混合遗传算法及其实现研究

混合遗传算法及其实现研究
混合遗传算法及其实现研究

遗传算法综述

遗传算法综述 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,适用于处理传统搜索方法难以解决的复杂和非线性优化问题。遗传算法可广泛应用于组合优化、机器学习、自适应控制、设计和人工生命等领域,是21世纪有关智能计算中的重要技术之一。 本文通过对相关论文的查阅和整理,对遗传算法的研究现状和发展趋势进行了综述并谈论了一些自己的看法。 关键词:遗传算法研究现状发展趋势 引言:遗传算法是模拟遗传选择和自然淘汰的生物进化过程的计算模型,由美国Michigan大学的Holland教授于1969年提出,后经DeJong、Goldberg 等人归纳总结,形成一种新的全局优化搜索算法[1]。遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。 1、遗传算法的基本原理 与传统搜索算法不同, 遗传算法从一组随机产生的初始解,称为群体, 开始搜索过程。群体中的每个个体是问题的一个解,称为染色体。这些染色体在后续迭代中不断进化, 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体, 称为后代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择

一定数量的个体, 作为下一代群体, 再继续进化, 这样经过若干代之后, 算法收敛于最好的染色体, 它很可能就是问题的最优解或次优解。“遗传算法中使用适应度这个概念来度量群体中的各个个体的在优化计算中有可能到达最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关”[2]。 遗传算法包含两个数据转换操作,一个是从表现型到基因型的转换,将搜索空间的参数或解转换成遗传空间中的染色体或个体,这个过程称为编码(coding)。另一个是从基因型到表现型的转换,即将个体转化成搜索空间中的参数,这个过程称为译码(decode)。 图1展示了遗传算法的运行过程。 图1 遗传算法的运行过程示意图 2、遗传算法的研究现状 2.1 遗传算法研究方向[3] 在遗传算法的研究中,目前主要有三类研究方向: ⑴研究遗传算法本身的理论基础。 ⑵用遗传算法作为工具解决工程问题。主要是进行优化,关心的是能

遗传算法求解实例

yj1.m :简单一元函数优化实例,利用遗传算法计算下面函数的最大值 0.2)*10sin()(+=x x x f π,∈x [-1, 2] 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9, 最大遗传代数为25 译码矩阵结构:?????????? ??????? ???? ?=ubin lbin scale code ub lb len FieldD 译码矩阵说明: len – 包含在Chrom 中的每个子串的长度,注意sum(len)=length(Chrom); lb 、ub – 行向量,分别指明每个变量使用的上界和下界; code – 二进制行向量,指明子串是怎样编码的,code(i)=1为标准二进制编码, code(i)=0则为格雷编码; scale – 二进制行向量,指明每个子串是否使用对数或算术刻度,scale(i)=0为算术 刻度,scale(i)=1则为对数刻度; lbin 、ubin – 二进制行向量,指明表示范围中是否包含每个边界,选择lbin=0或 ubin=0,表示从范围中去掉边界;lbin=1或ubin=1则表示范围中包含边界; 注:增加第22行:variable=bs2rv(Chrom, FieldD);否则提示第26行plot(variable(I), Y, 'bo'); 中variable(I)越界 yj2.m :目标函数是De Jong 函数,是一个连续、凸起的单峰函数,它的M 文件objfun1包含在GA 工具箱软件中,De Jong 函数的表达式为: ∑ == n i i x x f 1 2 )(, 512512≤≤-i x 这里n 是定义问题维数的一个值,本例中选取n=20,求解 )(min x f ,程序主要变量: NIND (个体的数量):=40; MAXGEN (最大遗传代数):=500; NV AR (变量维数):=20; PRECI (每个变量使用多少位来表示):=20; GGAP (代沟):=0.9 注:函数objfun1.m 中switch 改为switch1,否则提示出错,因为switch 为matlab 保留字,下同! yj3.m :多元多峰函数的优化实例,Shubert 函数表达式如下,求)(min x f 【shubert.m 】

遗传算法综述

3D S可以方便灵活地实现对动画帧中的节点、平面、边界、颜色和轨迹的控制,同时对于物体变形测试,轴心点设置以及段信息的获取和设置也能方便准确地进行。而keyscri p t语言的优点体现在于其精确的数值计算,它可以对大量的复杂无序的动作进行随机计算,节省了制作时间。利用keyscri p t编辑器还能方便地进行语法检查并能直接执行无语法错误的keyscri p t程序。3 内存管理方式 3D S使用了独特的Pharlap的虚拟内存管理技术(VMM 386),该技术使3D—Studi o能使用比物理内存RAM更大的空间。这种内存管理方式与W indow2 s T M的内存管理方式不同,因此一般不在W indow s T M中使用3D S,若要在W indow s T M中使用,则必须在W in2 dow s T M的system1in i中的[386Enh]段加入device= Pharlap1386,使W indow s T M可以使用Pharlap的内存管理方式。这种内存管理方式也有一些不足,如内存一旦被3D S使用将不被释放。 4 硬件环境 使用3D—Studi o410的最低配制要求是386(带协处理器)的主机,至少8兆的内存,20兆以上的硬盘空间,DO S313以上的操作系统。由于3D S中的许多图形渲染时都必须使用256色,且观看3D S自带的一些图片也必须在256色的模式下进行,所以需要SV GA或TV GA的显示器。输入系统除了键盘外还必须配有鼠标,也可选配数字化仪。由于3D S在进行图形渲染需要大容量的内存,同时还需要CPU进行大量的浮点运算,因此当CPU为Pen tium T M、内存为16兆以上,并使用高性能的显示卡时,3D S的动画制作功能才能得到完美体现。由于ln tel公司生产的CPU兼容的Cyrix、AM D等公司生产的CPU浮点运算能力较差,因此CPU首选还是ln tel公司的产品。外设还可选配数字化仪等设备,对于需要直接输出到磁带上,并使用电视进行播发的动画,则可选用专业用户级以上的逐帧录向设备。 总之,3D S是一个庞大的图形工作平台,学会使用它的各种命令,发挥软件的强大功能绘制出优秀的动画和图象,还需要有很多技巧。随着人们对3D S认识加深,以它为平台开发的动画产品必将更加丰富多彩。 参考文献 1 [美]S1D1E lli o t,P1L1M iller,G1G1Pyro s著1黄心渊等译《3D—Studi o技术精粹》1北京:清华大学出版社。 19951 2 黄心渊 左正兴编著1《3D—Studi o(310—410)技术与应用》1北京:清华大学出版社,19961 收稿日期:1996年11月18日 遗传算法综述 艾丽蓉 何华灿 (西北工业大学计算机系 西安710072) 摘 要 本文从计算智能与进化计算谈起,论述了遗传算法产生的思想及背景,遗传算法的应用与研究现状,以及遗传算法研究的基本内容与问题,最后对GA与传统搜索算法做一比较,并概述了GA在并行处理应用中的潜在优势。 关键词 计算智能 进化计算 遗传算法(GA) 0 序言 长久以来,人们一谈到人工智能就马上想到逻辑、规则、推理,而一谈到计算就联想到矩阵运算、解微分方程,似乎智能和计算是两股道上跑的车。人工智能在走过几十年的曲折道路之后,人们经过认真反思,不断探索新的研究途径,于是一个新的研究方向——计算智能应运而生。 研究思维模拟主要的道路有四条:基于心理学的符号处理方法,基于社会学层次型的智能体方法,基于生物进化的进化计算与自适应方法,以及基于生理学的人工神经网络方法。目前聚集在计算智能大旗下的主要是后两个学派的学者(加上从事模糊计算和混沌计算等方面的学者)。实际上,只要在计算机上,模拟人类思想,不管用什么方法,其本质的基础还是二进制数字计算,在当前符号处理主宰人工智能的情况下,更应强调遗传算法等以数字计算为基础的方法对推动人工智能发展有着特殊的作用。 计算技术的飞速发展使大规模的现实模拟成为可能,而针对社会和生物现象的模拟,对人类认识自身及其环境具有重大意义,进化是其中最为诱人的领域之一。人的智能是从哪里来的?归根结底是从生物进化中得来的,反映在遗传基因中,脑的结构变化也是通过基

种函数优化问题的混合遗传算法

一种函数优化问题的混合遗传算法 彭伟卢锡城 摘要将传统的局部搜索算法和遗传算法相结合,可以较好地解决遗传算法在达到全局最优解前收敛慢的问题.文章给出一种结合可变多面体法和正交遗传算法的混合算法.实验表明,它通过对问题的解空间交替进行全局和局部搜索,能更有效地求解函数优化问题. 关键词遗传算法,可变多面体法,正交交叉,函数优化. 中图法分类号TP A Hybrid Genetic Algorithm for Function Optimization PENG Wei LU Xi-cheng (Department of Computer Changsha Institute of Technology Changsha 410073) Abstract To overcome the problem of slow convergence before the genetic algorithms (GAs) reach the global optima, it is an effective way to combine the conventional local search algorithms with GAs. A new hybrid algorithm that incorporates the flexible polyhedron method into the orthogonal genetic algorithm (OGA) is presented in this paper. The experiments showed that it can achieve better performance by performing global search and local search alternately. The new algorithm can be applied to solve the function optimization problems efficiently. Key words Genetic algorithm, flexible polyhedron, orthogonal crossover, function optimization. 遗传算法(genetic algorithms)通过模拟生物进化的途径来在问题的解域中定向搜索最优解,在组合优化、机器学习、自适应控制、多目标决策等领域中有许多应用.对于传统方法较难求解的一些NP问题,遗传算法往往能得到更好的结果.但对传统方法已能较好解决的问题(如一般的非线性优化问题),它并不显示较强的优势.原因在于,遗传算法对问题特定的知识(如梯度、Hessian阵、某些定理等)利用较少.它主要采用群体搜索技术,通过对解的不断组合、随机改变以及对候选解的评估和选择来完成求解过程.在达到全局最优解前,它尚存在收敛慢的问题.设计遗传算法时往往需要在其通用性与有效性之间折衷.设计针对问题的特定遗传算子,可以更有效地求解问题,但缺乏通用性.另一种途径是将遗传算法与问题领域中一些传统的寻优方法(如爬山法、模拟退火法、牛顿法等)结合起来,可在保持算法一定的通用性时提高算法的效率.这类混合算法的基本框架如图1所示.

基于遗传算法的一种新的约束处理方法

基于遗传算法的一种新的约束处理方法 苏勇彦1,王攀1,范衠2 (1武汉理工大学 自动化学院, 湖北 武汉 430070) (2丹麦理工大学 机械系 哥本哈根) 摘 要:本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 关键词:遗传算法、约束处理、可行解、不可行解、两种群混合交叉 1引言 科学研究和工程应用中许多问题都可以转化为求解一个带约束条件的函数优化问题[1]。遗传算法(Genetic Algorithm )与许多基于梯度的算法比较,具有不需要目标函数和约束条件可微,且能收敛到全局最优解的优点 [2],因此,它成为一种约束优化问题求解的有力工具。目前,基于GA 的约束处理方法有拒绝策略,修复策略,改进遗传算子策略以及惩罚函数策略等。但是这些方法都存在一些问题[3]:修复策略对问题本身的依赖性,对于每个问题必须设计专门的修复程序。改进遗传算子策略则需要设计针对问题的表达方式以及专门的遗传算子来维持解的可行性。惩罚策略解的质量严重依赖于惩罚因子的选取,当惩罚因子不适当时,算法可能收敛于不可行解。 本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 2约束处理方法描述 2.1单目标有约束优化问题一般形式 )(max x f ..t s ;0)(≤x g i 1,,2,1m i L L =;0)(=x h i )(,,1211m m m m i +=+=L X x ∈ 这里都是定义在m m m m h h h g g g f ,,,;,,;2121111L L ++n E 上的实值函数。X 是n E 上的 子集,x 是维实向量,其分量为。上述问题要求在变量满足约 束的同时极大化函数。函数通常为目标函数。约束n n x x x ,,,21L n x x x ,,,21L f f ;0)(≤x g i 称为不等式约束;约束称为等式约束。集合;0)(=x h i X 通常为变量的上下界限定的区域。向量且满足所有约束,则称之为问题的可行解。所有可行解构成可行域。否则,为问题的不可行解,所有不可行解构成不可行域。问题的目标是找到一个可行解X x ∈x 使得)()(x f x f ≤对于所有可行解x 成立。那么,x 为最优解[4]。 2.2算法描述 目前,最常采用的约束处理方法为惩罚函数法。但优化搜索的效率对惩罚因子的选择有

遗传算法实例

遗传算法实例.txt懂得放手的人找到轻松,懂得遗忘的人找到自由,懂得关怀的人找到幸福!女人的聪明在于能欣赏男人的聪明。生活是灯,工作是油,若要灯亮,就要加油!相爱时,飞到天边都觉得踏实,因为有你的牵挂;分手后,坐在家里都觉得失重,因为没有了方向。遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py

混合遗传算法及其应用

混合遗传算法及其应用 辛海涛 (哈尔滨商业大学计算机与信息工程学院,黑龙江哈尔滨150028) 摘 要:给出一种结合梯度法和正交遗传算法的混合算法。实验表明,它通过对问题的解空间交替进行全局和局部 搜索,能更有效地求解函数优化问题。关键词:遗传算法;正交交叉;函数优化中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2010)05-0059-02 0引言 遗传算法是近年来发展起来的一种新型优化算法,是基于 自然选择和遗传学机理的迭代自适应概率性搜索方法。它通过模拟生物进化的途径问题的解域中定向搜索最优解,在组合优化、机器学习、自适应控制、多目标决策等领域中有许多应用。 遗传算法的实现涉及5个主要因素:参数编码、初始群体的设定、评估函数(即适应函数)的设计、遗传操作的设计和算法控制参数的设定。对于传统方法较难求解的一些NP 问题,遗传算法往往能得到更好的结果。但对传统方法已能较好解决的问题(如一般的非线性优化问题),它并没有较强的优势。遗传算法主要采用群体搜索技术,通过对解的不断组合、随机改变以及对候选解的评估和选择来完成求解过程。在达到全局最优解前,它尚存在收敛慢的问题。设计遗传算法时往往需要在其通用性与有效性之间折衷。设计针对问题的特定遗传算子,可以更有效地求解问题,但缺乏通用性。另一种途径是将遗传算法与问题领域中一些传统的寻优方法(如爬山法、模拟退火法、牛顿法等)结合起来,可在保持算法一定的通用性时提高算法的效率。 本文考虑一类非线性函数优化问题,即: minf (x )x ∈D 其中f (x )是n 元连续函数,D 是R n 的有界子集。本文探讨将梯度法与遗传算法相结合的算法,梯度法对初始解的构成具有较强的依赖性,算法执行过程中难于发现新的可能存在最优解的区域。通过将它与遗传算法相结合,一方面可以利用其局部搜索能力,另一方面可通过遗传算法来不断“发现”新的更有希望的搜索区域,并动态调整可变多面体法的搜索方向,从而使算法具有更好的灵活性,也使算法更易于并行化。实验表明,对于求解上述非线性优化问题,混合遗传算法具有比传统遗传 算法和梯度法都好的性能。 1 混合遗传算法 1.1 编码方式 编码的实质是在问题的解空间与算法的搜索空间之间建 立一个映射。传统遗传算法一般采用一种将实数空间离散化的二进制编码方式。这种方式存在编码长度影响求解精度、操作费时、不直观等缺点,因而提出了实数的直接编码方式并表明可以获得更好的性能。在实数编码方式下,每个个体用一个n 维的实向量来表示,这种方式具有直观、易操作的优点,且可以针对它设计非传统的交叉算子。本文采用此编码方式。 1.2交叉和选择操作 正交遗传算法在非线性优化问题及其他组合优化问题中 已显示出其有效性,我们的算法采用了正交交叉算子。由两个父本交叉操作产生一组个体,从新个体和两个父本中选择最优的进入下一代群体。由于采用局部选择而不是全局选择,在一定程度上保持了群体的多样性。 1.3变异操作 在实数编码方式下,变异操作对个体X 的每个分量X [i ] 作用一个随机偏差量,即: X′[i ]=X [i ]+δ,i=1,2,…,n 在进化规划和进化策略中,广泛采用了高斯变异算子,用正态分布的随机变量来作为变异操作中的偏差量。 1.4局部搜索 在本文中,我们采用梯度法进行局部搜索,梯度法步骤如下: (1)选定ε>0为终止限。选定初始点X (0),令k =0。(2)计算△f (X (k ))。如果‖△f (X (k ))‖<ε,迭代停止,取近试 最优解X *=X (k ),否则,令S (k )=-△f (X (k )),从X (k )出发沿S (k )作一 软件导刊 Software Guide 第9卷%第5期 2010年5月Vol.9No.5May.2010 作者简介:辛海涛(1970-),男,黑龙江鹤岗人,硕士,哈尔滨商业大学计算机与信息工程学院副教授,研究方向为算法分析。

遗传算法经典MATLAB代码

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其 中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

遗传算法概述

第一章 遗传算法概述 2.1 遗传算法的原理 遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种概率搜索算法。遗传算法是通过模拟生物在自然界中的进化过程而形成的一种优化算法。它的基本过程是:先随机生成规模为m 的初始群体,对连续优化问题即为n R 中的m 个点},,,{,},,,,{21112111m n m m m n x x x x x x x x ==的集合, },,,{21k sn k s k s x x x 称为个体或者染色体,通过对该群体使用遗传操作(包括选择、 交叉、变异遗传算子),得到m 个新的个体,这称作是群体的一代进化,相当于通常优化算法的一次迭代。不断重复这一过程,可看作是群体的逐代演化,直到得到满足给出条件的问题解。 可以看出,遗传算法的关键是进化过程中使用的遗传操作即选择、交叉和变异等算子,这些算子决定了下一代个体的具体位置。 选择策略对算法性能的影响有举足轻重的作用。常用的是轮盘选择和精英选择。 a. 轮盘选择(roulette wheel selection ) 选择的基本依据是个体的适应值,对于最小化问题,个体适应值取为)()(x f K x f -=',其中K 为一足够大的正数。定义第i 个体的选择概率为 ∑=''=n i i i i x f x f p 1)() ( (3) 其意义是个体适应值在群体总适应值中所占的比例。生成一个[0,1]内的随机数r ,若i i p p p r p p p +++≤<+++- 21110,假设00=p ,则选择个体i 。 b. 精英选择(elitist selection ) 当下一代群体的最佳个体适应值小于当前群体最佳个体的适应值,则将当前群体最佳个体或者适应值大于下一代最佳个体适应值的多个个体直接复制到下一代,随机替代或替代最差的下一代群体中的相应数量的个体。 交叉与变异算子的选取与编码方式有关,最初Holland[5] 提出的遗传算法是采用二进制编码来表现个体,后来发现对连续优化问题采用浮点编码可以达到更好的效果,因此越来越多地使用浮点编码,下述的交叉、变异算子针对浮点编码。

(实例)matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B], 如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

基于混合遗传算法求解非线性方程组

万方数据

万方数据

万方数据

基于混合遗传算法求解非线性方程组 作者:田巧玉, 古钟璧, 周新志, TIAN Qiao-yu, GU Zhong-bi, ZHOU Xin-zhi 作者单位:四川大学,电子信息学院,四川,成都,610064 刊名: 计算机技术与发展 英文刊名:COMPUTER TECHNOLOGY AND DEVELOPMENT 年,卷(期):2007,17(3) 被引用次数:6次 参考文献(6条) 1.赵明旺基于牛顿法和遗传算法求解非线性方程组的混合计算智能方法 1997(11) 2.周明.孙树冻遗传算法原理及应用 1999 3.雷英杰.张善文.李续武.周创明MATLAB遗传算法工具箱及应用 2005 4.曾毅浮点遗传算法在非线性方程组求解中的应用[期刊论文]-华东交通大学学报 2005(01) 5.胡小兵.吴树范.江驹一种基于遗传算法的求解代数方程组数值的新方法[期刊论文]-控制理论与应用 2002(04) 6.罗亚中.袁端才.唐国全求解非线性方程组的混合遗传算法[期刊论文]-计算力学学报 2005(01) 相似文献(10条) 1.期刊论文郭海燕.金鑫.胡小兵.Guo Haiyan.Jin Xin.Hu Xiaobing基于微粒群优化的非线性方程组求解研究-计算机工程与应用2006,42(15) 在科学技术和工程应用中经常遇到求解非线性方程组的问题.提出了一种求解非线性方程组的通用数值方法.将非线性方程组的求解问题转化为函数优化问题,通过微粒群优化对其进行求解,最终得到非线性方程组较高精度的解.一系列测试实例显示了该算法在求解非线性方程组时具有简单性、高效性和普适性. 2.学位论文向占宏一类基于区域分裂的演化算法及应用2006 区域分裂法的基本思想是将定义在复杂的大区域上的问题分解成若干小区域上的问题分别求解,然后通过迭代得到整个区域上的解,该方法能分解大型问题为小型问题、复杂区域问题为简单区域问题。 演化算法在求解函数优化问题很有效。长期以来演化算法在应用中主要存在两大缺陷:一是对某些问题演化算法求解速度太慢;二是演化算法容易产生早熟现象,而且对于单峰函数优化问题,目前的演化算法还没有鲁棒性。有研究表明用杂交算子求解实数优化问题时可以得到较好的结果。目前对实数函数优化问题的研究中,很多人致力于研究如何找到一个有效的杂交算子。 本文介绍了演化算法的基本结构和研究现状,给出了演化算法的基本结构,介绍了各种杂交算子,分析了他们的优点和缺陷,详细分析了GT算子及带子空间的GT算法的性能。将GT多父体杂交算子进行改造,应用于求解非线性方程组,提出了求解非线性方程组的GT算法。 分析了常微分方程边值问题及其数值解法、有限元方法和区域分裂法的基本原理,给出了利用区域分裂法、有限元方法在小区域上离散一维常微分方程边值问题具体过程,给出了基于区域分裂和有限元离散的求解常微分方程边值问题的演化算法。 给出了郭涛算法求解非线性方程组的算例以及利用区域分裂法、有限元法和郭涛算法求解常微分方程边值问题的算例并对结果进行了分析。本文改进了求解非线性方程组的GT算法。该算法可以在演化过程中自适应调整搜索空间和种群从而加快收敛,并以它为基础提出了一类新的求解常微分方程边值问题的数值解的演化算法。 3.期刊论文贺春华.张湘伟.吕文阁.HE Chun-hua.ZHANG Xiang-wei.LV Wen-ge竞选优化算法求解非线性方程组的应用研究-计算机工程与应用2010,46(14) 针对非线性方程组的求解在工程上具有广泛的实际意义,经典的数值求解方法存在其收敛性依赖于初值而实际计算中初值难确定的问题,将复杂非线性方程组的求解问题转化为函数优化问题,引入竞选优化算法进行求解.同时竞选优化算法求解时无需关心方程组的具体形式,可方便求解几何约束问题.通过对典型非线性测试方程组和几何约束问题实例的求解,结果表明了竞选优化算法具有较高的精确性和收敛性,是应用于非线性方程组求解的一种可行和有效的算法. 4.学位论文刘丽芳粒子群算法的改进及应用2008 粒子群优化算法是在对鸟群捕食行为模拟的基础上提出的一种群集智能算法,是进化计算领域中一个新的分支。它的主要特点是原理简单、参数少、收敛速度较快、易于实现。因此,该算法一提出就吸引了的广泛关注,逐渐成为一个新的研究热点。目前,粒子群优化算法应用于神经网络的训练、函数优化、多目标优化等领域并取得了较好的效果,有着广阔的应用前景。 论文的主要工作有: (1)对粒子群优化算法的理论基础和研究现状作了简要的介绍,分析了粒子群优化算法的原理及算法流程,对算法参数的选择做了详细的研究,并进行了相应的仿真实验。 (2)分析了粒子群优化算法存在的问题,主要包括:参数设置问题、算法“早熟”问题和算法稳定性问题。在粒子群优化算法中,参数的设置会影响算法优化的结果,因此,如何选择合适的参数达到最好的优化结果是算法需要解决的问题。“早熟”问题是优化算法普遍存在的问题。如果粒子在搜索最优值时过早收敛,就会使算法的寻优停滞在局部最小值,无法找到全局最优解。由于算法中粒子的初始位置、速度和一些参数是被随机初始化的,因此每一次算法运行的结果并不相同,有时结果的差别很大,这样就导致了算法优化结果不稳定。 (3)针对粒子群优化算法存在的问题,论文提出了一种新的改进算法——基于粒子进化的多粒子群优化算法。该算法采用局部版的粒子群优化方法,从“粒子进化”和“多种群”两个方面对标准粒子群算法进行改进。多个粒子群彼此独立地搜索解空间,保持了粒子种群的多样性,从而增强了全局搜索能力;而适当的“粒子进化”可以使陷入局部最优的粒子迅速跳出,有效的避免了算法“早熟”,提高了算法的稳定性。通过对测试函数进行仿真实验,验证了该算法的有效性。 (4)将基于粒子进化的多粒子群优化算法应用于线性瞬时混合的盲源分离。将该算法的仿真实验结果与标准粒子群优化算法的结果相比,前者在分离混合信号时所需要的迭代次数少,算法的稳定性高。 (5)将基于粒子进化的多粒子群优化算法用于求解非线性方程组。该算法求解精度高、收敛速度快,而且克服了一些算法对初值的敏感和需要函数可导的困难,能较快地求出复杂非线性方程组的最优解。数值仿真结果显示了该算法的有效性和可行性,为求解非线性方程组提供了一种实用的方法。

遗传算法概述

第1期作者简介:李红梅(1978-),女,湖南湘潭人,硕士,广东白云学院讲师,研究方向为演化计算。 1遗传算法的发展史 遗传算法(Genetic Algorithms )研究的历史比较短,20世纪 60年代末期到70年代初期,主要由美国家Michigan 大学的John Holland 与其同事、学生们研究形成了一个较完整的理论 和方法,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。我国对于GA 的研究起步较晚,不过从20世纪90年代以来一直处于不断上升中。 2遗传算法的基本思想 遗传算法是从代表问题可能潜在解集的一个种群(popu- lation )开始的,而一个种群则由经过基因(gene )编码(coding ) 的一定数目的个体(individual )组成。每个个体实际上是染色体(chromosome )带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现是某种基因组合,它决定了个体的形状的外部表现。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation )演化产生出越来越好的近似解。在每一代中,根据问题域中个体的适应度(fitness )、大小挑选(selection )个体,借助于自然遗传学的遗传算子(genetic operators )进行组合交叉(crossover )和变异(mutation ),产生出代 表新的解集的种群。这个过程将导致后生代种群比前代更加适应环境,末代种群中的最优个体经过解码(decoding ),可以作为问题近似最优解。 3遗传算法的一般流程 (1)随机产生一定数目的初始种群,每个个体表示为染色 体的基因编码; (2)计算每个个体的适应度,并判断是否符合优化准则。若符合,输出最佳个体及其代表的最优解并结束计算,否则转向第3步; (3)依据适应度选择再生个体,适应度高的个体被选中的概率高,适应度低的个体可能被淘汰; (4)执行交叉和变异操作,生成新的个体;(5)得到新一代的种群,返回到第2步。 4遗传算法的特点 传统的优化方法主要有三种:枚举法、启发式算法和搜索 算法: (1)枚举法 可行解集合内的所有可行解,以求出精确最 优解。对于连续函数,该方法要求先对其进行离散化处理,这样就可能因离散处理而永远达不到最优解。此外,当枚举空间比较大时,该方法的求解效率比较低,有时甚至在目前先进计算机工具上无法求解。 (2)启发式算法 寻求一种能产生可行解的启发式规则, 以找到一个最优解或近似最优解。该方法的求解效率比较高,但对每一个需求解的问题必须找出其特有的启发式规则。这个启发式规则一般无通用性,不适合于其它问题。 (3)搜索算法 寻求一种搜索算法,该算法在可行解集合 的一个子集内进行搜索操作,以找到问题的最优解或者近似最优解。该方法虽然保证不了一定能够得到问题的最优解,但若适当地利用一些启发知识,就可在近似解的质量和效率上达到一种较好的平衡。 遗传算法不同于传统的搜索和优化方法。主要区别在于: ①遗传算法直接处理问题参数的适当编码而不是处理参数集 本身。②遗传算法按并行方式搜索一个种群数目的点,而不是 遗传算法概述 李红梅 (广东白云学院计算机系,广东广州510450) 摘要:遗传算法是一种全局优化的随机搜索算法。它是解决复杂优化问题的有力工具。在工程设计、演化硬件电路 设计以及人工智能等方面应用前景广阔。系统地介绍了遗传算法的发展史、基本思想、特点、主要应用领域等相关方 面。 关键词:遗传算法;搜索;进化;最优解;种群中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2009)01-0067-02 第8卷第1期2009年1月 Vol.8No.1Jan.2009 软件导刊 Software Guide

遗传算法的C语言程序案例

遗传算法的C语言程序案例 一、说明 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.举个例子,输入初始变量后,用y= (x1*x1)+(x2*x2),其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 4.程序流程图

5.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 6.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

相关文档
最新文档