纯电动汽车车用电源系统设计

纯电动汽车车用电源系统设计
纯电动汽车车用电源系统设计

纯电动汽车车用电源系统设计

热度:263日期:13-02-20, 10:15 AM 来源:

纯电动汽车的结构相对简单,只有一个能量来源——动力电池,所以电源系统的设计相对也比较简单,本节以一种纯电动公交车的电源系统设计来进行说明。

1.整车设计要求

整车设计参数如表9-1所示。

整车行驶工况满足表9-2中国典型城市公交车行驶工况要求。

动力电源系统分布在车辆两侧四个相同的空间内(原行李箱位置)。

2.电源系统设计

(1)确定车辆的功率需求根据汽车理论,汽车功率平衡关系应满足式(9-1)。

(9-1)

P v——车辆需求功率,kW;

g——重力加速度,m/S2;

m——车辆满载质量,kg;

i——道路坡度;

δ——旋转质量换算系数;

du/dt——加速度,m/s2;

u a——车速,km/h;

η——传动系统效率;

A——车辆迎风面积,m2;

fr——滚动阻力系数;

CD——风阻系数。

在启动加速、爬坡、最高车速三种情况下车辆的需求功率是最高的,分别计算这三种情况下车辆的需求功率,选择功率要求最大的作为车辆的需求功率。

最高车速μmax对应的车辆功率需求P v1为:

(9-2)最大爬坡度am对应的车辆需求功率P v2为:

(9-3)原地起步加速到指定加速时间T如式9-4所示,可以计算出给定全力加速时电动汽车电机对应于车速ua的需求功率P v3。

(9-4)

由式(9-2)~式(9-4)以及表9-1与表9-2中的数据,可以得到车辆的最高车速、最大爬坡度和全力加速时车辆对应的功率需求,分别为98.7kW,91.8kW、65kW。

纯电动汽车的电机的功率应能同时满足汽车对最高车速、加速度及爬坡度的要求,所以电动机的额定功率为:

(9-5)

国家标准推荐的电机功率等级为5.5kW、7.5kW、11kW、15kW、18.5kW、22kW、30kW、37kW、45kW、55kW、75kW、90kW、110kW、132kW、150kW、160kW、185kW、200kW及以上,并符合GB/T4772.1-1999的要求。根据式(9—5)计算结果以及车辆辅件的功率需求,电机额定功率可以选定为110kW。电源系统的功率应不低于P,即应大于110kW。

(2)确定系统电压范围根据整车所选择的电机,确定电源系统的标称电压及电压应用范围。

采用合理的高电压设计,可以减小电机逆变器的成本和体积,并且有利于控制总线的工作电流在一定范围内,从而保护电源系统。同时,总线电压越高,驱动电机能够输出的最大电磁转矩和最大功率数值也就越大,车辆动力性能好。但直流总线的最高电压也不能过高,

否则会对功率逆变器中的功率开关器件造成较大的冲击,总线电压不能超过IGBT决定的电机最高允许电压限制。

国标中推荐的电动汽车电机的电源电压等级为:120V、144V、168V、192V、216V、240V、264V、288V、312V、336V、360V、384V、408V等。

标准要求电机及控制器必须能在电源电压为120%额定电压值下安全承受最大电流。另外,电机在电源电压降为75%额定电压时,应能在最大电流下运行(不要求连续运行)。对于最低电压,比较稳妥的是保证直流总线电压不低于电机额定电压的80%。

以整车采用360 V的电机为例,电源系统的正常工作电压应在288~432V。

根据采用的不同的电动汽车电池类型,来确定电源系统的标称电压。

选用纯电动车常用的LiFePO4体系的锂离子电池,单体电压正常应用范围一般在

2.5~

3.6V,串联电池数量为115~120只,选用120只串联的系统,电源系统标称电压为384V。若选用锰酸锂体系的锂离子电池(其正常应用电压范围为2.9~

4.1V),则选用100只电池串联的系统,标称电压为360V。

(3)电源系统最大输出功率与电流的确定上面确定电机功率为110kW,假设电机转换效率及控制器效率分别为0.9及0.95,电子附件、空调等功率8kW,则电源系统需求的最大功率为:

(9-6)根据车辆设计的最长爬坡时间、加速时间等,来确定电源系统的功率需求。

以LiFePO4电源系统为例,要求输出功率137kW。系统标称电压384V。系统在大功率输出情况下的电压会下降比较大,一般以低于标称电压10%来计算。

则系统要求最大输出电流为:

(9-7)即系统应当在此电流下持续所要求的时间,若连续爬坡要求时间为30s,则此电流下至少需要30s的持续时间。纯电动车应在30%SOC下能承受此电流下的持续时间。

在电源系统设计时,还注意要保留一定的设计冗余。随着车辆的使用,电源系统逐渐老化,式(9-6)、式(9-7)计算的最大电流和只是最低要求。当电源系统寿命接近终止时(如循环剩余80%的额定容量),此时同样应能满足此最低要求。电源系统的最大输出功率必须大于计算值,通常设计冗余为30%。

(4)最大回馈功率与电流的确定能量回馈是提高电源系统能量利用效率的主要方法之一。纯电动车同样具有能量回馈功能,以提高车辆的行驶里程。能量回馈时,电池组应能接受短时间的大功率输入或大电流充电,输入功率与整车的能量制动控制策略有关。

通常回馈功率小于电机的最大功率。能量回馈时电压会升高,由于纯电动车使用的基本上是容量型电池,其充电电压比功率型要高的多。回馈电压按电机的上限电压计算,功率按电机额定功率计算。假设整车要求的最大制动回馈功率为Pin,持续时间为10s。若全部制动能量回收(电机最大发电功率,110kW电机最大发电功率按70kW计算),则回馈承受的最大电流I cmax为:

I cmax=70000/432 =162(A)

以此电流应能承受10s的充电。由于纯电动车SOC应用范围比较宽,应能在80%SOC下承受此时的回馈功率。实际情况中车辆的制动回馈策略不同,机械制动和电机能量回收的比例不同,电机回馈功率通常较小,实际电流小于上述计算电流。按50%的制动能量回收,则反馈功率为55kW,电流约为100A。

(5)电动汽车电源系统SOC应用范围确定为更好地保护电源系统,一般应用中不提倡充电时将电源系统完全充满电,放电时不提倡完全放彻底,否则容易损坏电池。一般建议充电到90%左右,放电应剩余5%~10%的容量,可以更好地保护系统中的弱势电池。一般建议应用范围在10%~90%SOC。

(6)电源系统容量的确定容量的确定可以按以下几种方法来确定。

①根据平均行驶速度与里程计算已知平均行驶速度为40km/h,平均输出功率为

25kW,电机标称电压为384V,行驶里程要求不低于200km。则电源系统的容量为:

25000×200/(40×384) =325(A·h)

SOC应用范围为10%~90%。

则实际电源系统的容量应能达到325/0.8=407(A·h)

②根据每公里能耗计算若事先了解电动汽车的每公里能耗,则更容易计算出电源系统所需求的容量。

根据车辆设计仿真模拟,该车辆每公里能耗约为0.63kW·h,续驶里程要求200km,系统标称电压384V。则:

电源系统容量=200×630/384=328(A·h)

即电池组实际应能提供328A·h的容量。电源系统的容量应为

328A·h/0.8=410A·h(0.8为车辆应用SOC范围)。

③按照车辆参数计算车辆平均行驶速度为40km/h,假设续驶里程要求200km。

则要求连续行驶时间:t=5h

车辆行驶功率需求按式(9-2)计算:P v1=25kW

则需要的能量为:W=25×5=125(kW·h)

电源系统标称电压以384V计算,SOC应用范围按10%~90%计算。则系统容量为:

C=125×1000/(384×0.8)=407(A·h)

几种计算方法的结果接近。从上述计算结果可以看出,动力电源系统的容量至少应保证在400A·h,才能满足车辆正常行驶200km的要求。

同样,在进行容量的设计确定时,也需要考虑冗余,一般设计冗余在10%~30%。该设计可以采用500A·h的电源系统,初期一次充电可以行驶250km。

(7)电池组工作温度范围电池组的工作温度范围一般在选定电池时已经确定了,Ni/MH电池的工作温度范围一般在-20~55℃;锰酸锂电池的工作范围为-20~50℃;磷酸铁锂电池的工作范围为-20~60℃。在低温时,电源系统应能满足启动的要求。由式(9-4)计算出车辆启动功率为65kW,考虑电机及其控制器转换效率,低温电源系统启动功率需求为76kW。低温启动电压按标称电压的90%计算,则低温启动电流约为220A,相对500A·h的电源系统来说,通常的Ni/MH电池、锂离子电池可以满足此要求。

(8)电动汽车电池组散热设计根据车辆正常使用工况,计算车辆在正常行驶过程中产生的热量及可能引起的温升情况;根据充电要求计算充电过程中的产热情况。根据这两个计算情况确定所采取的散热方式等。在许多情况下,纯电动车正常运行(行驶)过程中的产热比较少,可以不考虑散热,充电过程中产热量大,尤其在快充情况下。因此,某些条件下可以专门针对充电情况进行散热考虑,此时不一定要从电源系统的设计来考虑,可以利用停车充电的固定设施进行散热。

(9)系统BMS功能的设计与要求按照选用的电池类型要求、整车控制要求、通信协议要求等设计BMS的功能。根据选用的电池特性确定均衡电流的大小。此系统采用500A·h 的磷酸铁锂电池,电池自放电大约为每月5%(假设电池之间每月容量差别在5%),每天充电均衡时间在2h左右,则均衡电流应达到500×5%/(30×2)=0.417(A),才能达到消除自放电引起的容量差别。

(10)电源系统结构根据上面的功率需求和容量需求,目前的铅酸电池、镍氢电池及锂离子电池均能满足使用要求。根据目前各类电池的使用寿命、价格、体积、重量等参数,综合比较。采用铅酸电池,电池比能量低,比能量按35W·h/kg计算,则系统总质量达到5500kg;采用镍氢电池(系统比能量50W·h/kg),系统总质量为3600kg左右;锂离子电池系统的比能量通常在80~90W·h/kg,系统标称电压为384V(磷酸铁锂电池),标称容量500A·h,则质量大约在l700~2000kg。采用铅酸电池重量最大,已经严重影响到车辆的载重与行驶里程(由于重量加大而需要提高电源系统的功率和能量)。锂离子电池系统重量最低,并且从现有电池水平来着,锂离子电池寿命最长,一次购置价格也与镍氢电池相接近。所以采用动力锂离子电池。

电池包安装在车辆的四个位置,必须采用多个电池包的设计方案,并且根据车辆的空间位置以及在车辆上的排布确定每个电池包的尺寸和大小。为加工及维修方便,在条件允许下,电池包应为统一规格。每只电池包的重量不能太大,否则影响搬运和安装。本设计采用

12只电池包的设计,每只电池包标称电压32 V(10只磷酸铁锂电池串联),质量大约为170~200kg。

(11)电源系统的充电要求纯电动汽车一般在地面充电,此时根据所选用的电池类型、电动汽车电源系统的散热特点、所要求的充电时间等,确定系统充电机的制度与参数、通信要求。通常标准充电电流为0.2C,根据采用的是锰酸锂电池还是磷酸铁锂电池,确定系统的限制电压。

3.模拟仿真测试

设计完成后,首先制作电池模块或电池包,进行台架性能测试,测量是否能够满足根据计算的电源系统的指标要求,根据测试结果进行初步改进。然后进行系统制作和台架测试。最后通过装车试验,对系统进行改进和完善。

电动汽车电池组热管理系统的关键技术

第22卷 第3期 2005年3月 公 路 交 通 科 技 Journal of Highway and T ransportation Research and Development V ol 122 N o 13 Mar 12005 文章编号:1002Ο0268(2005)03Ο0119Ο05 收稿日期:2004Ο03Ο16 基金项目:国家高技术研究发展计划(863计划)重大专题项目(2003AA501100) 作者简介:付正阳(1978-),男,北京人,清华大学汽车工程系硕士研究生,主要从事电动汽车方面的研究1 电动汽车电池组热管理系统的关键技术 付正阳,林成涛,陈全世 (清华大学 汽车安全与节能国家重点实验室,北京 100084) 摘要:电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。关键词:电动汽车;电池组;热管理系统 中图分类号:T M911141 文献标识码:A K ey Technologie s of Thermal Management System for EV Battery Packs FU Zheng Οyang ,LIN Cheng Οtao ,CHEN Quan Οshi (S tate K ey Laboratory of Autom otive Safety and Energy ,Tsinghua University ,Beijing 100084,China ) Abstract :Research and development of battery thermal management system (BT MS )is very im portant for the operation safety and relia 2bility of electric vehicle (E V )1In this paper ,by analyzing the in fluence of tem perature on the per formance and service life of batteries ,the desired function of a BT MS was outlined ,a procedure for designing BT MS was introduced 1Several key technologies during designing a BT MS were introduced and analyzed ,including optimum operating tem perature range of a battery ,heat generation mechanism ,ac 2quisition of the therm odynamic parameters ,calculation of tem perature distribution ,selection of heat trans fer medium ,design of cooling structure and s o on 1 K ey words :E lectric vehicle ;Battery pack ;Thermal management system 0 引言 能源与环境的压力使传统内燃机汽车的发展面临前所未有的挑战,各国政府、汽车公司、科研机构纷纷投入人力物力开发内燃机汽车的替代能源和动力,这大大促进了电动汽车的发展。 电池作为电动汽车中的主要储能元件,是电动汽车的关键部件[1,2],直接影响到电动汽车的性能。电池组热管理系统的研究与开发对于现代电动汽车是必需的,原因在于:(1)电动汽车电池组会长时间工作 在比较恶劣的热环境中,这将缩短电池使用寿命、降 低电池性能;(2)电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡;(3)电池组的热监控和热管理对整车运行安全意义重大。 清华大学从承担国家“八五”电动汽车攻关项目以来,在电动汽车、混合动力汽车和燃料电池汽车关键技术的研究中,积极开展了电池组热管理系统的研究,并在样车上进行了道路试验,目前电池组热管理系统的优化设计与改进工作正在进行中。本文是对前阶段研究工作的总结和今后工作的展望。

电动汽车的电池管理系统

电动汽车中的电池能量管理系统 一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本; 其二是电池的性能差,使用寿命低影响电动汽车的使用成本。电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能

电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行 驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工作后尚不能达到要求的温度时,第二级冷却风扇才参与工作,加强冷却。此时电池箱内的温度如果还不能达到要求的工作条件,温度继续升高已达到影响电池模块的正常工作条件,为保护电池模块不受损坏,能量管理系统会发出停止电池模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机停止充电而不损坏电池,由维修人员进行检测排除故障。 2.3 保证充电功能 电池能量管理系统随时参与整车检测工作,检测电池的工作状态,尤其对每只电池的技术状态进行检测分析,将检测的数据在车辆停驶,充电之前“通知”充电机,即“车与机”的对话。告诉充电机,电池组的工作状态及每只电池的技术状态,“落后”电池和“先进”电池性能差异。此时充电机应当采用什么样的充电模式给电

电动汽车热管理系统

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201710538323.X (22)申请日 2017.06.29 (71)申请人 知豆电动汽车有限公司 地址 315600 浙江省宁波市宁海县力洋镇 储家山路1号 (72)发明人 尹湘林 鲍文光 王红梅 闫优胜  樊晓浒 何志刚  (74)专利代理机构 杭州杭诚专利事务所有限公 司 33109 代理人 尉伟敏 (51)Int.Cl. B60H 1/00(2006.01) B60H 1/32(2006.01) B60H 1/22(2006.01) B60L 11/18(2006.01) (54)发明名称 电动汽车热管理系统 (57)摘要 本发明公开了一种电动汽车热管理系统,包 括乘员舱热管理模块和动力系统热管理模块,乘 员舱热管理模块包括电动压缩机、冷凝器、冷凝 风扇、膨胀阀、HVAC系统、第一水泵、水PTC加热器 和连接管路,动力系统热管理模块包括动力电池 包、水壶、第二水泵、散热器、散热器风扇、第三水 泵、控制器、逆变器、电机、热电板式换热器和连 接管路。动力系统热管理模块采用热电板式换热 器来实现。热电板式换热器根据珀耳帖效应,具 有加热和制冷功能。本发明具有结构简单,可靠 性好,控温精确,热利用率高,能有效提高电动汽 车电池使用效率和延长电动汽车行驶里程的特 点。权利要求书1页 说明书4页 附图3页CN 107310344 A 2017.11.03 C N 107310344 A

1.一种电动汽车热管理系统,其特征是,包括乘员舱热管理模块和动力系统热管理模块,乘员舱热管理模块包括制冷循环密闭系统和采暖循环密闭系统,制冷循环密闭系统包括电动压缩机(1)、冷凝器(2)、冷凝风扇(3)、膨胀阀(4)、HVAC系统(5)和连接管路,采暖循环密闭系统包括第一水泵(6)、水PTC加热器(7)和连接管路,动力系统热管理模块包括第一流体循环密闭系统和第二流体循环密闭系统,第一流体循环密闭系统包括动力电池包(8)、水壶(9)、第二水泵(10)、热电板式换热器(17)和连接管路,第二流体循环密闭系统包括散热器(11)、散热器风扇(12)、第三水泵(13)、控制器(14)、逆变器(15)、电机(16)、热电板式换热器(17)和连接管路。 2.根据权利要求1所述的电动汽车热管理系统,其特征是,动力系统热管理模块中的热电板式换热器包括第一流体进口(21)、第一流体出口(22)、第二流体进口(23)和第二流体出口(24),第一流体进口通过连接管路与第二水泵出口连接,第一流体出口通过连接管路与动力电池包进口连接,第二流体进口通过连接管路与第三水泵出口连接,第二流体出口通过连接管路与控制器进口连接。 3.根据权利要求1所述的电动汽车热管理系统,其特征是,热电板式换热器和散热器对动力系统热管理模块进行热管理。 4.根据权利要求2所述的电动汽车热管理系统,其特征是,第一流体和第二流体同时经过热电板式换热器进行加热或制冷,第一流体从热电板式换热器流出时的温度与第二流体从热电板式换热器流出时的温度差可以通过热电板式换热器工作电流大小进行调节,温度差调节在5℃-10℃比较合适。 5.根据权利要求1所述的电动汽车热管理系统,其特征是,当动力电池包不需要制冷或加热时,热电板式换热器停止工作,仅作流通通道,控制器、逆变器和电机依靠散热器和散热风扇进行降温。 6.根据权利要求1或2或3或4或5所述的电动汽车热管理系统,其特征是,HVAC系统包括蒸发器(18)、鼓风机(19)、暖风芯体(20)和连接管路,蒸发器进口通过连接管路与膨胀阀出口连接,蒸发器出口通过连接管路与电动压缩机进口连接,暖风芯体进口通过连接管路与水PTC加热器出口连接,暖风芯体出口通过连接管路与第一水泵进口连接。 权 利 要 求 书1/1页CN 107310344 A

纯电动汽车能源系统检修课程标准

《纯电动汽车能源系统检修》课程标准 基本信息: 课程名称:纯电动汽车能源系统检修 课程性质:职业技术课 学分:4 计划学时:64 适应对象:新能源汽车技术 建设团队:该课程团队含一线教师5人,其中高级职称2人;聘请1名具有资深工作经历的企业技师作为兼职教师参与指导实践教学。 第一部分课程概述 本课程是新能源汽车技术专业的专业核心课程。主要知识点是全面系统地介绍新能源汽车新技术。针对本专业的特点,系统阐述了新能源汽车的类型,发展新能源汽车的必要性和新能源汽车发展现状。重点介绍电动汽车用动力电池、电动汽车用电动机、纯电动汽车、混合动力电动汽车和燃料电池电动汽车的结构、原理及设计方法等。对天然气汽车、液化石油气汽车、甲醇燃料汽车、乙醇燃料汽车、二甲醚燃料汽车、氢燃料汽车和太阳能汽车的特点、发展现状及趋势也进行了介绍。本课程授予学生新能源汽车构造原理等规律性的知识,使学生具有举一反三的分析能力,对结构原理不断更新的适应能力,为学习后续课程和参加专业实践奠定基础,对于适应地方经济建设的应用性人才培养目标具有十分重要的意义。 第二部分课程目标 总目标:电动汽车用动力电池、电动汽车用电动机、纯电动汽车、混合动力电动汽车和燃料电池电动汽车的结构、原理及设计方法。 具体目标: 第一章新能源汽车概述 (一)新能源定义与分类 主要内容: 1.新能源汽车的定义。 2.新能源汽车的分类。 重点:新能源汽车的定义和分类。 难点:新能源汽车的分类方法。 基本要求: 1.掌握新能源汽车的定义。 2.了解新能源汽车的分类方法。 3.掌握新能源汽车的分类。

(二)发展新能源汽车的必要性 主要内容: 1.全球背景下的能源危机。 2.大气环流与环境污染。 3.新能源汽车的优点。 4.发展新能源汽车的必要性。 重点:能源危机。环境污染。 难点:发展新能源汽车的必要性。 基本要求: 1.了解全球背景下的能源危机。 2.了解大气环流与环境污染。 3.掌握新能源汽车的优点。 4.掌握发展新能源汽车的必要性。 第三章纯电动汽车基础 (一)纯电动汽车蓄电池 主要内容: 1.纯电动汽车用动力电池分类。 2.纯电动汽车用动力电池的性能指标。 3.纯电动汽车对动力电池的要求。 4.铅酸蓄电池的分类、结构和特点、工作原理、充放电特性和充电方法。 5.镍氢电池的分类、结构和特点,镍氢电池的工作原理、充放电特性和充电方法。 6.锂离子电池的分类、结构和特点,工作原理,充放电特性和充电方法。 7.燃料电池的发展动态、分类、结构和特点。 8.了解质子交换膜燃料电池、碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、直接甲醇燃料电池、微生物燃料电池和再生型燃料电池的性能特点。 9.了解太阳能电池的分类、特点、发电原理、伏安特性。 重点:铅酸蓄电池的分类、结构和特点;镍氢电池的分类、结构和特点;锂离子电池的分类、结构和特点。燃料电池的分类、结构和特点;燃料电池系统;质子交换膜燃料电池。 难点:铅酸蓄电池的充放电特性和充电方法。镍氢电池的充放电特性和充电方法。锂离子电池的充放电特性和充电方法。 基本要求:

电动汽车高压电气系统安全设计

纯电动汽车高压电气系统安全设计摘要:在电动汽车研发安全设计中,纯电动汽车安全设计除与传统燃油车一样考虑乘员的主动安全与被动安全外,还需重点考虑动力电池系统和高压系统安全。为解决纯电动汽车高压电系统的安全问题,文章对高压部件和高压线束防护与标识、预充电回路保护、高压设备过载/短路保护、绝缘电阻检测、动力电池电流电压检测、高压接触器触点状态检测、高压互锁电路检测、充电互锁检测、高压系统余电放电保护以及碰撞安全等高压系统潜在的安全问题提出了相应的解决方案,形成一整套完整的电动汽车高压电气系统的安全设计方案。该方案能确保电动汽车高压系统安全可靠地运行。关键词:纯电动汽车;高压电气系统;高压触点;绝缘电阻;高压互锁;碰撞安全。 现代电动汽车一般分为纯电动汽车、混合动力汽车、燃料电池电动汽车、外接式可充电混合动力汽车及增程式电动汽车。纯电动汽车是指完全由蓄电池提供电力驱动的电动汽车,工作电压高达几百伏,远远高于安全电压。且高压系统工作时放电电流有可能达到数十安,甚至高达上百安[1]。当高压电路发生绝缘、短路及漏电等情况时,会直接对驾乘人员的人身生命财产安全造成危害。 因此,在设计高压系统和对高压系统关键部件进行选型时,不仅要满足整车驱动的要求,还必须确保驾乘人员和汽车运行环境安全。因此,纯电动汽车整车的电气系统安全性已成为评价纯电动汽车安全性的一项重要指标。文章简述了某公司纯电动轿车高压电气系统的安全设计与控制策略。 1纯电动汽车电气系统安全分析 纯电动轿车电气系统主要包括低压电气系统、高压电气系统及CAN通讯信息网络系统。低压电气系统采用12V供电系统,除了为灯光照明系统、娱乐系统及雨刷器等常规低压用电器供电外,还为整车控制器、电池管理系统、电机控制器、DC/DC转换器及电动空调等高压附件设备控制回路供电; 高压电气系统主要包括动力电池组、电驱动系统、DC/DC电压转换器、电动空调、电暖风、车载充电系统、非车载充电系统及高压电安全管理系统等; CAN总线网络系统用来实现整车控制器和电机控制器、以及电池管理系统、高压电安全管理系统、电动空调、车载充电机和非车载充电设备等控制单元之间的相互通信。 纯电动汽车电压和电流等级都比较高,动力电压一般都在300~400V(直流),电流瞬间能够达到几百安。人体能承受的安全电压值的大小取决于人体允许通过的电流和人体的电

电动汽车中的电池能量管理系统

一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本; 其二是电池的性能差,使用寿命低影响电动汽车的使用成本。电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能 电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工作后尚不能达到要求的温度时,第二级冷却风扇才参与工作,加强冷却。此时电池箱内的温度如果还不能达到要求的工作条件,温度继续升高已达到影响电池模块的正常工作条件,为保护电池模块不受损坏,能量管理系统会发出停止电池模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机停止充电而不损坏电池,由维修人员进行检测排除故障。 2.3 保证充电功能

车载智能化电源管理系统的研究

车载智能化电源管理系统的研究 摘要:伴随汽车工业现代化水平的提高,车载设备的数量与信息化水平都在不 断提高,这就是车载设备消耗功率有了很大的提高,这就给车载电源的供电能力 提出了更高的要求。因此,为了保证车辆的安全稳定运行,就需要提高车载电源 的供电稳定性,这要求设计人员一方面能够继续提高车载电源的电源容量水平, 另一方面也需要通过设计安全可靠的智能化电源管理系统来协调车载电源复杂的 供电工作。接下来,本文将从车载智能化电源管理系统的设计原理以及系统组成 等方面入手,旨在为我国汽车工业的发展提供一点建议。 关键词:智能化电源管理系统信息交互应用 一、智能化电源管理系统概述 伴随汽车工业的发展,汽车的设计理念经历了不断更新与完善,当前对于汽 车的各功能设计来说,行业上已经达成共识,要以安全性为第一要点,行驶性为 第二要点的同时,需要注重设计中的人性化。因此,作为汽车系统重要组成部分 的智能化电源管理系统而言,需要达到以下功能目标。(1)电源系统的保护功能,实现对于整车电源的有效保护,当出现短路、过电流故障时,能够及时切断 车载电源回路,从而保护系统。(2)实现对于车载电池荷电状况的SOC检查, 完成电量状况的实时监控,及时通知用户进行充放电,从而保证电源稳定性。(3)完成对于汽车静态状态下电流控制,保证汽车能够在长时间停放后保证启 动的最低电量要求,从而延长汽车必要情况下的停放实践。(4)与汽车其他组 成部分实现信息交互,从而帮助用户更好的了解汽车整体状况。(5)实现对于 车载电源故障问题的智能化诊,为汽车故障维修提供信息。 二、智能化电源管理模块的功能要求 为保证车载智能化电源管理系统能够正常发挥功能,需要按照实际的功能需 要划分电源管理系统的电源管理模块,具体来说主要有以下六个划分模块。(1)电池健康度估算模块(SOC),主要是根据车载电源系统中电池的运行电压、电流、电池温度以及运行时间等基本参数来进行合理计算SOC的值;(2)通过监 控元件实现车载电池运行状况的实时监控,监控内容主要有电池的充放电过程、 电池运行的温度、电池运行的安全状态等;(3)实现对于电池常见故障的智能 诊断,并在必要情况下及时切断电流,实现有效的安全保护与失效控制;(4) 智能化电源管理系统的自检与诊断功能,对于系统自身状况的检验,记录各种故 障信息,为检修提供方便;(5)通过自动化控制功能,实现电源系统内电池的 充放电均衡功能;(6)实现与汽车内其他控制系统的信息交互。 三、智能化电源管理系统的应用 3.1过电流、短路的保护功能 车载智能化电源管理系统的过电流保护原理如下。电源管理系统针对电源系 统内各个需要进行电流检测的关键位置进行正常工作电流的估算与实际测量,从 而收集得到电流值I初,为根据过载电流主要是指长时间通电回路,过载电流设 定过电流倍数 K,那么在实际情况的电源系统工作中,电源管理系统对电源通道 的电流状况进行采集得到了实际电流I实,当I实大于I初时,那么智能化电源管 理系统就会判断电源出现过载电流,从而控制电源系统内部的继电器断开电流。 而针对电源内部的短路保护功能,在设计上则比较简单,与传统电源管理系 统相似,同样都是通过保险丝的应用就可以完成短路保护,当电源系统回路中出 现短路故障时,保险丝会第一时间熔断,从而起到保护系统的作用。但是相比之

特斯拉电动汽车电池管理系统解析

1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C 之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。 图 1.(a)是一层(sheet)内部的热管理系统。冷却管道曲折布置在电池间,冷却液在管道内部流动,带走电池产生的热量。图 1.(b)是冷却管道的结构示意图。冷却管道内部被分成四个孔道,如图 1.(c)所示。为了防止冷却液流动过程中温度逐渐升高,使末端散热能力不佳,热管理系统采用了双向流动的流场设计,冷却管道的两个端部既是进液口,也是出液口,如图 1(d)所示。电池之间及电池和管道间填充电绝缘但导热性能良好的材料(如Stycast 2850/ct),作用是:1)将电池与散热管道间的接触形式从线接触转变为面接触;2)有利于提高单体电池间的温度均一度;3)有利于提高电池包的整体热容,从而降低整体平均温度。

电动汽车电池管理系统应用与分析

研修班毕业论文 电动汽车电池管理系统应用与分析 授课老师:邓亚东 专业:车辆工程 姓名:石琪 完成日期:2017年6月15日

摘要 随着社会的发展以及能源、环保等问题的日益突出,纯电动汽车以其零排放,噪声等优点越来越受到世界各国的重视,被称作绿色环保车。作为发展电动车的关键技术之一的电池管理系统(BMS),是电动车产业纯的关键。,以锂电池为动力的电动自行车、混合动力汽车、电动汽车、燃料电池汽车等受到了市场越来越多的关注。我国对电动车的发展极为重视,早在1992年就把电动车的开发发展列入国家的“八五”重点科技攻关项目,对电池管理系统以及充电机系统进行了长期深入的研究开发,在BMS方面取得很大的突破,与国外水平也较为接近,研制产品在纯电动和混合动力电动车上得到大量使用。但电池管理技术还并不成熟,电动汽车的发展及产业化,对动力蓄电池管理系统将具有巨大的市场需求,同时技术上也将提出更高的要求。 关键词:BMS 纯电动汽车动力电池锂电池 can通讯单片机

Abstract with the oil price, the energy shortage, the increasingly serious urban environment pollution, an alternative to oil development of new energy use more and more attention by governments. In the new energy system, battery systems is one of the indispensable important component. In recent years, with the lithium battery powered electric bicycle, hybrid cars, electric vehicles, fuel cell automobile, by the market more and more attention. The development of electric vehicle in China, a great importance in early 1992, the development of the electric car in national development of "five-year" key torch-plan projects of battery management system, and charging machine system for the long-term in-depth research development, in BMS gained great breakthrough, and foreign level also approaches, the research products in pure electric and hybrid electric vehicle got a lot of use. But battery management technology is still not mature, electric vehicles and the development of industrialization of motive battery management system, with the huge market demand, but technology will also put forward higher request. Keywords:BMS pure electric vehicle power battery lithium batteries can communication microcontroller

电动汽车电池管理系统设计方案设计说明

随着能源枯竭和节能工业的发展要求,社会对于环保的呼吁,使得零排放电动汽车的研究得到了很多国家的大力支持.电动汽车的各种特性依赖于它的动力源---蓄电池.蓄电池管理可以提高电池工作效率,保证电池以最佳状态安全运行,延长电池寿命。 1.1电动汽车 目前世界上各种汽车保有量超过6亿辆,汽车的石油消耗量非常大达到每年60~70亿桶,大约可以占到世界石油产量的一半以上.长时间的现代化大规模开采,石油资源日渐枯竭。电能来源广泛,人们对电力的使用也积累了丰富的经验,21世纪电能将会成为各种地面运输工具的主要能源,发展电动汽车是交通工业发展和汽车工业发展的必然趋势。 由于电动汽车的显著特点和优势,各国都在发展电动汽车。 中国:我国早在“九五”期间,就将EV列为重大科技产业工程项目。在广东汕头市南奥岛设立了示范区。清华大学、华南理工大学、粤海汽车改装厂等单位都参与了电动汽车的研发工作,并由丰田汽车公司和通用汽车公司提供样车和技术支持,在示范区进行试验。 德国:吕根岛实验基地是德国联邦教育、科学研究和技术部资助最大的EV 和HEV试验计划,有梅赛德斯-奔驰汽车公司,大众汽车公司,欧宝汽车公司,宝马汽车公司和MAN汽车公司提供的64辆EV和HEV进行试验。 法国:拉罗谢尔市成为第一个设置EV系统的城市,设置12个充电站,其中三个为快速充电站。标志雪铁龙、雪铁龙和PSA集团都参与到了电动汽车建设中。

日本:在大阪市、大发汽车公司、日本蓄电池公司和大阪电力公司共同建立了EV和HEV试验示范区。 1.2电动汽车用蓄电池 根据汽车的使用特点,其实用的动力电池一般应具有比能量高、比功率大、自放电少、工作温度范围宽、能快速充电、使用寿命长和安全可靠等特点。前景比较好的是镍氢蓄电池,铅酸蓄电池,锂离子电池, 1.3电池管理系统(BMS) 电池能量管理系统是保持动力电源系统正常应用、保证电动车安全和提高电池寿命的一种关键技术,它能保护电池的性能,预防个别电池早期损坏,利于电动车的运行,具有保护和警告功能。电动汽车的充电、运行等功能与电池相关参数协调工作是通过对电池箱内电池模块的监控工作来实现的,它的功能有计算并发出指令,执行指令,提出警告。电池能量管理系统主要包括:电池状态估计、数据采集、热管理、安全管理、能量管理和通信功能。 (1)数据采集电池管理系统的所有算法、电动车的能量控制策略等都是以采集的数据作为输入,影响电池能量管理系统性能的重要指标是采样速率、精度和前置滤波特性。 (2)电池状态估计电池状态估算包括SOC和SOH,是电动汽车进行控制和功率匹配的重要依据。在行车过程中系统可以随时计算车辆能耗给出SOC值,供能源管理系统进行功率配置和确定控制策略,使驾驶员知道车辆的续驶里程,及时作出决定到充电地点充电防止半路抛锚,SOH告诉驾驶员电池的寿命。(3)能量管理在能量管理中,电压、温度、电流、SOC、SOH等作为输入完成这些功能,控制充电过程,用SOC,SOH和温度限制电源系统输入、输出

电动汽车动力电池管理系统(基础篇)

全解析:电动汽车动力电池管理系统(基础篇) 在保证电池系统安全的设计过程中,除了电池单体特性、电池模组设计、电池包的结构和排气设计以外,就要数电池管理系统最有主控性。这里想做一个系列文章,分别介绍电池管理系统的基础、乘用车管理系统、电动大巴管理系统和电池管理系统的发展四个部分,这是第一篇。 从镍氢电池开始,电池由于其本身的特性,需要电池管理系统来管理,它也是新能源汽车整体架构中的要素之一。从总体来看,电池管理系统的主要目的是测量电池状态、延长电池的使用寿命。电池管理系统的常见功能模块根据初步划分,也可以分为测量功能、状态计算功能、系统辅助功能和通信与诊断。 第一部分测量功能 1)基本信息测量:电池电压,电流信号的监测,电池包温度的检测 电池管理系统有着最基本功能就是测量电池单体的电压,电流和温度,这是所有电池管理系统顶层计算、控制逻辑的基础。如图1所示,电池管理系统目前从电池这里获取的直接物理参数就是只有电压、温度和电流。 图1电池管理单元概览 1.1单体电压测量和电压监控 单体的电压,对于电池管理系统有几种意义,一是可以用来累加获取整个电压,二是可以根据单体电压压差来判断单体差异性,三是可以用来检测单体的运行状态。单体的电压的采集和保护,目前都用ASIC来完成,而考虑采集电压的精度不仅仅需要考虑ASIC电路本身的精度,也需要考虑单体电压采样线束、线束保护用熔丝、均衡状态等多项内容。由于对电压采集精度的敏感度,与电池化学体系和SOC范围(SOC两端的需求往往较高)都有关系,实际上的ASIC采集得到的电压数据需要经过还原成接近电池本身的电压。

图2单体采集电路模型 1.2电池包电压测量 在后续计算SOC的时候,往往会用电池组的总电压来核算,这是计算电池包参数重要参量之一;如果由单体电压累加计量而成本身电池单体电压采样有一定的时间差异性,也没办法与电池传感器的数据实现精确对齐,因此往往采集电池包电压来作为主参数来进行运算。在诊断继电器的时候,是需要电池包内外电压一起比较的,所以这里一般测量电池包电压至少有两路V0和V1,如图3所示。 图3BMS高压采集 由于这里牵涉到了高压采集,需要进行隔离,所以一般的办法有两种,光隔如AVGAO的芯片方案或者通过电阻分压,然后配置工作点,再加上汽车级运放所组成的仪表运放电路,如下图4所示。

车载电源管理系统设计

2009年5月电工技术学报Vol.24 No. 5 第24卷第5期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY May 2009 车载电源管理系统设计 张新丰杨殿阁薛雯陆良连小珉 (清华大学汽车安全与节能国家重点实验室北京 100084) 摘要设计了一种适用于分布式汽车电气控制系统的车载电源管理系统。根据车载电源管理的需要,以分布式控制的设计思想设计了智能继电器,实现了对电源通道的控制。针对电源通道过电流保护的要求,采用了选择性过载保护、瞬动保护和后备保险丝三种保护方法,达到了对多种过电流情况的保护功能。最后设计出该系统的原型样机,通过实验测试,并且得到应用。 关键词:车载电源电源管理系统过电流保护智能继电器电源通道 中图分类号:TM561 Automotive Electrical Power Management System Design Zhang Xinfeng Yang Diange Xue Wen Lu Liang Lian Xiaomin (Tsinghua University Beijing 100084 China) Abstract A kind of electrical power management system(EPMS) which is suitable for automotive distributed electrical system is proposed. According to the requirement of power supply in automotive distributed control system, a kind of smart relay is designed to manage the electrical power supply. Selective overload protection, instant protection and fuse protection method are adopted to meet over current protection requirement. Prototype is developed and tested, which has come into application. Keywords:Automotive electrical source, electrical power management system, over current protection, smart relay, power supply channel 1引言 随着总线技术的广泛应用,汽车电气系统总的发展趋势是分布式控制系统代替集中式控制系统[1],且智能化器件越来越多[2-3]。在这样的系统中,最后的发展结果是电力线束与信号(通信、控制)线束互相独立[4],汽车的电源网络作为一个相对独立的系统存在。 出于燃油经济性、动力性和舒适性的原因,车载电力电子设备广泛使用,汽车上电器的总功率不断增加,高端轿车的平均电功率从20世纪70年代不到500W上升到2005年的3000W,且还在不断增加[5],因此汽车用电安全越来越受重视[6],车载电源的管理问题也越来越重要。车载电源管理系统是今后汽车电气系统不可缺少的组成部分。 本文针对分布式汽车电气控制系统对车载电源的要求,基于分布式控制和分散控制的思想,提出了一种基于智能继电器的车载电源管理系统,目的在于加强车载用电的安全和管理。 2 车载电源管理系统 2.1 车载电源管理系统的功能 国内外许多学者提出了未来各种可能的车载电源的结构和设计方法[7,9],未来的车载电源很可能是12V/24V/36V多种电制并存或混合多电制的电力系统;未来的车载电力负载包括各种控制器、车身附件和起动机,还可能增加许多现在用机械来驱动的负载,比如空调压缩机等。 车载电源管理系统在车载电源和车载电力负载之间,起到对车载电源的管理作用,包括:①对蓄电池进行SOC检测,以实现对蓄电池的亏电保护。 ②稳压电源输出,以满足车载部分特殊控制器对稳 北京市科委“智能电气”资助项目(041502305)。收稿日期 2007-12-05 改稿日期 2008-05-30

干货!秒懂电源管理系统BMS被动均衡

干货!秒懂电源管理系统BMS被动均衡 一直以来,对于电动车BMS技术路线的争论,主要都是集中在BMS系统,该采用主动均衡,还是被动均衡技术。有人说被动均衡更适合当前动力电池发展现状,对电池的寿命影响较小;也有人认为主动均衡对提升电动汽车整体的运营效果、驾驶体验有显著的帮助。针对目前,国内众多车企及电池模组厂商均大力宣传主动均衡技术,甚至当时有广泛流传的言语,“主动均衡技术已领先国外产品,主动均衡已经达到延长电池寿命30%,增加续航里程20%。”但放眼目前电动车电池管理领域市场,无论是HEV、还是PHEV,BMS系统均大多采用被动均衡技术。那么设计BMS该采用哪种均衡技术会更好? 主动均衡vs 被动均衡谁能发挥电池组最大效益 什么是主动/被动均衡? 顾名思义,被动均衡就是将单体电池中容量稍多的个体消耗掉,实现整体的均衡。主动均衡则是将单体能量稍高的能量通过储能环节转移到能量稍低的电池上去。实现的是一种主动分配的效果。 BMS被动均衡技术先于主动均衡在电动市场中应用,技术也较为成熟些。被动均衡结构更为简单,使用比较广泛;而主动均衡则较为复杂,变压器方案的设计以及开关矩阵的设计无疑会使成本增加明显。

但被动均衡也有显著的缺点,由于结构简单制作成本低,采用电阻耗能产生热量,从而会使整个系统的效率降低。主动均衡相比采用能量传递分配的原则,因而能量利用率相比被动均衡更高。 有人说国内电池生产工艺不够好,电池一致性离散程度比较大,因而大多自主选择主动均衡;也有人说被动均衡比较耗电,以特斯拉Model S 96节电池组为例,特斯拉电动使用松下特制18650锂电池,在电池一致性方面表现良好,在均衡电流为0.1安培的时候,最差的情况下为95 节电池均需要放电,而总结起来也就消耗几十瓦功率,相比还比不上汽车前大灯的工作功率,而且这也极大的延长了电池的使用寿命。 一般来讲,被动均衡适合于小容量、低串数的锂电池组应用,主动均衡适用于高串数、大容量的动力型锂电池组应用。与其说哪种均衡技术更好,不如说这背后需要采用的策略更为重要。 - 具有无源电池平衡功能的16 节电池监视器

纯电动汽车电池管理系统的设计及应用_南金瑞

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J Tsingh ua Univ (Sci &Tech ),2007年第47卷第S2期 2007,V o l.47,N o.S226/50 1831-1834   纯电动汽车电池管理系统的设计及应用 南金瑞, 孙逢春, 王建群 (北京理工大学机械与车辆工程学院,北京100081) 收稿日期:2007-04-12 基金项目:国家“八六三”高技术项目(2003AA501800)作者简介:南金瑞(1972—),男(汉),山西,讲师。 E-mail :nan j inrui @https://www.360docs.net/doc/6518273896.html, 摘 要:针对目前唯一可以产业化的纯电动汽车使用的主要能源动力电池,设计开发了电池管理系统。系统以单片机为核心,采用分布式网络控制系统结构,可以实时检测动力电池的各种运行参数:电池SO C 、总电压、总电流、单体模块电压、电池包内特征温度;可以根据电池状态进行故障诊断和报警,同时具有热管理功能等;系统参数通过PC 进行标定,通过CAN 总线与整车其他系统进行通信实现信息共享。系统已经在BK 6121EV 纯电动公交客车上安装。实验室和实车试验结果表明:系统电池电压测量精度为1%满足要求,系统各个功能运行稳定、可靠。关键词:电动汽车;电池管理系统;动力电池;监控系统中图分类号:T N 911.72;U 270.1 文献标识码:A 文章编号:1000-0054(2007)S2-1831-04 Electric vehicle battery management system N AN Jinrui ,SU N Fengchun ,WANG Jianqun (School of Mechanical and Vehicle Engineering ,Beijing Institute of Technology ,Beijing 100081,China )Abstract :An adv a nced batter y manageme nt system was dev elo ped for co mpletely electric v ehicles,the o nly o ne elec tric v ehicles indust rialize at pr esent.The distributed contr ol system str uc ture based o n a sing le chip co mputer effectiv ely monito r s v arious o pera ting param eters of the pow er ba ttery in real time such as the sta te of charg e (SO C),to tal v oltag e,to tal curr ent,sing le mo dule v o ltag e,and temper atures at specific points in the ba tter y pa ckag e.The sy stem then ch ecks the ba tter y sta te,per for m fault diag nostics a nd manag e batte ry tempera tures.The system uses computerized calibration and shar es messag es with o th er systems in th e v ehicle though the CAN communications system.T ests in a BK 6121EV sho w that th e batte ry v o lta ge is mea sur ed to within 0.01V and that the sy stem is stable and reliable. Key words :elec tric v ehicle;ba tter y manag ement sy stem;po wer ba tter y;monito ring and co ntro l sy stem 电动汽车的无(低)污染优点,使其成为当代汽车发展的主要方向[1] 。电动汽车从为动力系统提供能源的角度来分类,主要分为:纯电动、混合动力和燃料电池汽车。纯电动汽车主要是由动力电池提供能源,目前技术相对成熟,可以进行产业化生产和应用。混合动力汽车是由燃油和动力蓄电池等多种能源共同提供能源,通过控制策略使内燃机动力源和电力动力源协调配合,实现最佳能量分配,既能保持电动汽车超低排放的优点,又弥补了纯电动行驶里程短的不足,是一种过渡车型,但是目前技术还没有完全成熟;燃料电池汽车由燃料电池作为主要能源提供驱动汽车所需的功率,由于燃料电池是以氢气 为燃料,空气(O 2)为氧化剂进行工作,其排放物质是没有污染的水,因此非常具有发展前景,但是目前技术还不成熟。 作为目前唯一可以产业化的纯电动汽车,其主要能源的动力电池是关键的部分,在整车成本中占有较高的比例,如在使用金属锂离子电池为主要能源的纯电动大客车中,动力电池占整车成本的三分之一以上,因此为了延长电池的使用寿命,降低使用

相关文档
最新文档