备处于封闭互联网中,不能和网络进行时间同步,用的是系统默认的时间继续走时。 2、网络硬盘录像机问题:排除线路故障等原因未能和标准的北京时间同步原因外,还有可能是网络硬盘录像机主板的故障了,假设监控系统显示出的时间和标准的北京时间有偏差,各个网络摄像头显示时间也各不同,有的显示相差约几分钟,有的显示相差几秒,对于监控系统显示时间和标准时间相差约几秒的时间,产生误差的原因每个网络摄像机和硬盘录像机都是单独的个体,每个在没授时的情况下

自行走时,时间越久,偏差会越大,最常用的解决方法主要有以下二种: 1、对于接入互联网的摄像头或是NVR,可以通过NTP协议校时对准。在网络摄像头或硬盘录像机配置界面,通过填写网络时钟服务器地址后接入Internet就可以校准时钟。由于视频监控网络与Internet网络中的NTP时间服务器之间的网络情况复杂,设置NTP 时间服务器能够完成视频监控网络的时间同步,可靠性较高,但准确性欠佳,由于时延、网络拥塞以及外部权威时钟源地理位置等因素,也有可能出现对安防视频监控网络中的设备进行时钟校对的失准,同时也不安全,黑客可以通过互联网窃取视频信息。 2、如果是局域网的应用或是专网摄像头和网络录像机,必须先在网络内部架设配置NTP时钟服务器,再把SYN2151型校时服务器,的IP地址填入到每个网络摄像头或是网络硬盘录像机的配置界面内,才能保证时间同步。注意:在这种情况下需要保证地本时钟服务器的时钟精确度,一般使用高精度的本地时钟源需要较高的成本,SYN2151型北斗校时装置使用GPS定位校准等方式,统一用支持校时的标准协议NTP协议连接设备、保障平台和各设备符合标准协议里时钟同步约定的遵守,在低成本的条件下保证视频监控网络时间同步,减少系统时钟错乱问题。 故障二中各个网络摄像头显示时间部分不同,最大的相差约十几秒,最主要的问题来自于网络交换延迟。网络摄像机视频采集和编码输出需要时间,同时经过网络摄像机编码后的数字信号通过网络传输

xj-gps800 卫星时钟装置 说明书

XJ-GPS800系列标准时钟装置 说明书 V1.4 许继电气股份有限公司 二○一○年九月 *本说明书可能修改,请注意最新版本

目录 一、本装置引用的标准 (5) 二、概述 ....................................................................................................... 错误!未定义书签。 三、产品特点 (6) 四、同步时钟的构成 (7) 模块介绍 (7) 五、技术指标 (11) 六、通讯规约 (12) 规约1(BJT规约) (13) 规约2(BCD规约) (13) 规约3(ST规约,无校验) (14) 规约4(ST规约,有校验) (14) 编码方式 (15) 七、使用说明 (16) 装置结构与安装 (16) 八、功能设置说明 (18) 通讯规约设置 (18) 波特率设置 (19) 秒/分/时脉冲设置 (20) 脉冲输出连接方式 (21) 通讯接口方式设置 (22) 装置配置说明 (24)

XJ-GPS800卫星时钟装置产品手册 九、选型说明 (25) 2 XJ-GPS800A (25) XJ-GPS800B (25) XJ-GPS800C (26) XJ-GPS800D (26) XJ-GPS800系列其它配置 (26) 十、附录:图表目录 (27) 修订说明

3 产品变更通知 非常感谢贵公司选择我公司的产品。 近来,我公司在给贵公司供货的过程中发现,原先我公司与贵公司2010年签订 《长期合作协议》中的四个型号XJ-GPS800A、XJ-GPS800B、XJ-GPS800C、XJ-GPS800D 的配置已经不能满足工程的需要,经常出现配置变更的情况。由于出现一个型号, 不同配置的情况,为供货及今后的售后服务造成困难。 本着长期合作,优质服务的原则,我公司对XJ-GPS800系列的供货提出以下建 议,请贵公司给予确认,不胜感谢。 1. 针对产品不同的配置,请确认命名规则: 我司建议根据实际输出模块的配置来命名,例如: XJ-GPS800产品: 配置为:7个RS232,7个RS485,30路脉冲输出,建议命名为: XJ-GPS800 (PL30S14) 配置为:8个RS232,8个RS485, 24路B码输出,12路脉冲输出,建议命名为: XJ-GPS800 (PL12S16B24),详见下表:

什么是钟差

1、什么是钟差?钟差有什么特性?卫星钟差与接收机有什么处理方式? 钟差,在GPS定位系统中是一个非常重要的概念,它直接影响到GPS定位系统的精度。 我们知道在地球上每一个实体都有三维坐标,从理论上讲三维坐标(x,y,z)三个未知数求解需要三个方程,这三个方程是立体几何里面学的,三个方向上的坐标差的平方和再开方就是直线距离了。当然想到的就是三个卫星确定三个方程了。 但是事实并非如此,这个距离(d)是通过计算光在空间传输的时间来计算的,这就需要非常准确的时间了,在我们的接收设备中不可能投资很大(估计至少几万吧!)太浪费了,由此想到钟差的概念,就是我们的设备与标准的卫星的时钟差了。这个时钟差是未知的,所以为了确定时钟差,我们定位是实际上是需要4颗卫星。 方程的改进就是将根据时间差求的的距离(d)减去因钟差带来的误差C*(Vti—Vt0)。这样就可以实现GPS精确定位了。 如图所示:

假设t时刻在地面待测点上安置GPS接收机,可以测定GPS信号到达接收机的时间△t,再加上接收机所接收到的卫星星历等其它数据可以确定以下四个方程式: 上述四个方程式中x、y、z为待测点坐标,Vto为接收机的钟差为未知参数,其中di=c△ti,(i=1、2、3、4),di分别为卫星i到接收机之间的距离,△ti 分别为卫星i的信号到达接收机所经历的时间,xi 、yi 、zi为卫星i在t时刻的空间直角坐标,Vti为卫星钟的钟差,c为光速。 由以上四个方程即可解算出待测点的坐标x、y、z 和接收机的钟差Vto。 这时候就有人说了,干嘛要四颗卫星呢,三颗不就够了吗?想想还蛮有道理的,三个球面,交汇于一点,不就可以定出接收机所在的位置了吗?但是实际上,GPS接收器在仅接收到三颗卫星的有效信号的情况下只能确定二维坐标即经度和纬度,只有收到四颗或四颗以上的有效GPS卫星信号时,才能完成包含高度的3D定位。这是为什么呢? 原来,大家忽略了一件事情,那就是时间。先来看一颗卫星,它在一个规定的时间发送一组信号到地面,比如说每天8:00整开始发送一组信号,如果地面接收机就在8点零2秒收到了这一组信号,那么就是说信号从卫星到接收

基于北斗卫星导航定位系统的气象水文信息系统

基于北斗卫星导航定位系统的气象水文信息系统 【摘要】气象水文信息与工农业生产、百姓生活、军事活动、科学试验息息相关,构建一个科学合理、运行高效的气象水文信息系统,提高气象水文信息传输的实时性、信息处理的准确性、决策参考的科学性,从而使气象水文信息保障优质、高效。本文构建一个基于北斗卫星导航定位系统的气象水文信息系统,主要介绍系统组成、主要功能和应用情况。 【关键词】北斗卫星导航系统;气象水文信息系统;信息采集 气象水文信息与工农业生产、百姓生活、军事活动、科学试验息息相关,构建一个科学合理、运行高效的气象水文信息系统,提高气象水文信息传输的实时性、信息处理的准确性、决策参考的科学性,为优质、高效的气象水文信息保障提供有力的支持。北斗卫星导航定位系统是我国自主研发的卫星导航定位系统,集定位、短报文通信和授时三大功能于一体,基于北斗卫星导航定位系统的气象水文信息系统能较好地担当气象水文信息保障职责。 一、系统组成 气象水文信息系统主要由气象水文信息自动采集系统、信息传输系统、信息综合应用系统组成。 1.气象水文信息自动采集系统 气象水文信息自动采集系统由气象水文监测室及其所辖自动气象水文监测站、卫星遥测站、移动式气象水文数据采集终端、固定式气象水文数据采集终端和测量船等自动气象要素终端采集设备组成。 2.信息传输系统 数据传输系统由北斗卫星及定位总站组成。北斗卫星接收到采集终端发来的数据后,将其发送给定位总站。总站进行分拣后将数据通过北斗卫星发送到相应气象水文监测室的指挥型用户机;同时将所有数据通过地面链路发送到指控中心。定位总站通过逆向流程将指控中心发出的远程终端配置指令通过卫星发送到相应普通型用户机,由普通型用户机发送数据采集终端,进行系统识别码、采集频率等参数的修改。 3.信息综合应用系统 信息综合应用系统由信息分析处理机、信息显示设备、信息存储设备、信息应用工作站、网络互联设备、网络安全设备、信息交换处理机等组成。 二、系统功能

电力时钟同步系统解决方案

电力GPS时钟同步系统解决方案 北京创想京典科技发展有限公司 科 技 领先铸就最佳

什么是时间? 时间是一个较为抽象的概念,爱因斯坦在相对论中提出:不能把时间、空间、物质三者分开解释,"时"是对物质运动过程的描述,"间"是指人为的划分。时间是思维对物质运动过程的分割、划分。 在相对论中,时间与空间一起组成四维时空,构成宇宙的基本结构。时间与空间都不是绝对的,观察者在不同的相对速度或不同时空结构的测量点,所测量到时间的流逝是不同的。广义相对论预测质量产生的重力场将造成扭曲的时空结构,并且在大质量(例如:黑洞)附近的时钟之时间流逝比在距离大质量较远的地方的时钟之时间流逝要慢。现有的仪器已经证实了这些相对论关于时间所做精确的预测,并且其成果已经应用于全球定位系统。另外,狭义相对论中有“时间膨胀”效应:在观察者看来,一个具有相对运动的时钟之时间流逝比自己参考系的(静止的)时钟之时间流逝慢。 就今天的物理理论来说时间是连续的,不间断的,也没有量子特性。但一些至今还没有被证实的,试图将相对论与量子力学结合起来的理论,如量子重力理论,弦理论,M理论,预言时间是间断的,有量子特性的。一些理论猜测普朗克时间可能是时间的最小单位。

什么是时间? 根据斯蒂芬·威廉·霍金(Stephen William Hawking)所解出广义相对论中的爱因斯坦方程式,显示宇宙的时间是有一个起始点,由大霹雳(或称大爆炸)开始的,在此之前的时间是毫无意义的。而物质与时空必须一起并存,没有物质存在,时间也无意义。

卫星时钟系统为什么含有精确的时间信息? 地球本身是一个不规则的圆,加上地球自转和公转的误差,如果仅仅依靠经度、纬度、海拔高度三个参数来定位的偏差会很大,所以 引入了一个时间参数,每个卫星都内置了一个高稳定度的原子钟!

基于北斗卫星导航定位系统的水利监控管理系统

基于北斗卫星导航定位系统水利监控管理方案 北京长缨神舟科技有限公司

目录 1引言 (6) 1.1 概述 (6) 1.2 项目必要性 (7) 1.3 设计依据 (9) 1.3.1 参考资料 (9) 1.3.2 可行性分析 (10) 2任务与功能 (12) 2.1 实现任务 (12) 2.2 功能需求 (14) 2.2.1 气象水文数据的实时采集 (14) 2.2.2 水利水情信息实时查询 (15) 2.2.3数据的实时传输 (15) 2.2.4电子地图 (15) 2.2.5 路线规划 (16) 2.2.6 修改远端测站参数 (16) 2.2.7终端设备安装、维护简易 (16) 2.2.8接收报警信息 (16) 2.2.9 通信回执 (16) 2.2.10 实时通信 (17) 2.2.11数据库查询 (17) 2.2.12历史数据回放 (17)

2.2.13数据分发和共享 (17) 2.2.14 短信通信 (17) 3性能指标要求 (18) 3.1中心基本技术要求 (18) 3.1.1 功能要求 (18) 3.1.2 其它技术要求 (19) 3.2 接口技术要求 (20) 4系统总体设计 (21) 4.1系统的设计目的、思路与原则 (21) 4.1.1 设计目的 (21) 4.1.2 研制思路与关键技术策略 (21) 4.1.3 设计原则 (22) 4.2系统组成结构 (23) 4.2.1 系统总体结构 (23) 4.2.2 子系统的组成及配置 (25) 4.2.2.1气象水文数据自动采集子系统 (25) 4.2.2.2 数据传输子系统 (30) 4.2.2.3 数据综合应用子系统 (32) 4.3系统工作原理 (35) 4.3.1 系统工作模式 (35) 4.3.2北斗信号上行工作原理 (36) 4.3.3北斗信号上行工作原理 (37)

关于钟差的认识

关于钟差的认识 摘要:本文主要从钟差的产生及定义,造成钟差的因素,卫星钟差的估计,钟差改正(其中钟差改正包括精密卫星钟差估计中消除钟差的方法以及在GPS伪距测量中,解决接收机钟差的改正)等几个方面来讲述有关钟差的认识,通过此,来加深对钟差的理解,对GPS的学习。 关键字:卫星钟接收机精密估计 一.有关钟差产生及定义 卫星钟是用卫星上的信号作为统一的时间标准来定义的一种时间计时装置。对于一个卫星来说,由于不同的接收地点,卫星信号的传输的距离不同,对于同一个速度,距离和时间成正比的,距离远时自然用时长,时间一点一点的过去,到达接收点时,自然跟时间的时间有一个差值的,这个差值即为卫星钟的钟差。 由于卫星的位置是时间的函数,因此,GPS的观测量均发精密测时为依据,而与卫星位置相对应的信息,是通过卫星信号的编码信息传送给接收机的。在GPS定位中,无论是码相位观测或是载波相位观测,均要求卫星钟与接收机时钟保持严格的同步。实际上,以尽管GPS卫星均设有高精度的原子钟(铷钟和铯钟),但是它们与理想的GPS时之间,仍存在着难以避免的偏差和漂移。 对于卫星钟的这种偏差,一般可由卫星的主控站,通过对卫星钟运行状态的连续监测确定,并通过卫星的导航电文提供给接收机。经钟差改正后,各卫星之间的同步差,即可保持在20ns以内。 在相对定位中,卫星钟差可通过观测量求差(或差分)的方法消除。 GPS接收机的钟差也就是我们的设备与标准的卫星的时钟差。 二.造成钟差的因素 卫星钟差:卫星钟差是GPS卫星上所安装的原子钟的钟面时与GPS标准时间的误差。 卫星钟的钟差包括由钟差、频偏、频漂等产生的误差,也包含钟的随机误差。在GPS测量中,无论是码相位观测,还是载波相位观测,均要求卫星钟和接收机钟保持严格同步。尽管GPS卫星采用的是原子钟(铯钟和铷钟),但由于上述因素的影响,卫星钟的钟面时与理想的GPS时之间存在着偏差或漂移。这些偏差的总量可达1MS,产生的等效距离误差可达30KM。 接收集钟差:接收机钟差是GPS接收机所使用的钟的钟面时与GPS标准时之间的差异。 三.卫星钟差的估计

GPS时钟同步原理简介

GPS时钟同步原理 1.有关时间的一些基本概念 时间(周期)与频率 互为倒数关系,两者密不可分,时间标准的基础是频率标准,所以有人把晶体振荡器叫‘时基振荡器’。钟是由频标加上分频电路和钟面显示装置构成的。 四种实用的时间频率标准源(简称钟) ◆晶体钟 ◆铷原子钟 ◆氢原子钟 ◆铯原子钟 常用的时间坐标系 时间的概念包含时刻(点)和时间间隔(段)。时系(时间坐标系)是由时间起点和时间尺度单位--秒定义(又分地球秒与原子秒)所构成。常用的时间坐标系: ◆世界时(UT) ◆地方时 ◆原子时(AT) ◆协调世界时(UTC) ◆ GPS时 定时、时间同步与守时

◆定时:是指根据参考时间标准对本地钟进行校准的过程);授时(指采用适当的手段 发播标准时间的过程); ◆时间同步:是指在母钟与子钟之间时间一致的过程,又称时间统一或简称时统); ◆守时:是指将本地钟已校准的标准时间保持下去的过程,国内外守时中心一般都采 用由多台铯原子钟和氢原子钟组成的守时钟组来进行守时,守时钟组钟长期运行性能表现最好的一台被定主钟(MC)。 2.GPS时间是怎样建立的 为了得到精密的GPS时间,使它的准确度达到<100ns(相对于UTC(USNO/MC)): ◆每个GPS卫星上都装有铯子钟作星载钟; ◆ GPS全部卫星与地面测控站构成一个闭环的自动修正系统; ◆采用UTC(USNO/MC)为参考基准。 3.GPS定位、定时和校频的原理 GPS定位原理 是基于精确测定GPS信号的传输时延(Δt),以得到GPS卫星到用户间的距离(R)R=C×Δt ----------------------- [1](式中C为光速)同时捕获4颗GPS卫星,解算4个联立方程,可给出用户实时时刻(t)和对应的位置参数(x、y、z)共4个参数。R={(Xs- Xu)2+(Ys-Yu)2+(Zs-Zu)}1/2 ---- [2](式中Xs、Ys、Zs为卫星的位置参数;Xu、Yu、Zu为用户的的位置参数)。 GPS定时原理 基于在用户端精确测定和扣除GPS时间信号的传输时延(Δt),以达到对本地钟的定时与校准。GPS定时准确度取决于信号发射端、信号在传输过程中和接收端所引入的误差,主要误差有:

基于北斗卫星通信的电力公司弱信号地区电能量数据采集系统解决方案

基于北斗卫星通信的 电力公司弱信号地区电能量数据采集系统 解决方案 2017年3月

目录 1项目背景 (3) 1.1项目需求 (3) 1.2北斗通信应用概况 (4) 2北斗卫星通讯系统技术特点 (6) 3系统解决方案 (7) 3.1系统架构 (7) 3.1.1系统构成 (7) 3.1.2厂站端子系统功能 (7) 3.1.3主站端接入系统功能 (8) 3.2电力集抄协议与北斗通信协议规约转换 (10) 3.3长报文传输 (10) 3.4拆、组包原理 (11) 3.5系统技术特点 (11) 3.5.1现场施工方便、便于维护 (11) 3.5.2不占用其它网络资源 (12) 3.5.3北斗通信通道免费、后期维护成本低 (12) 3.5.4通信带宽 (12) 4系统组成 (13) 4.1设备配置清单 (13) 4.2附件 (13) 详见北斗一体机终端规格书 (13) 详见北斗指挥机终端规格书 (13) 详见北斗多卡机终端规格书 (13)

1项目背景 1.1项目需求 在2011年,国网公司对各网省电力公司提出了对居民用电信息,各厂站电能量数据实现“全覆盖、全采集”的要求。 根据国网公司的要求,各网省公司需逐步加强对各类厂站的管控力度,对其发、售电量,供电可靠性等实时数据信息都急需了解,以利于全面掌握电力公司的经营情况。 目前电网行业的数据通信应用方式中,主要采用光纤、微波或手机公网(GPRS、3G等)通道进行通信,而对于广大人烟稀少山区、牧区、深山中的峡谷水电站等,其既无光纤通路,也尚无法保证稳定的公网信号覆盖,这种地区上述通信方式则显得无能为力,而新建设通信通道存在着成本高昂、通信架构受限、建设与维护等问题。 据初步调研的两个案例如下: 案例一:四川省内共有小型水电站3000余座,其中弱信号(无线公网信号较弱或未覆盖地区)的电站有800余座,主要分布在雅安、阿坝、凉山、攀枝花、甘孜等地区,地理位置较为偏僻。另外,在这些地区(以及在其它地区若干地点),尚有涉及电能量采集业务的其它应用方式同样存在弱信号的情况,影响了省公司对发电、用电信息的及时掌控。 案例二:青海省内共有600多个自然村庄因通信手段匮乏无法完成自动抄表,需依靠每月一次的人工方式进行走抄,有些村庄甚至开车进去,当天无法往返。这种方式下不仅数据的实时性不强,还极大的浪费了人力物力。 以上的案例描述几乎是中国1/3地区的共同需求,其它省份如云南、贵州、新疆、西藏、甘肃等。因此,如何获得一种行之有效的通信通道来解决众多项目的主要通信需求。 这样的地区信号非常弱或根本没有信号,而且长期得不到解决,导致两个问题:一是远方采集设备不能正常工作,数据采集成功率很低,仍然需要人工现场补充抄取,不能满足营销运营管理的要求;二是现有采集设备由于通信通道的瓶颈得不到

BBU时钟同步方案学习资料

1.1目前BBU采用的时钟同步方案 在NodeB的BBU时钟同步方案应用中,目前产品中采用方案如下: 图1目前BBU时钟同步方案 关键需求: 1.频率同步要求:0.05ppm 2.相位同步要求:1.5us 基本原理: 通过使用GPS等稳定特性好的时钟源来校准精度较高的本地时钟,可以将GPS的长 期稳定特性与本地时钟晶振的短期稳定特性很好的结合起来,为整个系统提供可靠的系统时间和工作时钟,保证系统的频率同步和相位同步要求。 组成: 频率合成:本方案中频率合成指的是将OCXO输出的10MHZ的时钟进行变频,转换成系统时钟(目前系统时钟频率为20.48MHZ),这部分功能是采用专用的数字频率合成芯片DDS (AD9851 )来完成的;方案中共用到了两路DDS,其中的一路频率合成电路 (DDS1的输出(20.48MHZ作为同步算法的高频参考时钟输入到FPGA在FPGA内部经过DCM 模块变成高频时钟(200MH竝右);另一路频率合成电路(DDS2的输出(20.48MHZ 经过驱动电路后输出到背板提供给各个单板使用,由于输出到背板的时钟需要实时跟踪主 用板输出时钟的相位,所以会实时调节这一路AD9851 ( DDS2输出信号的相位。而另一 路AD9851 (DDS1的输出相位不作任何调整,这样就保证了同步算法的正确性。 OCXO的频率调整电路:OCXO的输出频率会受环境温度、负载、电源的影响,而且OCXO 自身也会老化。为了保证OCXO输出时钟的精度需要根据实际情况调整OCXO 的输出频率。OCXO有时钟频率调整端,此管脚的电压值将直接控制OCXO的输出频率。

DA变换在本板中的作用是产生OCXO的频率控制电压,CPU经过时钟算法处理后推算出OCXO的频率与GPS的时钟相比的误差,结合OCXO的频率调整范围以及预计调整的频率值,推算出应该设定的频率控制电压;知道了OCXO的频率控制电压后,再结合DA转换器的工作范围,就可以推算出DA转换器要设定的数字量。 FPGA: DDS2输出的20.48MHZ时钟信号通过分频产生PP2S信号。记录1pps间的 204.8Mhz时钟频率误差以及1pps和PP2S的相位差提供给CPU完成时钟同步算法。配置DA、DDS。 CPU:完成时钟同步算法。时钟同步模块类似锁相环,同步算法相当于鉴相器(部分)和低通滤波器。同步算法根据时钟参考源锁定状态下提供的1PPS信号来调整本板时钟(通常为压控恒温晶振OCXO),使得本板输出的PP2S信号的频率满足要求,且相位与1PPS 相位严格对齐。 GPS接收机:提供基站系统同步所需的时间;提供1pps作为时钟同步的常稳参考源。 方案优点:设计思路简单,通过CPU和FPGA共同来完成时钟同步算法,不仅实现了对频率的校准同时保证相位同步,时钟同步算法自主开发,可维护性强。 方案缺点:受OCXO的频率调整范围限制。由于需要对OCXO进行频率调整,一旦OCXO的频率调整范围超出了时钟同步算法设定的频率调整范围,将无法进行频率校准,必须更换OCXO。 设计难点:时钟同步算法是本方案的设计难点,特别是失锁后的保持算法。 1.2基于AD9548的时钟同步方案 基于AD9548的时钟同步方案框图如下: 图2基于AD9548 的时钟同步方案 关键需求: 1.频率同步要求:0.05ppm 2.相位同步要求:1.5us 基本原理: GPS等稳定特性好的时钟源作为数字锁相环的参考源,数字锁相环来产生校准后的高精度的系统时钟,通过系统时钟分频产生与1PPS同步的PP2S,从而保证系统的频率

(完整版)北斗卫星导航系统常识简介

北斗卫星导航系统常识简介 一、北斗卫星导航系统现状 中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 北斗卫星导航系统空间段由5颗静止轨道卫星(又称24小时轨道,指轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性空间中的自转周期,且方向亦与之一致,即卫星与地面的位置相对保持不变,故这种轨道又称为静止卫星轨道。一般用作通讯、气象等方面)和30颗非静止轨道卫星组成,2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。中国正在实施北斗卫星导航系统建设,截止2016年10月已成功发射16颗北斗导航卫星。 2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。北斗导航系统是覆

盖中国本土的区域导航系统,覆盖范围东经约70°-140°,北纬5°-55°。北斗卫星系统已经对东南亚实现全覆盖。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。 北斗产业应用前景广阔,预计到2020年,仅北斗卫星导航市场将达到年产值4000亿元人民币,年复合增长率达到40%以上。”中国科学院院士、中国工程院院士、著名测量与遥感学家李德仁介绍说 二、卫星定位原理 北斗卫星导航系统35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。

GPS卫星同步时钟说明书16K-(2)解析

GPS卫星同步时钟 说 明 书 烟台国芯电子科技有限公司

选型手册 型号配置说明机箱结构 TD-2000 2路RS-232串口,2路RS-485串口,天线 长30米,智能型1U19〞上架式优质铝合金机箱 TG-2000B8 2路RS-232串口,2路RS-485串口,8路 IRIG-B码输出,天线长30米,智能型1U19〞上架式优质铝合金机箱 TG-2000B16 2路RS-232串口,2路RS-485串口,16路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000B24 2路RS-232串口,2路RS-485串口,24路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000B32 2路RS-232串口,2路RS-485串口,32路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000B40 2路RS-232串口,2路RS-485串口,40路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000B48 2路RS-232串口,2路RS-485串口,48路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000M8 2路RS-232串口,2路RS-485串口,8路 脉冲输出,天线长30米,智能型1U19〞上架式优质铝合金机箱

一.简介 TD系列GPS卫星同步时钟系选用美国专业公司制造的GPS 卫星信号接收机,经二次开发研制的高科技产品。产品广泛应用于电力、民航、铁路、交通调度、数字电视、实时通信网络等需要授时或校时领域。因采用卫星星载原子钟作为时间标准,无累积误差,所以是当今世界首选的高精度对时设备(相当于原子钟)。 系统采用12通道高品质GPS接收机,具有并行跟踪12颗卫星的能力,一旦初始化完成,即使锁定一颗卫星也能实现授时功能,因此系统具有强大的抗干扰能力。 产品设计符合《静态继电保护装置及安全自动装置通用技术条件》、《华东电网时间同步系统技术规范》、《广东电网变电站GPS时间同步系统技术规范》及《电力系统的时间同步系统技术规范》。装置软硬件采用多项抗干扰措施,符合电磁兼容标准。 二.产品主要功能 1.可显示和输出北京时间、协调世界时(UTC)及其它任何时区时、分、秒、

GPS时钟系统(GPS同步时钟)技术方案(1)

GPS 时钟系统(GPS 同步时钟技术方案 技术分类:通信 | 2010-11-08 维库 在电力系统、 CDMA2000、 DVB 、 DMB 等系统中 , 高精度的 GPS 时钟系统(GPS 同步时钟对维持系统正常运转有至关重要的意义。 那如何利用 GPS OEM来进行二次开发 , 产生高精度时钟发生器是一个研究的热点问题。如在 DVB-T 单频网 (SFN中 , 对于时间同步的要求 , 同步精度达到几十个 ns, 对于这样高精度高稳定性的系统 , 如何进行商业级设计 ? 一、引言 在电力系统的许多领域,诸如时间顺序记录、继电保护、故障测距、电能计费、实时信息采集等等都需要有一个统一的、高精度的时间基准。利用 GPS 卫星信号进行对时是常用的方法之一。 目前, 市场上各种类型的 GPS-OEM 板很多, 价格适中, 具有实用化的条件。利用 GPS-OEM 板进行二次开发,可以精确获得 GPS 时间信息的 GPS时钟系统 (GPS 同步时钟。本文就是以加拿大马可尼公司生产的 SUPERSTAR GPS OEM板为例介绍如何开发应用于电力系统的的 GPS 时钟系统(GPS 同步时钟。 二、 GPS 授时模块 GPS 时钟系统 (GPS 同步时钟采用 SUPERSTAR GPS OEM 板作为 GPS 接受模块, SUPERSTAR GPS OEM 板为并行 12跟踪通道,全视野 GPS 接受模块。 OEM 板具有可充电锂电池。 L1频率为 1575.42MHz ,提供伪距及载波相位观测值的输出和 1PPS (1 PULSE PER SECOND脉冲输出。 OEM 板提供两个输入输出串行口,一个用作主通信口,可通过此串行口对 OEM 板进行设置,也可从此串口读取国际标准时间、日期、所处方位等信息。另一个串行口用于 RTCM 格式的差分数据的输出,当无差分信号或仅用于 GPS 授时,此串行口可不用。 1PPS 脉冲是标准的 TTL 逻辑

相关文档
最新文档