two Bamboo Species (Phyllostachys Auresulcata `Spectabilis' and Pleioblastus Excess Copper

two Bamboo Species (Phyllostachys Auresulcata `Spectabilis' and Pleioblastus  Excess Copper
two Bamboo Species (Phyllostachys Auresulcata `Spectabilis' and Pleioblastus  Excess Copper

Differential Responses of two Bamboo Species (Phyllostachys Auresulcata `Spectabilis'and Pleioblastus Chino `Hisauchii')to Excess Copper

Li Jiang &Gangrong Shi &Yulong Ding &Laiqing Lou &Qingsheng Cai

Published online:13March 2013

#Springer Science+Business Media New York 2013

Abstract Pot experiments were carried out to examine the responses of growth,physiological properties,copper (Cu)absorption and translocation in two bamboo species,Phyllostachys auresulcata ‘Spectabilis ’and Pleioblastus chino ‘Hisauchii ’Two-year old plants with similar size were exposed to excess Cu treatments,in order to demonstrate their Cu tolerance and potential ability of phytoremediation under Cu-polluted soil as biofuel feedstock.Pots were irri-gated with aqueous solutions of Cu in concentrations of 500,1000and 2000mg CuSO 4·5H 2O kg ?1,against the control (tap water).Plant growth,chlorophyll contents,photosynthesis rate,malondialdehyde (MDA)content,Cu concentrations in leave,stem and root,and Cu contents in shoot per pot were measured after transplanted plants were grown under excess Cu treatments for 60days.Two bamboo species had different responses to tolerance and allocation of supplied Cu.As Cu treatments rose,the percentage of senescent shoot and MDA content increased,and the chlorophyll content and photosyn-thetic capacity decreased.Such changes in Hisauchii were more obvious than in Spectabilis.However,number of

emerged shoots did not differ between the two species across four Cu treatments.In the efficiency of decontamination,Hisauchii was more effective than Spectabilis,since either the Cu concentrations in leaves,stems and roots or Cu con-tents in shoot per pot in Cu treatments from 500to 2000mg kg ?1were higher in Hisauchii than in Spectabilis It is suggested that the potential capability of absorbing Cu might cause the different response to cu stress between the two bamboo species.Both bamboo species can be considered to exhibit enough potential to develop in Cu-polluted areas of China as bioenergy resources and phytoremediation plants.

Keywords Bamboo .Bioenergy plant .Copper stress .Phytoremediation

Introduction

Various industrial and agricultural human activities,such as mining,smelting,land application of sewage sludge,use of fungicides containing copper (Cu)to arable lands,etc.,have led to widespread soil contamination with Cu up to potentially toxic conditions.Copper is an essential micronutrient for plant metabolism,but when present in excessive amounts,could lead to inhibition of plant growth by deteriorating plant phys-iological metabolisms [1–4].For example,excess Cu inhibited chlorophyll synthesis and photosynthetic activity [5]caused an increase in MDA (malondialdehyde),damaged cell membranes,and changed reactive oxygen species (ROS)responses [6,7]and other disordered metabolic activities [8–10].Some plant species,especial heavy metal hyper-accumulators,have relatively strong tolerances to heavy met-al,and can be found growing successfully,showing physio-logical adaptation on soils contaminated by metals,where other species or genotypes would fail.Heavy metal hyper-accumulators were proposed as a promising concept for

L.Jiang :G.Shi :L.Lou (*):Q.Cai (*)

College of Life Sciences,Nanjing Agricultural University,Nanjing 210095,People ’s Republic of China e-mail:loulq@https://www.360docs.net/doc/6618182787.html, e-mail:qscai@https://www.360docs.net/doc/6618182787.html,

G.Shi

College of Life Sciences,Huaibei Normal University,Huaibei 235000,People ’s Republic of China

Y .Ding

Bamboo Research Institute,Nanjing Forestry University,Nanjing 210037,People ’s Republic of China

L.Jiang

Key Laboratory of Oasis Ecology and Desert Environment,

Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 860011,People ’s Republic of China

Bioenerg.Res.(2013)6:1223–1229DOI 10.1007/s12155-013-9317-4

more than400species,including24species for Cu. However,these hyper-accumulators are known not to be fit for economical use,due to low biomass yield with slow growth rates[11–14].

Developing high biomass energy crops on metal contam-inated soils is now considered a corking solution to these problems[15,16].Bioenergy crops can be used for produc-ing either biodiesel or bioethanol,which is a sustainable option for possibly removing metal pollutants by phytoremediation,i.e.the use of plant systems to absorb and remove pollutant elements fromcontaminated soils [16–18].

Bamboos(more than70genera and about1,000species) occur naturally in tropical,subtropical and temperate re-gions of all the continents in the world(except Europe), from sea level to4000m.The bamboo area in China is more than4million ha and occupies1/4of the world total,and is mostly covered by genus Phyllostachys[19].Bamboo is the largest member of the gramineous family,usually consisting of large,woody perennials;these are widely used for agricultural products,such as fresh edible shoots and ingredients in medicine;for industrial purposes,such as paper-making and building materials;and for ecological protection,such as soil and water conservation and ero-sion control.Some perennials bamboo species are known to have several merits,including high stress tolerance to various factors,high growth and biomass production [20–22].Recently,some researchers reported on the heavy metal tolerance and accumulation in some bamboo species[10,23,24].

In order to develop dual potentials of bamboo species for bioenergy feedstock and phytoremediation activity in Cu-polluted areas,we examined plant growth,physiological properties,Cu absorb,accumulation and translocation abil-ities of two bamboo species(Phyllostachys auresulcata ‘Spectabilis’and Pleioblastus chino‘Hisauchii’in a range of Cu supplies up to excessive rates using pot-soil-culture. Materials and Methods

Experimental Set Up

The soil used in this experiment was collected from the topsoil(15cm below surface)on a wasteland that had been uncultivated for several years,in Pailou Experimental Station of Nanjing Agricultural University in Nanjing (N:32°12′;E:118°28′),China.The soil was removed of impurity,blend homogenized,air-dried and sieved through a 4.0mm sieve prior to use.The pH,organic matter content and Cu content in the soil samples were determined.The soil was clay,neutral(pH=6.47)with9.15g organic matter kg?1 and35.24mgCukg?1.

Uniform plants in3.0±0.1m height and1.5±0.1cm basal diameter for two bamboo species,Phyllostachys auresulcata ‘Spectabilis’and Pleioblastus chino‘Hisauchii’,were care-fully selected from a two-year old bamboo field in Bamboo Research Institute,Nanjing Forestry University.Twenty se-lected plants with10-cm rhizomes for each species were transplanted into a plastic pot(35cm height×35cm diameter) in autumn,with three culms per pot and four replicates for each treatment.Each pot was filled with25kg of already prepared soil and placed randomly on the field located at the Pailou Experimental Station of Nanjing Agricultural University,Nanjing,China.The heavy metal contamination of the soil began the next spring,180d after transplanting. Each pot was accomplished separately,by irrigating every day or as need with aqueous solutions of CuSO4·5H2O at concen-trations of500,1000and2000mgkg?1against the control(tap water)[25].

The pots were arranged in eight-row repetitions(four pots per row,one pot for each treatment and species),according to the completely randomized design with two factors,namely, bamboo species and the heavy metal concentration.

Measurements for Plant Growth,Physiological Parameters and Cu Accumulation

Plant Growth

Plant growth,physiological parameters and Cu accumula-tion were determined after60-day treatment as described below.In the spring,new bamboo shoots emerged from the base of culm,and at the same time,some emerged bamboo shoots senescent(withered away).Thus,number of emerged shoots and senescent shoots were counted,and the percent-age of senescent shoots(%)was calculated as numbers of senescent shoots/numbers of emerged shoots×100. Physiological Parameters

The mature leaves(0.2g)sampled from each plant were extracted in the dark at4°C with5ml80%acetone until color completely disappeared from leaf pieces.Total chlo-rophyll contents were determined by using spectrophotom-eter(UV-Shimazu,Japan)according to the method of Moran(1982)[26].

The net photosynthetic rate(P N),stomatal conductance (g s),and intercellular CO2concentration(C i)were measured by using a portable photosynthesis system(LI-6400,Li-Cor, Lincoln,NE,USA)equipped with light sources consisting of blue-red light-emitting diodes(LI-6400-02B).The mea-surements were conducted at photosynthetic photon flux density(PPFD)of1000μMm?2s?1,leaf temperature of 25°C,and constant CO2of380±5μM(CO2)mol?1in the sample chamber provided with buffer volume.

The malondialdehyde(MDA)content was determined according to the method of Duan et al.[27].Fresh leaves (about0.2g)were homogenized in10mL of10%trichlo-roacetic acid(TCA),and centrifuged at10,000×g for 10min.Then,2ml of0.6%thiobarbituric acid(TBA)in 10%TCA was added to2ml of the supernatant.The mixture was placed in boiling water for30min,and then quickly cooled down in an ice bath.After centrifugation at 10,000g for10min,the absorbance of the supernatant at 450,532,and600nm was determined with a spectrometer. The MDA content(μg g?1)was calculated using the formula: C(μg g?1)=6.45(A532–A600)-0.56A450.

Copper Accumulation

The plants of each treatment were harvested and washed thoroughly with distilled water,separated into roots,stems and leaves,dried at80°C until they reached constant weights.Copper concentrations were determined by ICP-OES(inductively coupled plasma–optical emission spec-trometer,ICP-OES Optima2100DV,Perkin Elmer,US) after digesting the samples with HNO3:HClO4(3:1,v/v) using a microwave laboratory system(Milestone Ethos T, USA).During the analysis of Cu in plants,standard refer-ence material from the National Research Center for Standards,China,was used for quality assurance.The trans-location factor(TF)indicates the plant’s ability to translocate the heavy metal,Cu,from roots to shoots.It was calculated on a basis of dry weight by dividing the metal concentration in shoots over the metal concentration in roots[28]. Statistical Analysis

A completely randomized design was conducted in these experiments with four replicates.Statistical analysis was

carried out using the software SPSS16.0by one-way ANOV A with Duncan’s test(P=0.05significance level)to test the different significance.

Results

Effects of Excessive Cu to Bamboo Shoot Growth

In the spring,number of emerged shoots did not differ significantly between Cu treatments(500,1000and 2000mgkg?1)and the control in either of bamboo species (Fig.1a).However,the percentage of senescent shoots increased significantly with the increase in Cu treatments from500to2000mgkg?1for both species(P>0.05, Fig.1b).The percentage of senescent shoots in Hisauchii tended to be higher than that in Spectabilis,but was not significant at P<0.05.Effects of Excess Cu on Several Physiological Properties Most of the photosynthetic properties tested,net photosyn-thetic rate(P N),stomatal conductance(g s)_and intercellular CO2concentration(C i)decreased with increasing Cu con-centration from0to2000mgkg?1Cu treatments in both bamboo species;especially P N,which decreased significant-ly at P>0.05(Table1).The reduction of P N and g s in Hisauchii tended to be more obvious than in Spectabilis, especially at higher Cu treatments in a range from0to 2000mgkg?1Cu treatments.The C i did not differ signifi-cantly(P<0.05)between the two species across four Cu treatments.

The chlorophyll contents decreased significantly with increasing Cu concentration from0to2000mgkg?1Cu treatments in both bamboo species(Fig.2a).Two bamboo species did not differ significantly in chlorophyll contents at 500mgkg?1Cu treatment,while Spectabilis had

significantly Fig.1Effect of Cu treatment on(a)number of emerged shoots,(b) percentage of senescent shoot in Spectabilis and Hisauchii.The values (mean±S.E.,n=4)having the same letters above the bars are not significantly different at P<0.05,based on Duncan’s test

higher chlorophyll contents than Hisauchii at1000and 2000mgkg?1Cu treatments,where the decreased rates of chlorophyll contents from the control were much higher in Hisauchii than in Spectabilis.

In opposition to the photosynthetic parameters and chlo-rophyll contents,the MDA contents,one of the indices that reflects the degree of membrane lipid peroxidation,in-creased significantly at P>0.05with increasing Cu treat-ments from0to2000mgkg?1in both bamboo species (Fig.2b).However,the increased rate of MDA contents from the control was significant higher in Hisauchii than in Spectabilis across all of the Cu treatments.

Absorption,Accumulation and Translocation of Cu

Most of the Cu concentrations in leaves,stems and roots of the two bamboo species increased significantly as Cu treatment increased from0to500,1000and2000mgkg?1.It is note-worthy that either the Cu concentrations in leaves,stems and roots or Cu contents in shoot per pot were higher in Hisauchii than in Spectabilis,and differed significant at P>0.05 (Table2).In both bamboo species,Cu concentration was highest in roots,followed by stems,and was lowest in leaves. The translocation rate(TF)tended to be higher in Hisauchii (range,0.41–0.49)than in Spectabilis(range,0.24–0.42) across whole Cu treatments.

Although the shoot biomass per pot decreased signifi-cantly as Cu treatment increased from0to500,1000and 2000mgkg?1in both of bamboo species(Fig.3),the Cu accumulation in shoot increased for all Cu treatments(Table2). As shown in Fig.3,the shoot biomass per pot tended to be lower in Hisauchii than in Spectabilis when treated with1000 and2000mgCukg?1;however,the Cu contents in shoot per pot were still higher in Hisauchii than in Spectabilis (Table2),indicating that the amount of shoot Cu removal per pot was higher by shoots of Hisauchii than those of Spectabilis.

Discussion

Bioenergy plants are considered for multitudinous purposes, such as being transformed into energy for heat and electric

Table1Photosynthetic param-eters of Spectabilis and Hisauchii exposed to increasing Cu concentrations.Mean±S.E., n=4

*Different letters in the same column denote significant dif-ferences(P<0.05),based on Duncan’s test Species Cu treatments P N g s C i

(mg kg?1)(μmol m?2·s?1)(mmolH2O m?2·s?1)(μmol mol?1)

Spectabilis0(Control)10.7±0.7b*0.114±0.011b206.8±15.2a 5007.9±0.2c0.058±0.003d141.6±15.3a

1000 5.9±0.2d0.039±0.002d,e116.8±19.9a

2000 4.1±0.1e0.024±0.002e,f123.8±4.2a Hisauchii0(Control)12.9±0.2a0.132±0.003a207.3±5.0a 5008.6±0.6c0.083±0.011c196.5±10.9a

1000 5.6±0.3d0.036±0.002d,e116.8±20.2a

2000 3.0±0.3e0.013±0.004f149.7±49.2

a Fig.2Effect of Cu on(a)chlorophyll content,(b)MDA content of in

leaves of in Spectabilis and Hisauchii.The values(mean±S.E.,n=4)

having the same letters above the bars are not significantly different at

P<0.05,based on Duncan’s test

power production through direct combustion,used as a feedstock for liquid transportation fuel,or gasified and liquefied to produce syn-gas or bio-oil.Several perennial herbaceous grasses have been studied in recent years as potential dedicated cellulose biomass crops[29].Bamboo, a perennial lignified plant,is considered a promising bio-mass for pulping and bioethanol production,due to its rapid growth rate and huge quantity.Recently,it was reported that the bamboo lignin could be easily released after using ad-vanced chemistry and spectroscopic methods[30]. Therefore,it is necessary to research heavy metal,metal-loids and organic pollution tolerance of bamboo plants,for the use of polluted land for bioenergy production.In this study,the response of bioenergy candidate plants to excess Cu was analyzed.

Naturally,the major portion of total soil Cu is insoluble, precipitated or adsorbed on the solid phase.Only about1%to<0.01%of the total soil Cu is dissolved in the soil solution[31].However,in recent decades,enhanced anthro-pogenic activities,such as mining and smelting,combustion of fossil fuels,utilization of fertilizers and pesticides,and disposal of wastes have contributed to the increasing occur-rence of heavy metals,including Cu,in ecosystems[32]. Copper is both a micronutrient for plants and a heavy metal capable of stress induction.The first visible symptom of Cu toxicity for plants is known as the interveinal chlorosis of leaves[33]due to the decreased rate of chlorophyll biosyn-thesis[34,35],since Cu can induce degradation of chloro-phyll through damage of chlorophyll structure and function [36].Photosynthesis has been found to be very sensitive to heavy metal toxicity.A great number of previous investiga-tions have indicated that heavy metal causes a reduction of the photosynthetic performance in plants[37].The parallel change of P N,g s and C i in this study provided evidence that the photosynthetic responses of two bamboo species to excess heavy metal might be mainly due to the alteration of the pigment contents and stomatal conductance under Cu stress.Abiotic stresses could damage plant cells directly or indirectly through the formation of reactive oxygen species (ROS)[7,31,38].The MDA was the main peroxidation product of membrane lipids when plants were subjected to several stresses.Therefore,MDA content was commonly considered a general indicator of lipid peroxidation,as well as stress levels[39,40].Excess Cu led to the increase of MDA content[41].With the increasing concentration of Cu treatments,the increase of MDA content in Hisauchii was more obvious than that in Spectabilis.

Excessive heavy metals,including Cu,are not only harm-ful to plant growth and philological metabolism,but also enter the food chain and therefore do harm to human health [42].Therefore,soil polluted with excessive heavy metals including Cul is not suitable to cultivate any plants that enter

Table2Copper concentration in Spectabilis and Hisauchii exposed to increasing soil Cu treatments

Species Cu treatments Leaves Stem Roots TF*Cu contents (mg kg?1)μg g?1DWμg g?1DWμg g?1DW mg shoot?1pot?1 Spectabilis0(Control)67.6±10.1c**148.5±7.8d447.6±173.9c0.24486.39 500120.8±20.4c349.4±70.4c603.5±110.0b,c0.39998.47

1000194.3±46.9b559.4±87.8b899.3±124.9b0.421361.00

2000357.3±60.9a735.3±39.7a2048.1±303.0a0.261411.64 Hisauchii0(Control)120.3±15.3d213.2±65.5d398.8±32.7c0.41811.24 500303.3±35.6c473.6±173.9c786.4±61.2b0.491726.27

1000583.1±33.6b812.0±103.4b1586.5±67.6b0.432020.45

2000870.4±10.5a1572.8±122.3a2871.8±179.7a0.422922.68

*TF=[Cd]shoot/[Cd]root

**All parameters were measured60days after treatments.Mean±S.E.,n=4.Different letters in the same column denote significant differences P<0.05,based on Duncan’s

test

Fig.3Effect of Cu treatment on shoot biomass in Spectabilis and

Hisauchii.All parameters were measured60days after treatments.The

values(mean±S.E.,n=4)having the same letters above the bars are not

significantly different at P<0.05,based on Duncan’s test

the food chain;instead,it would be good to develop bioenergy plants in such a polluted area.In this research, the higher Cu concentrations were set up to evaluate Cu tolerance of two bamboo species to excess Cu stress.Under highest Cu supply at2000mgkg?1,Cu concentrations tended to be highest at2048.1and2871.8μgg?1DW in roots and735.3and1572.8μg g?1DW in stems for Spectabilis and Hisauchii,respectively.And the highest Cu accumulation achieved at2922.68mg in shoot per pot in Hisauchii was shown.As Callahan et al.(2012)assessed, plants that store metals in their leaves at concentrations toxic to other organisms are known as hyper-accumulators[43]. While none of the bamboo species can fit to hyper-accumulator of Cu in the present study,both bamboo species can be cultivated in areas of heavy metal Cu-contamination for development of potential biomass resources and for phytoremediation by absorbing and accumulating excess Cu from Cu polluted soil.

The mechanisms of Cu uptake are still poorly understood in monocotyledonous species,while those in dicotyledon-ous species,such as Arabidopsis,have been primarily stud-ied[44].Under the same Cu application,significant differences were found between the two bamboo species in uptake,accumulation and translocation of Cu from roots to stems and leaves,while they had high enough capability of Cu uptake compared to the previous results of Collin et al. (2012)[24]and Collin and Doelsch(2010)[45].Mechanisms for high rate and difference of Cu uptake in two bamboo species should be examined further by using as many bamboo species as possible.

So far,it is unknown if are there any negative effects of the bamboo that accumulated abundant heavy metal including Cu to bioenergy conversion,since research on developing bioenergy plants in heavy metal polluted areas is just begin-ning,and mostly has attended to heavy metal tolerance. However,relative research with cooperation between plant scientisst and process engineers is needed for solving the problem of using Cu accumulated plant material as bioenergy feedstock.

Conclusions

Two bamboo species(Phyllostachys auresulcata‘Spectabilis’and Pleioblastus chino‘Hisauchii’)with similar growth traits and morphological characteristics have different responses to excess copper stress in a range from0to2000mgkg?1Cu treatments.The degree of change in several growth and phys-iological properties(the decrease of chlorophyll content and P N,and the increase of the percentage of senescent bamboo shoots and MDA content),reflects that the Cu tolerance was higher in Spectabilis than in Hisauchii.All the different re-sponses to excess Cu stress between the two bamboo species may depend on the degree of lipid peroxidation.On the contrary,either the shoot biomass,Cu concentrations in leaves,stems,roots or Cu contents in shoot per pot were higher in Hisauchii than in Spectabilis under copper stress in a range from0to2000mgkg?1Cu treatments.These results indicate that the capability of Cu absorption and accumulation arehigher in Hisauchii than in Spectabilis.Both Hisauchii and Spectabilis can be considered as candidates to be cultivated in heavy metal Cu polluted areas as potential renewable bioenergy resources,since the examined two bamboo species survived even under highest Cu treatment at2000mgkg?1.It is better to cultivate Hisauchii than Spectabilis as phytoremediation plant in Cu polluted area,since the shoot Cu accumulation was higher in Hisauchii than in Spectabilis. Acknowledgments We thank the financial support from Natural Science Foundation of China(40971296)and the Doctoral Program Foundation of Institutions of Higher Education of China (200900971200038).The authors thank Dr.Mei Chuansheng,the Institute for Advanced Learning and Research,VA,USA,for his sincere advice during correction of the manuscript.

References

1.Liu TF,Wang T,Sun C,Wang YM(2009)Single and joint toxicity

of cypermethrin and copper on Chinese cabbage(Pakchoi)seeds.J Hazard Mater163:344–348

2.Buss W,Kammann C,Koyro H(2012)Biochar reduces copper

toxicity in Chenopodium quinoa Willd.in a sandy soil.J Environ Qual41:1157–1165

3.Cook CM,Kostidou A,Vardaka E,Lanara T(1997)Effects of

copper on the growth,photosynthesis and nutrient concentration of phuseolus plants.Photosynthetica34:179–193

4.Maksymiec W,Bednara J,Bazynski T(1995)Responses of runner

plants to excess copper as a function of plant growth stages:effects on morphology and structure of primary leaves and their chloro-plast ultra-structure.Photosynthetica31:427–435

5.Lidon FC,Ramalho JC,Henriques FS(1993)Copper inhibition of

rice photosynthesis.J Plant Physiol142:12–17

6.Kennedy CD,Gonsalves FAN(1987)The action of divalent zinc,

cadmium,mercury,copper and lead on the trans-root potential and H+efflux of excised roots.J Exp Bot38:800–817

7.Andrade S,Contreras L,Moffett JW,Correa JA(2006)Kinetics of

copper accumulation in Lessonia nigrescens(Phaeophyceae)under conditions of environmental oxidative stress.Aquat Toxicol78:398–401

8.Augus S(1999)Early copper-induced leakage of K+from

Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux.Plant Phsiol121:1375–1382

9.Demidchik K,Sokolik A,Yurin V(1997)The effects of Cu2+on

ion transport systems of the plant cell plasmolemma.Plant Physiol 114:1313–1325

10.Remans T,Thijs S,Truyens S(2012)Understanding the development

of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth.Ann Bot110:239–252 11.Brooks RR,Lee J,Reeves RD,Jaffre T(1997)Detection of

nickeliferous rocks by analysis of herbarium specimens of indica-tor plants.J Geochem Explor7:49–57

12.Baker AJM,McGrath SP,Reeves RD,Smith JAC(2000)Metal

hyperaccumulator plant:a review of the ecology and physiology of

a biological resource for phytoremediation of metal-polluted soils.

In:Terry N,Banuelos G(eds)Phytoremediation of contaminated soil and water.Lewis Publishers,USA

13.Xue SG,Chen YX,Reeves RD,Baker AJM,Liu Q,Fernando DR

(2004)Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb.Environ Pollut131:393–399

14.Zhao FJ,Lombi E,McGrath SP(2003)Assessing the potential for

zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens.Plant Soil249:37–43

15.Shi GR,Cai QS,Liu QQ,Wu L(2009)Salicylic acid-mediated

alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake,photosynthesis,and antioxidant enzymes.Acta Physiol Plant31:969–977

16.Liu XH,Shen YX,Ding CL,Cai QS(2009)Copper tolerance of

biomass crops Elephant grass(Pennisetum purpureum Schumach), Vetiver grass(Vetiveria zizanioides)and the upland reed (Phragmites australis)in soil culture.Biotechnol Adv27:633–640 17.Shi G,Cai Q(2009)Cadmium tolerance and accumulation in eight

potential energy crops.Biotechnol Adv27:555–561

18.Huo W,Zhuang CH,Cao Y,Pu M,Yao H,Lou LQ,Cai QS(2012)

Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp.enhance copper tolerance of Guinea grass(Panicum maximum)in hydroponic culture.Acta Physiol Plant34:139–150 19.Yang YM,Xu JR(1998)Bamboo resources and their utilization in

China.In:Proceedings of the Workshop‘Bamboo Conservation, Diversity,Ecogeography,Germplasm,Resource Utilization and Taxonomy’,Kunming and Xishuangbanna,Yunnan,China,10–17May

20.Gratani L,Crescente MF,Varone L,Fabrini G,Digiulio E(2008)

Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome.Flora203:77–84 21.Atkinson CJ(2009)Establishing perennial grass energy crops in

the UK:a review of current propagation options for Miscanthus.

Biomass Bioenergy5:752–759

22.Zhou FC(1999)Looking back to bamboo industry for the20th

century,looking forward to bamboo industry for the21th century.J Bamboo Res18:1–4

23.Gui RY,Leng HN,Zhuang SY,Zheng KL,Fang W(2011)

Aluminum tolerance in Moso Bamboo(Phyllostachys pubescens).

Bot Rev77:214–222

24.Collin B,Doelsch E,Keller C,Panfili F,Meunier JD(2012)

Distribution and variability of silicon,copper and zinc in different bamboo species.Plant Soil351:377–387

25.Papazoglou EG,Serelis KG,Bouranis DL(2007)Impact of high

cadmium and nickel soil concentration on selected physiological parameters of Arundo donax L.Eur J Soil Biol43:207–215 26.Moran R(1982)Formulae for determination of chlorophyllous

pigments extracted with N,N–dimethylformamide.Plant Physiol69:1376–1381

27.Duan B,Lu Y,Yin C,Junttila Q,Li C(2005)Physiological

responses to drought and shade in two contrasting picea asperata populations.Physiol Plant124:476–484

28.Baker AJM,McGrath SP,Sidoli CMD(1994)The possibility of in

situ heavy metals decontamitation of polluted soils using crops of metal-accumulating.Resour Conserv Recyl11:41–4929.Digman MF,Shinners KJ,Muck RE,Dien BS(2010)Full-scale

On-farm Pretreatment of Perennial Grasses with Dilute Acid for Fuel Ethanol Production.Bioenerg Res3:335–341

30.Wen JR,Xue BL,Xu F,Sun RC(2012)Unveiling the structural

heterogeneity of Bamboo Lignin by In Situ HSQC NMR Technique.Bioenerg Res5:886–903

31.SauvéS,McBride M,Norvell WA,Hendershot W(1997)Copper

solubility and speciation of in situ contaminated soils:effects of copper level,pH and organic matter.Water Air Soil Pollut100:133–149

32.Boojar MMA,Goodarzi F(2007)The copper tolerance strategies

and the role of antioxidative enzymes in three plant species grown on copper mine.Chemosphere67:2138–2147

33.Taylor GJ,For CD(1985)Differential uptake and toxicity of ionic

and chelated copper in Triticum aestivu.Can J Bot63:1271–1275

34.Pitsikki E,Kairavuo M,Deren F,Aro EM,Tyystjiirvi E(2002)

Excess copper predisposes photosystem II to photo-inhibition in vivo by out competing iron and causing decrease in leaf chlorophy.

Plant Physiol129:1359–1367

35.Pitsikki E,Aro EM,Tyystjiirvi E(1998)Increase in the quantum

yield of photo-inhibition contributes to copper toxicity in vivo.

Plant Physiol117:619–627

36.Prasad MNV,Malec P,Waloszek A,Bojko M,Strzalka K(2001)

Physiogical responses of Lemna trisulcal L.(duckweed)to cadmi-um and copper bioaccumulation.Plant Sci161:881–889

37.Shi G,Liu C,Cai Q,Liu Q,Hou C(2010)Cadmium accumulation

and tolerance of two safflower cultivars in relation to photosyn-thesis and antioxidantive enzymes.Bull Environ Contam Toxicol 85:256–263

38.Strange J,Macnair MR(1991)Evidence for a role for the cell

membrane in copper tolerance of mimulus guttatu Fishex DC.New Phytologists119:383–388

39.Guo TR,Zhang GR,Zhang YH(2007)Physiological changes in

barley plants under combined toxicity of aluminum,copper and cadmium.Colloids and Surface B:Biointerphases57:182–188

40.Peter MA,Karl L,Ruth P(1999)Modification of the lipid-protein

interaction in human low-density lipoprotein destabilizes ApoB-100and decreases oxidizability.Biochem38:3401–3408

41.Luna MC,Gouzalex CA,Tripp VS(1994)Oxidative damage

caused by excess of copper in oat leaves.Plant Cell Physiol 35:11–15

42.Peralta-Videa JR,Lopez ML,Narayan M,Saupe G,Gardea-

Torresdey J(2009)The biochemistry of environmental heavy metal uptake by plants:implications for the food chain.Int J Biochem Cell Biol41:1665–1677

43.Callahan DL,Ute Roessner U,Dumontet V,Livera AMD,

Doronila A,Baker AJM,Kolev SD(2012)Elemental and metab-olite profiling of nickel hyperaccumulators from New Caledonia.

Phytochemistry81:80–89

44.Memon AR,Schr?der P(2009)Implications of metal accumula-

tion mechanisms to phyto-remediation.Environ Sci Pollut Res 16:162–175

45.Collin B,Doelsch E(2010)Impact of high natural soil borne heavy

metal concentrations on the mobility and phytoavailability of these elements for sugarcane.Geoderma159:452–458

呼吸机使用方法(下)有创呼吸机

呼吸机使用方法(下)—有创呼吸机 随着现代医学的进展,呼吸机越来越多的应用于急危重 抢救、麻醉、术后恢复、呼吸治疗和呼吸维持,在医疗设备 中占有重要地位。据美国呼吸病学会统计,由于呼吸机的普 遍使用,使临床抢救的成功率大约提高了55 %.但由于长时 间使用呼吸机,使患者发生院感染的机率增加,对于使用呼 吸机的患者,护理人员应从身心两方面给予患者细致护理, 尽可能减轻应用呼吸机带来的不适与痛苦,减少并发症发生 率。 (一)呼吸机的临床应用 1.呼吸机治疗的目的主要为: (1)维持适当的通气量,使肺泡通气量满足机体需要。改 善气体交换功能,维持有效的气体交换。(2)减少呼吸肌的 作功。(3)肺雾化吸入治疗。(4)预防性机械通气,用于开 胸术后或败血症、休克、严重创伤情况下的呼吸衰竭预防性 治疗。 2.呼吸机治疗的指征 成人的呼吸生理指标达到下列标准的任何一项时,即应开始 机械通气治疗: (1)自主呼吸频率大于正常的3倍或小于1/3者。(2)自主潮气量小于正常1/3者。(3)生理无效腔/潮气量>60%者。(4)

肺活量50mmHg (慢性阻塞性肺疾患除外)且有继续升高趋势,或出现精神症状者。 3.呼吸机治疗的适应症 当患者出现呼吸困难或呼吸衰竭症状,应及时使用呼吸机进 行机械通气,以防止因低氧或缺氧而引起的器官功能衰竭。 在临床实践中,心肺复后、中枢神经系统疾病引起肺泡低通 气量、成人呼吸窘迫综合征、重症肺炎、严重肺挫伤引起的 低氧血症、部分COPD患者、ARDS、呼吸衰竭等病人宜使用。 (1)呼吸突然停止或即将停止。(2)在吸入100%氧气的情况下,动脉血氧分压仍达不到50~60mmHg.(3)严重缺氧和二氧化碳储留而引起意识和循环功能障碍。 4.呼吸机与病人的连接方式 (1)经口气管插管。适用于神志不清的病人,应用时间不 超过48-72小时。(2)经鼻腔气管插管。(3)气管切开插管。需较长期作加压人工呼吸治疗的病人,应作气管切开,放置 气管套管。 5.重症监护室的呼吸机的使用方法 (1)间歇正压通气(IPPV) IPPV也称机械控制通气(CMV)。此方式时,不管病人自主呼吸的情况如何,均按预调的通气参数为病人间歇正压通 气。主要用于无自主呼吸的病人

有创呼吸机操作流程

有创呼吸机操作流程 Prepared on 22 November 2020

有创呼吸机操作流程 1.按循环系统护理常规 2.了解操作目的: (1)保证肺通气功能排出二氧化碳,纠正缺氧 (2)改善肺通气换气功能,提高动脉血氧分压 (3)减轻呼吸作功,减少消耗 3.操作前准备 (1)评估病人的病情、年龄、体位、意识状态、呼吸状况,皮肤黏膜颜色(2)患者置平卧位,连接呼吸机后,如无禁忌症摇高床头30°~45° 4.用物准备 (1)有创呼吸机、呼吸机消毒管道、呼吸球囊、管道氧、灭菌注射用水、输液器、减压透明贴、听诊器、牙垫、气管固定器(粘性胶布) (2)评估鼻腔,必要时备胃肠减压 5.操作程序 (1)操作前评估病人的病情、年龄、体位、意识状态、呼吸状况,皮肤黏膜颜色 (2)将功能正常的呼吸机推至床旁 (3)连接呼吸机电源及气体管道装置——打开主机电源——连接测试管道——主机自检— —连接呼吸机螺纹管——湿化罐内加湿化滤纸及灭菌注射用水并打开

(4)根据医嘱、病情调节好呼吸机的通气方式及各参数,调解各预置参数(潮气量、呼吸 频率、吸呼比、氧浓度、每分通气量、呼气末正压、呼气压力等,确定报警限和气道 安全阀,调节湿化器温度或加热档位) ①潮气量:成人400~600ml,约8~10ml/kg,小儿10~12ml/kg ②呼吸频率:成人12~16次/分,小儿20~25次/分 ③吸呼比:1:~2 ④氧浓度:常规40%(可根据病情设定) ⑤每分钟通气量:潮气量×呼吸频率 (5)用模拟肺与呼吸机连接进行试通气,观察呼吸机运转情况,有无漏气,观察设置的参 数和显示的参数是否一致,在试运行过程中如果出现报警,则一定要根据报警内容作 相应处理 (6)确认运转正常后,接病人,妥善固定管道,以防脱落,并锁住呼吸机底部滑轮,防止 机器移动 (7)清理床单位,整理用物,洗手,记录 (8)人工通气30min后做血气分析检查,根据结果调整限定的通气参数 5.护理要点 (1)观察病人两侧胸壁运动是否对称,听双肺呼吸音是否一致,检查通气效果

有创呼吸机和无创呼吸机的区别

有创呼吸机与无创呼吸机的区别 呼吸机的发展历史中,先有有创的呼吸机,就是我们经常在电视里见到的那种,大大的个头,吸气和呼气一下,一下的。可能您没有太注意,呼吸机和病人是怎么连接在一起的。在颈部把气管切开,插一根管进去,把呼吸机接到这根管上为病人提供通气支持。这种方法是有创伤的,有创二字的来历就在这里。 无创呼吸机指不需要对身体进行创伤的呼吸机,使用一个面罩,经鼻进行通气,对患者起到的是一个呼吸辅助作用。 正压机械通气包括无创正压机械通气和有创正压机械通气。无创正压通气是指不需建立人工气道进行的正压机械通气方式,临床多应用口鼻面罩或鼻罩进行正压通气,另外也有采用全面罩、鼻塞等方式进行NPPV治疗。有创正压通气是指通过建立人工气道(经鼻或经口气管插管、气管切开)进行的正压机械通气方式。无创呼吸机和有创呼吸机是分别用于无创正压机械通气和有创正压机械通气的装置。

无创通气与有创通气比较,具有设置简便、患者易于接受、不容易继发肺损伤和肺部感染等特点,但是也有人机同步性较差、潮气量不稳定、不利于气道分泌物引流等缺点。具体来说,利用无创呼吸机进行通气的优点有: 1)可间歇通气; 2)无需插管; 3)可应用不同通气方法; 4)能正常吞咽饮食和湿化; 5)容易脱机; 6)生理性加温和湿化气体。 有创呼吸机虽然在建立人工气道方面会给患者造成极大的痛苦,但是也有其可取之处。例如它的管路密闭性能好,人机配合较好,有空氧混合气、可以准确设置吸入氧浓度,气道管理容易保证通气参数和报警设置完善,能够保证精确通气,并及时发现问题。所以百济药师建议患者选择呼吸机治疗疾病时可以根据患者病情结合使用无创呼吸机和有创呼吸机。例如:AECOPD(慢性阻塞性肺疾病急性加重)患者早期可以应用NPPV治疗,如果病情进一步加重可以进行IMV治疗,病情一旦得到缓解可以提前拔管继续NPPV治疗以避免有创机械通气的并发症。医疗器械是为消除患者痛苦而设计的,如果各种器械结合使用,扬长避短能发挥更好的疗效,新时代的医生要学会不拘泥于常规治疗,一切为患者的利益着想。

有创呼吸机

购置有创呼吸机可行性报告 一、概况 1、石家庄市中医院急诊重症监护病房预购置有创高档呼吸机1 台,价格约20万左右。有创呼吸机是重症医学科必备的呼吸 功能支持设备之一,临床上主要用于合并呼吸衰竭的危重患 者进行呼吸功能支持及治疗。 2、ICU现有呼吸机5台。Horus4法国1台2006年7月购置(急 诊科)、拉菲尔呼吸机2台2008年购置(脑外科调入)、Drager 德国2003年购置(外院调入)。Monnal T75法国转运呼吸机 2013年购置。 3、我院于2011年建立重症监护病房,床位6张,随着医院的快 速发展,危重症病人增多及开展高危人群手术增加,ICU常 加床至8张,现有呼吸机5台中1台已使用年限超10年,1 台时常维修,已不能满足科室发展及临床病人需要,且存在 安全隐患。按照卫生部ICU建设指南的要求每床单位应配备 1台有创呼吸机。ICU应备有6台有创呼吸机。 二、资金筹措: 自筹资金,约20万人民币左右。 三、收入分析。 1、呼吸机收入及工作量:呼吸功能支持每小时每人收费为14元(1台呼吸机满负荷运转每年的收入:14元*24小时*360天=120960

元)。ICU每月周转病人约8人次每人平均住院14天。每月每人收费14天﹡14元﹡24小时=4704元。危重患者在呼吸机呼吸支持同时进行多参数心电血氧监测,附加收入每小时10元(10*24*360=86400元)。购置有创呼吸机价位在20万元左右3年收回成本。 四、总成本 1、综合呼吸机在使用过程中的房屋、设备折旧、水电、维修、工资、卫生耗材每月总成本4000元人民币 五、社会效益 有创呼吸机在危重症救治中已成为不可缺少的抢救设备。1.以呼吸衰竭为主的内科重症,如:重症肺炎、急性脑血管病、电解质紊乱、休克、MODS等。2.围手术期患者的呼吸功能支持。特别是高龄高危人群手术,有利于麻醉恢复,安全渡过围手术期。为医院开展高危人群手术保驾护航。因此呼吸机的应用所带来的新技术新手术开展及危症病人的康复,提高抢救成功率保证患者医疗安全是无形的社会效益。 综上分析,目前ICU应购置该医疗设备是可行的有较好的经济效益和社会效益。 急诊科ICU 2014/03/12

有创呼吸机

精心整理 精心整理 有创呼吸机各参数意义 一、呼吸机模式: 1、A/C :即“辅助/控制模式”。由“C ”控制呼吸(controlledmechanicalventilationCMV),和“A ”辅助呼吸(assistmechanicalventilationAMV)组成。 (1) “C ”:呼吸频率和潮气量均由机器决定;用于病人没有自主呼吸或自主呼吸频率不好时。 (2) “A ”:病人呼吸触发机器,机器提供预定的潮气量,即呼吸频率由病人决定,潮气量由机器 决定;用于自主呼吸好但潮气量不够的病人。 2、3、如表: C A SIMV CPAP 二、 1、12ml/Kg 2、3、在急救中如果需要在40%以上时,持续时间尽可能不要超过24小时。 4、PEEP 呼气末气道正压(positiveexpiratoryendpressurePEEP) 作用:增加功能残气量(平静呼气后肺内残留的气量),防止肺泡萎陷张开已萎陷的肺泡,改善通气/灌流比,减少分流量。有提高血氧分压的效果。 使用PEEP 时要注意: 用PEEP 时胸腔内压增加,回心血量减少,血压可能下降。故升高PEEP 时应注意适当增加输入量。常用范围5--19cmH2O 。 5、叹气(sigh),即一定的时间给1-2倍的潮气量,目的是使一般呼吸中没有通气的肺泡得到通气。时间和通气量由机器内定或医生设定。 6、峰流速:即呼吸机送气的速度。一般设置为30-70L/MIN 。约为分钟通气量的4-6倍。可根据病菌人的体质状况、病情等因素作适当调整。安静、睡眠时可降低流速,发热、烦躁、抽搐等情

精心整理 精心整理 况时要提高流速。该参数的变化可影响吸呼比的变化。 7、压力触发灵敏度:简单来说即机器对病人自主呼吸的感受灵敏度。一般设置为0.5-2cmH2O 。但是虽根据不同的呼吸机来设置,选择最适合该台机器的值。 8、呼吸波型:正常生理情况下,正常人的呼吸波型为递减波。减速气流波形,肺泡在吸气早期即充盈,有得肺内气体分布均匀,改善V/Q 比值。 9、吸气压力报警:正常人一般气道峰压为20-25cmH2O 左右高界设在峰压加20cmH2O,低界设在峰压减10cmH2O 。 (1)吸气峰压高限(高压报警):咳嗽、分泌物堵塞、管道扭曲、自主呼吸与机械通气拮抗或 不协调等。一般认为气道压力不超过35--40c m H 2O 不会肺损伤。 (2)吸气峰压低限(低压报警): 压力下降主要为管道脱落或漏气、病人与呼吸机脱离、高压气源工作压力下降等所致。可设置为 10

中高端有创呼吸机技术参数及配置要求

中高端有创呼吸机技术参数及配置要求文件条目号设备名称、数量 一有创呼吸机 1.1 3 台 二主要配置及参数要求 ※ 2.1适用于成人,儿童的高端呼吸机(包括外置待机久低噪音的同品牌空压机,以注册证登记表为准)。 2.2 具有开机自检功能,自动完成硬件检查和传感器定标工作,具有自动系统顺应性补偿功能。 2.3 ≥12寸彩色触摸操作屏,可根据环境光线自动调节屏幕亮度。 2.4 全中文操作界面(包括模式选择、参数调节,事件以及报警记录)。 2.5 触发方式:流量触发和压力触发方式。 2.6 内置式超声流量传感器,探测速度2000次/秒,永久性使用, 消耗型传感器需要免费提供十年内所需流量传感器 2.7 后备电池可提供一小时以上的交流电断电电源。 2.8 动态呼气阀设计,采用时间常数阀门控制器,实时计算气道内顺应性和阻力变化,自动调节阀门开启幅度 ※2.9具有内、外呼吸管路彻底消毒功能,最大限度杜绝院内交叉感染。 2.10 吸痰支持功能,自动补偿氧缺失,节省氧气,便于保持病人情绪稳定 3 呼吸模式 3.1 压力控制(PC) 3.2 容量控制(VC) 3.3 压力限定容量控制(PRVC) 3.4 持续正压通气(CPAP) 3.5 压力支持(PS)

3.6 同步间歇指令通气:容量控制+压力支持、压力控制+压力支持、压力调节容量控制+压力支持 3.7 窒息后备通气模式 4 呼吸机参数设定 4.1 呼吸频率:4-100次/分 4.2 设定潮气量:100-2000毫升 4.3 呼吸波形选择:方波或递减波 4.4 吸入分钟通气量:0.5-60升/分 4.5 压力支持水平:0—(120-PEEP) cmH 2 O ※4.6呼气末正压(PEEP/CPAP):0—50cmH 2 O 4.7 平台时间:0-30%呼吸周期 4.8 流量触发灵敏度:0.18-2.0升/分钟; 4.9 压力触发灵敏度:PEEP下-20--0 cmH 2 O 4.10 吸气上升时间可调:0-0.4 秒 4.11 供氧浓度:21—100% 4.12 吸100%纯氧:1分钟 4.13 窒息报警时间:15-45秒可调 4.14 呼气转换灵敏度(可调整):吸气流速降至峰流速的1-70% 4.15 吸呼比: 1:10-4:1 五监测参数 5.1 监测波形曲线用不同颜色分别显示压力、流量、潮气量 5.2 可监测参数包括:气道压力:峰压,平台压,呼气末正压,平均压, 吸入氧浓度,呼气末流量,通气量:分钟吸入通气量,分钟呼出通气量潮气量:吸入潮气量,呼出潮气量,呼吸频率:频率,吸呼比,吸气时间占呼吸周期的比例,供气压力(空气,氧气)等

呼吸机使用方法下有创呼吸机定稿版

呼吸机使用方法下有创 呼吸机 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

呼吸机使用方法(下)—有创呼吸机 随着现代医学的进展,呼吸机越来越多的应用于急危重抢救、麻醉、术后恢复、呼吸治疗和呼吸维持,在医疗设备中占有重要地位。据美国呼吸病学会统计,由于呼吸机的普遍使用,使临床抢救的成功率大约提高了55 %.但由于长时间使用呼吸机,使患者发生院内感染的机率增加,对于使用呼吸机的患者,护理人员应从身心两方面给予患者细致护理,尽可能减轻应用呼吸机带来的不适与痛苦,减少并发症发生率。 (一)呼吸机的临床应用 1.呼吸机治疗的目的主要为: (1)维持适当的通气量,使肺泡通气量满足机体需要。改善气体交换功能,维持有效的气体交换。(2)减少呼吸肌的作功。(3)肺内雾化吸入治疗。(4)预防性机械通气,用于开胸术后或败血症、休克、严重创伤情况下的呼吸衰竭预防性治疗。 2.呼吸机治疗的指征 成人的呼吸生理指标达到下列标准的任何一项时,即应开始机械通气治疗: (1)自主呼吸频率大于正常的3倍或小于1/3者。(2)自主潮气量小于正常1/3者。(3)生理无效腔/潮气量>60%者。(4)肺活量50mmHg (慢性阻塞性肺疾患除外)且有继续升高趋势,或出现精神症状者。 3.呼吸机治疗的适应症 当患者出现呼吸困难或呼吸衰竭症状,应及时使用呼吸机进行机械通气,以防止因低氧或缺氧而引起的器官功能衰竭。在临床实践中,心肺复苏后、中枢神经系统疾病引起肺泡低

通气量、成人呼吸窘迫综合征、重症肺炎、严重肺挫伤引起的低氧血症、部分COPD患者、ARDS、呼吸衰竭等病人宜使用。 (1)呼吸突然停止或即将停止。(2)在吸入100%氧气的情况下,动脉血氧分压仍达不到50~60mmHg.(3)严重缺氧和二氧化碳储留而引起意识和循环功能障碍。 4.呼吸机与病人的连接方式 (1)经口气管插管。适用于神志不清的病人,应用时间不超过48-72小时。(2)经鼻腔气管插管。(3)气管切开插管。需较长期作加压人工呼吸治疗的病人,应作气管切开,放置气管套管。 5.重症监护室的呼吸机的使用方法 (1)间歇正压通气(IPPV) IPPV也称机械控制通气(CMV)。此方式时,不管病人自主呼吸的情况如何,均按预调的通气参数为病人间歇正压通气。主要用于无自主呼吸的病人 (2)同步间歇指令通气(SIMV) 指呼吸机在每分钟内,按事先设置的呼吸参数(频率流速、流量、容量、吸:呼等),给予病人指令性呼吸。其优点为:可保证病人的有效通气;临床上根据SIMV已成为撤离呼吸机前的必用手段;在缺乏血气监测的情况下,当PaO2过高或过低时,病人可以通过自主呼吸加以调整,这样减少了发生通气不足或过度的机会。 (3)压力支持通气(PSV)

有创呼吸机操作流程

有创呼吸机操作流程 1.按循环系统护理常规 2.了解操作目的: (1)保证肺通气功能排出二氧化碳,纠正缺氧 (2)改善肺通气换气功能,提高动脉血氧分压 (3)减轻呼吸作功,减少消耗 3. 操作前准备 (1)评估病人的病情、年龄、体位、意识状态、呼吸状况,皮肤黏膜颜色 (2)患者置平卧位,连接呼吸机后,如无禁忌症摇高床头30°~45° 4. 用物准备 (1)有创呼吸机、呼吸机消毒管道、呼吸球囊、管道氧、灭菌注射用水、输液器、减压透明贴、听诊器、牙垫、气管固定器(粘性胶布) (2)评估鼻腔,必要时备胃肠减压 5. 操作程序 (1)操作前评估病人的病情、年龄、体位、意识状态、呼吸状况,皮肤黏膜颜色 (2)将功能正常的呼吸机推至床旁 (3)连接呼吸机电源及气体管道装置——打开主机电源——连接测试管道——主机自检— —连接呼吸机螺纹管——湿化罐内加湿化滤纸及灭菌注射用水并打开 (4)根据医嘱、病情调节好呼吸机的通气方式及各参数,调解各预置参数(潮气量、呼吸频率、吸呼比、氧浓度、每分通气量、呼气末正压、呼气压力等,确定报警限和气道安全阀,调节湿化器温度或加热档位)

①潮气量:成人400~600ml,约8~10ml/kg,小儿10~12 ml/kg ②呼吸频率:成人12~16次/分,小儿20~25次/分 ③吸呼比:1:1.5~2 ④氧浓度:常规40%(可根据病情设定) ⑤每分钟通气量:潮气量×呼吸频率 (5)用模拟肺与呼吸机连接进行试通气,观察呼吸机运转情况,有无漏气,观察设置的参 数和显示的参数是否一致,在试运行过程中如果出现报警,则一定要根据报警内容作相应处理 (6)确认运转正常后,接病人,妥善固定管道,以防脱落,并锁住呼吸机底部滑轮,防止 机器移动 (7)清理床单位,整理用物,洗手,记录 (8)人工通气30min后做血气分析检查,根据结果调整限定的通气参数 5. 护理要点 (1)观察病人两侧胸壁运动是否对称,听双肺呼吸音是否一致,检查通气效果 (2)随时监测心率、心律、血压、血氧饱和度、潮气量、每分通气量、呼吸频率、气道压 力、吸入气体温度等变化 (3)妥善固定,防止插管脱出或移位 (4)保持呼吸管道通畅,随时注意检查管道是否有折弯,松脱的地方,注意调整 (5)调节呼吸机机械臂时,取下呼吸机管道,调节好后再安装,以免调节过程中误牵拉

有创机械通气操作规范

有创机械通气操作规范 【适应症】: 1、经无创通气治疗后病情无改善或仍继续恶化; 2、意识障碍,气道保护能力差; 3、严重的脏器功能不全,包括上消化道大出血、血流动力学不稳定等; 4、呼吸形式严重异常,如RR>35次/分或<8次/分,呼吸节律异常,自主呼吸微 弱或消失; 5、严重的通气和(或)氧合障碍,尤其是充分氧疗后PaO2<50mmHg;PaCO2 进行性升高,PH动态下降。 【禁忌症】:在出现致命性通气和氧合障碍时,有创机械通气无绝对禁忌症,但合并下列情况可能会导致病情加重:1、气胸及纵膈气肿未行引流;2、肺大泡和肺囊肿;3、低血容量休克未补充血容量;4、严重DIC有出血倾向、大咯血、呼吸道积血等症状;5、气管-食管瘘;6、急性心肌梗死合并严重心源性休克或心律紊乱。 【操作规程】 1、判断是否有有创机械通气的相对禁忌症,进行必要的处理; 2、确定机械通气方式; 3、初始参数设置:a)预设潮气量(VT)一般为5-12ml/kg、成人通气频率(f) 为15-25次/分,吸呼比1:1.5-2.5;b)初始FiO2可以设置为100%,长时间通气是FiO2不超过60%;c)初始PEEP可以设置3-5cmH2O,当FiO2>60%而PaO2<60mmHg时,增加PEEP;PEEP的调节原则为从小渐增;d)触发灵敏度一般为2-5L/min; 4、设定报警界限,气道压力限制一般为35-40cmH2O; 5、调节湿化; 6、设置以上参数后连接患者,开始机械通气; 7、根据病情、血气变化调整机械通气的参数; <关于撤机> 1、撤机的筛查指标:

①导致机械通气的病因好转或祛除; ②氧合指标:PaO2 /FiO2>150-200;PEEP≤5-8 cmH2O;FiO2≤0.4 to 0.5; pH≥7.25;(COPD患者:pH>7.30,PaO2>50mmHg,FiO2<0.35) ③血流动力学稳定,没有心肌缺血动态变化,临床上没有显著的低血压 (不需要血管活性药的治疗或只需要小剂量的血管活性药物如多巴胺 或多巴酚丁胺<5-10ug/kg/min); ④有自主呼吸的能力。 2、进行自主呼吸试验 【注意事项】 1、密切监测患者的生命体征、血气情况并予记录,尤其是在机械通气的初期(2-4 小时内);血气分析每日至少1次; 2、对于需要镇静镇痛的患者,做到每日唤醒,以评估意识状态; 3、谨慎使用肌松剂; 4、抬高床头30-45度,加强气道及口鼻咽腔的管理,常规监测气囊压力,尽量 使用可进行声门下吸引的导管; 5、必须实施气道湿化; 6、做到每日评估,尽早拔管及最大限度的防止机械通气相关并发症的发生; 7、积极处理原发疾病; 对于准备撤机的患者做好评估筛查,并进行自主呼吸试验。 8、

有创呼吸机操作流程

有创呼吸机操作流程 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

有创呼吸机操作流程 1.按循环系统护理常规 2.了解操作目的: (1)保证肺通气功能排出二氧化碳,纠正缺氧 (2)改善肺通气换气功能,提高动脉血氧分压 (3)减轻呼吸作功,减少消耗 3.操作前准备 (1)评估病人的病情、年龄、体位、意识状态、呼吸状况,皮肤黏膜颜色(2)患者置平卧位,连接呼吸机后,如无禁忌症摇高床头30°~45° 4.用物准备 (1)有创呼吸机、呼吸机消毒管道、呼吸球囊、管道氧、灭菌注射用水、输液器、减压透明贴、听诊器、牙垫、气管固定器(粘性胶布) (2)评估鼻腔,必要时备胃肠减压 5.操作程序 (1)操作前评估病人的病情、年龄、体位、意识状态、呼吸状况,皮肤黏膜颜色 (2)将功能正常的呼吸机推至床旁 (3)连接呼吸机电源及气体管道装置——打开主机电源——连接测试管道——主机自检— —连接呼吸机螺纹管——湿化罐内加湿化滤纸及灭菌注射用水并打开

(4)根据医嘱、病情调节好呼吸机的通气方式及各参数,调解各预置参数(潮气量、呼吸 频率、吸呼比、氧浓度、每分通气量、呼气末正压、呼气压力等,确定报警限和气道 安全阀,调节湿化器温度或加热档位) ①潮气量:成人400~600ml,约8~10ml/kg,小儿10~12ml/kg ②呼吸频率:成人12~16次/分,小儿20~25次/分 ③吸呼比:1:~2 ④氧浓度:常规40%(可根据病情设定) ⑤每分钟通气量:潮气量×呼吸频率 (5)用模拟肺与呼吸机连接进行试通气,观察呼吸机运转情况,有无漏气,观察设置的参 数和显示的参数是否一致,在试运行过程中如果出现报警,则一定要根据报警内容作 相应处理 (6)确认运转正常后,接病人,妥善固定管道,以防脱落,并锁住呼吸机底部滑轮,防止 机器移动 (7)清理床单位,整理用物,洗手,记录 (8)人工通气30min后做血气分析检查,根据结果调整限定的通气参数 5.护理要点 (1)观察病人两侧胸壁运动是否对称,听双肺呼吸音是否一致,检查通气效果

相关主题
相关文档
最新文档