Impact toughness and microstructure relationship in niobium- and vanadium-microalloyed steels proces

Materials Science and Engineering A437(2006)

436–445

Impact toughness and microstructure relationship in niobium-and vanadium-microalloyed steels processed with varied cooling

rates to similar yield strength

S.Shanmugam a,R.D.K.Misra a,?,T.Mannering b,D.Panda b,S.G.Jansto c

a Center for Structural and Functional Materials and Department of Chemical Engineering,

University of Louisiana at Lafayette,LA70504-4130,USA

b Nucor-Yamato Steel,P.O.Box1228,5929East State Highway18,Blytheville,AR72316,USA

c Reference Metals,1000Ol

d Pond Road,Bridgeville,PA15017,USA

Received12July2006;accepted3August2006

Abstract

We describe here the relationship between microstructure and impact toughness behavior as a function of cooling rate for industrially processed Nb-and V-microalloyed steels of almost similar yield strength(~60ksi).Both Nb-and V-microalloyed steels exhibited increase in toughness with increase in cooling rates during processing.However,Nb-microalloyed steels were characterized by relatively higher toughness than the V-microalloyed steels under identical processing conditions.The microstructure of Nb-and V-microalloyed steels processed at conventional cooling rate,primarily consisted of polygonal ferrite–pearlite microconstituents,while Nb-microalloyed steels besides polygonal ferrite and pearlite contained signi?cant fraction of degenerated pearlite.The microstructure of Nb-and V-microalloyed steels processed at relatively higher cooling rate contained degenerated pearlite and lath-type(acicular)ferrite in addition to the primary ferrite–pearlite constituents.The fraction of degenerated pearlite was higher in Nb-microalloyed steels than in the V-microalloyed steels.In both Nb-and V-microalloyed steels the precipitation characteristics were similar with precipitation occurring at grain boundaries,dislocations,and in the ferrite matrix.Fine-scale (~5–10nm)precipitation was observed in the ferrite matrix of both the steels.The selected area diffraction(SAD)pattern analysis revealed that these?ne precipitates were MC type of niobium and vanadium carbides in the respective steels and followed Baker–Nutting orientation relationship with the ferrite matrix.The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels is attributed to higher fraction of degenerated pearlite in the steel.

?2006Elsevier B.V.All rights reserved.

Keywords:Microalloyed steels;Precipitation;Degenerated pearlite

1.Introduction

Currently,there is a strong interest to study thermomechan-ical processing and accelerated cooling of high strength low alloy steels to derive mechanical property bene?ts,notably strength–toughness combination[1–8].It is known that cooling rate after the last reduction and coiling temperature has signi?-cant effect on the ultimate microstructure of steels.Accelerated cooling is one of the methods to strengthen the steels with mini-?Corresponding author at:Center for Structural and Functional Materials and Department of Chemical Engineering,University of Louisiana at Lafayette,P.O. Box44130,Lafayette,LA70504-4130,USA.Tel.:+13374826430;

fax:+13374821220.

E-mail address:dmisra@https://www.360docs.net/doc/6618885612.html,(R.D.K.Misra).mal alloying content and to obtain good toughness.It also facil-itates the development of high strength steels with low carbon and manganese content,and consequently improved weldability [2].The lowering of ferrite transformation temperature intro-duced by higher cooling rate promotes ferrite nucleation rate at the austenite grain boundaries and in the grain interior.The enhanced nucleation density restricts grain growth because of impingement of mutual grains,resulting in ferrite grain re?ne-ment[2].Additionally,the volume fraction of non-equilibrium phases increases with higher cooling rates[1–6].Thus,accel-erated cooling after controlled rolling produces a?ne-grained microstructure and promotes the formation of low transforma-tion temperature products,such as degenerated pearlite,bainitic ferrite,acicular ferrite or bainite and martensite–austenite constituent in microalloyed steels[1,2,5,6].In general,the

S.Shanmugam et al./Materials Science and Engineering A437(2006)436–445437

strength of C–Mn steels is enhanced because of replacement of pearlite phase by lath-like bainite using high cooling rate[1].

Majority of the bainitic microstructures obtained in low carbon-microalloyed steels are described as bainitic ferrite or acicular ferrite and granular bainite.Sometimes a mixed microstructure is also obtained in HSLA low carbon steels at high cooling rate[1–8].As the cooling rate increases,the phase transformation temperature,Ar3,decreases and transfor-mation occurs at a rate such that it passes through the two-phase region quickly and dynamic precipitation of ferrite is mini-mum[3].Also,the deformation enhances the transformation driving force and accelerates the continuous cooling transfor-mation,shifting the pearlite transformation curve of CCT dia-gram to the right.When the cooling rate is increased to the extent that the ferrite transformation temperature is surpassed,a fully bainitic microstructure is obtained[8].Accelerated cooling re?nes bainitic microstructure and is attributed to the increase in the driving force for the nucleation rate of ferrite subunits as a consequence of reduction in the bainite transformation start temperature[6,7].A decrease in the bainite transformation start temperature increases the difference in the free energy between austenite and bainite that favoring the formation of bainite.The growth of?ne bainitic ferrite laths is controlled by nucleation rate of subunits,which in turn strongly depends on the driving force(undercooling)for the phase transformation reaction[6,7].

Considering that currently,there is increased demand for high strength structural beams with superior toughness,we are pur-suing microalloying approach to process structural beams with high strength–toughness combination.The present paper is an effort in this direction,where the focus is to study the effect of cooling rate on the mechanical behavior and relate to microstruc-tural features.

2.Steel composition and experimental methods

The chemical composition range of Nb-and V-microalloyed steels is presented in Table1.The composition range meets the ASTM speci?cation A992.The niobium content required to obtain the desired yield strength of55–60ksi was approx-imately one third of the vanadium content.The processing conditions were similar for both Nb-and V-microalloyed steels with no intentional differences.The processing parameters are not described here due to proprietary reasons.A representative beam size is W24×103;the designated size means that the nominal depth of beam is24in.,when the beam is lying in the Table1

Chemical composition range of Nb-and V-microalloyed steels

Elements Nb-microalloyed steel(wt.%)V-microalloyed steel(wt.%) C0.030–0.1000.030–0.100

Mn0.500–1.5000.500–1.500

V0.0010.020–0.050

Nb0.020–0.0500.001

Si0.15–0.250.15–0.25

P0.010–0.0200.010–0.020h-position with the web horizontal,the width is close to24in. The103refers to nominal weight in lbs/ft.

Mean grain size was determined by the linear intercept method.Intercept lengths were determined and then converted to nominal grain size using standard tables.Tensile tests were done according to ASTM E8and ASTM A370speci?cations and Charpy v-notch impact test was carried out according to ASTM E23and ASTM A673standards.

Small coupons were cut from the beams and mounted for metallographic examination.Standard grinding and polishing techniques were employed,and specimens were etched with 2%nital.Light microscopy and scanning electron microscopy (JEOL6300F)imaging techniques were used to obtain low mag-ni?cation images that revealed the overall microstructure.The amount of different microstructural constituents was estimated with conventional point-counting techniques in association with a square point grid as described below.The metallographic mea-surements were made on at least20?elds-of-view in order to obtain representative data for stereological analysis.

Stereological analysis was adopted as one of the approach to understand the underlying differences in toughness of steels, since our recent work indicated that small differences in tough-ness of steels with similar yield strength can be explained in terms of stereological parameters,notably,contiguity ratio[9]. The parameters determined for stereological analysis were vol-ume fraction,mean intercept length,and contiguity ratio.

The volume fraction of ferrite V V

?

was calculated using the systematic point count method.Ferrite grain size and pearlite colony size was estimated in terms of mean intercept length (ˉL?)determined by the following expression[9]:

ˉL?=V V?×L T

N?(1)

where V V

?

is the volume fraction of ferrite phase,N?the number of ferrite grains intercepted by the test lines and L T is the line length of the test lines.

The ferrite contiguity ratio C?was calculated by Eq.(2)[9]:

C?=2(S V)?–?

(S V)?–P+2(S V)?–?

=2(P L)?–?

(P L)?–P+2(P L)?–?

(2)

where(P L)?–?is the number of point intersections per unit length of the test line with ferrite–ferrite,(P L)?–P the num-ber of point intersections per unit length of the test line with ferrite–pearlite boundaries,(S V)?–?the surface area per unit vol-ume of ferrite–ferrite boundaries and(S V)?–P is the surface area per unit volume of ferrite–pearlite boundaries.

Contiguity is de?ned as the fraction of the total interface area of phase that is shared by grains of the same phase.Thus, ferrite contiguity ratio is indicative of the amount of ferrite that is continuous,i.e.,it tells how much ferrite is adjacent to the ferrite. It is calculated by?nding the ratio of number of ferrite–ferrite grain boundaries to the total number of grain boundaries in the microstructure(Eq.(2)).From Eq.(2),contiguity ratio will vary from0to1.

Transmission electron microscopy was carried out on thin

438S.Shanmugam et al./Materials Science and Engineering A 437(2006)436–445

to ~100?m in thickness.Three-millimeter discs were punched from the wafers and electropolished using a solution of 10%perchloric acid in acetic acid electrolyte.Foils were examined with a JEOL FEG TEM/STEM operated at 200kV .3.Results and discussion 3.1.Tensile and impact behavior

Tensile properties of Nb-and V-microalloyed steels are listed in Table 2for conventionally/normally cooled beams.Both the steels exhibited similar yield strength,tensile strength,and per-cent elongation.Almost similar values were obtained at inter-mediate and high cooling rates.However,there was variation in toughness of the two steels as schematically depicted in Fig.1.

Table 2

Representative room temperature tensile properties of Nb-and V-microalloyed steels Properties

Nb-microalloyed steel V-microalloyed steel Yield strength (ksi)57–6058–61Tensile strength (ksi)72–7475–76%Elongation

23–26

23–25

Fig.1shows the variation in impact toughness of Nb-and V-microalloyed steels as a function of cooling rate.It may be noted that both the steels generally experienced improvement in toughness with increase in cooling rate.However,the toughness improvement appeared to be greater for the Nb-microalloyed steel as compared to the V-microalloyed steel.3.2.Microstructures of Nb-and V-microalloyed steels Representative scanning electron micrographs of Nb-and V-microalloyed steels are presented in Figs.2and 3.The low-and high-magni?cation micrographs of Nb-microalloyed steels processed at conventional (low)and high cooling rates are presented in Fig.2a,b and c,d,respectively.Similarly,the micrographs of V-microalloyed steels processed at conventional and high cooling rates are presented in Fig.3a,b and c,d,respectively.The primary microstructural constituents of Nb-and V-microalloyed steels processed at conventional and high cooling rates were polygonal ferrite,pearlite,and degenerated pearlite.It may,however,be noted that the fraction of degen-erated pearlite was high for the steels subjected to relatively high cooling rate (Fig.1b and Table 3),and at a given cooling rate,the Nb-microalloyed steel contained signi?cantly higher amount of degenerated pearlite (Fig.2c and d)as compared to the V-microalloyed steels (Fig.3c and d).The average fer-rite grain size of both the steels processed at conventional and high cooling rates was similar (~26–29?m).The quantitative metallographic data for Nb-and V-microalloyed steels are sum-marized in Table 3.

The microstructures of Nb-and V-microalloyed steels pro-cessed at conventional (normal)cooling rate are presented in Figs.4and 5.The general microstructure and the dislocation substructure in ferrite of Nb-microalloyed steels are presented in Fig.4a and b,respectively.The representative low magni?cation TEM micrographs show large polygonal ferrite grains with high dislocation density.There were some grains that were virtually free of dislocations.Fig.5a and b shows the general microstruc-ture and dislocation density in ferrite of V-microalloyed steels.Representative bright ?eld TEM micrographs of Nb-and V-microalloyed steels subjected to relatively high cooling rate are presented in Figs.6and 7.Two types of ferrite morpholo-gies (polygonal ferrite and lath-type ferrite)were observed in both the steels.The microstructure of Nb-microalloyed steels showing regions of polygonal ferrite,lath-type ferrite grains and degenerated pearlite are presented in Fig.6.Similarly,the microstructures of V-microalloyed steels that contain polygonal ferrite,lath-type ferrite grain structure and degenerated pearlite are presented in Fig.7.At higher cooling rates,it is anticipated that austenite transforms to ?ne ferrite crystals in the interme-diate temperature range as compared to the conventional ferrite structure.In Figs.6and 7,the ferrite grains in groups of parallel laths are termed as acicular ferrite or bainitic ferrite [10].3.2.1.Degenerate pearlite

Degenerated pearlite is formed by nucleation of cementite

S.Shanmugam et al./Materials Science and Engineering A437(2006)436–445

439

Fig.2.Representative low-and high-magni?cation scanning electron micrographs of Nb-microalloyed steel processed at(a and b)conventional and(c and d)high cooling rates.The micrographs(b)and(d)show degenerated pearlite.

temperature between normal pearlite and upper bainite[11].

A schematic diagram illustrating the formation mechanism of degenerated pearlite is presented in Fig.8.Since the advanc-ing ferrite/austenite is enriched with carbon by partitioning process,it is believed that cementite nucleation takes place at ferrite/austenite interface boundary.Similar to lamellar pearlite, degenerated pearlite is also formed by diffusion process and con-sidering its morphology,the difference is attributed to the insuf-?cient carbon diffusion to develop continuous lamellae[12]. It is reported that the interface between ferrite and cementite in degenerated pearlite is wider than the conventional pearlite, thus the ferrite grain boundary area of the controlled-rolled steels that contains degenerated pearlite is higher as compared to the conventionally processed steel[13].A typical bright?eld TEM micrograph of degenerated pearlite formed in Nb-microalloyed steel is presented in Fig.9a and the corresponding

selected

440S.Shanmugam et al./Materials Science and Engineering A437(2006)436–445

Table3

Microstructural features of Nb-and V-microalloyed steels

Properties Nb-microalloyed steels V-microalloyed steels

Conventional cooling rate Higher cooling rate Conventional cooling rate Higher cooling rate Ferrite

Area fraction(%)82.4±3.182.8±0.0283±2.582.8±3.8 Mean intercept length(ˉL?)(?m)27±1.527±2.828.9±325.9±1 Contiguity ratio(C?)0.740.760.770.74

Pearlite

Area fraction(%)9.6±3.1 1.2±1.917±2.38.2±2.9 Mean intercept length(ˉL?)(?m)10.3±0.710.2±0.78.4±0.98.9±1 Degenerated pearlite

Area fraction(%)8±0.916±2–9±

1

Fig.4.Bright?eld TEM micrographs of Nb-microalloyed steels processed at conventional(or normal)cooling rate showing(a)polygonal ferrite structure and(b) dislocation substructure in ferrite.

area diffraction(SAD)pattern is shown in Fig.9b.The SAD

pattern analysis suggested that the cementite platelets exhibit

[112]?//[122]Fe

3C orientation relationship with ferrite matrix,

which is close to‘Pitsch’orientation relationship that is com-monly observed in lamellar pearlite.Degenerated pearlite is a microstructural constituent believed to promote toughness in steel[13].3.3.Precipitation in Nb-and V-microalloyed steels

Fig.10a and b shows grain boundary precipitation and pre-cipitation on dislocations in ferrite region of Nb-microalloyed steels,while Fig.11a shows precipitation in ferrite matrix together with the corresponding selected area diffraction(SAD) pattern in Fig.11b.The SAD pattern analysis indicated

that

S.Shanmugam et al./Materials Science and Engineering A437(2006)436–445441

Fig.6.Bright?eld transmission electron micrographs of Nb-microalloyed steels processed at relatively high cooling rate showing(a)polygonal ferrite structure(b) lath-type(acicular)ferrite structure and(c)degenerated pearlite.

Fig.7.Bright?eld transmission electron micrographs of V-microalloyed steels processed at relatively high cooling rate showing(a)polygonal ferrite structure,(b) lath-type(acicular)ferrite structure and(c)degenerated pearlite.

Fig.8.Schematic diagram illustrating the formation mechanism of degenerated pearlite.

Table4

Precipitate characteristics of Nb-and V-microalloyed steels

Properties Nb-microalloyed steels V-microalloyed steels

Conventional cooling rate Higher cooling rate Conventional cooling rate Higher cooling rate Mean particle size(d)(nm) 5.25±3.57.5±4.510.3±48±4.3

442S.Shanmugam et al./Materials Science and Engineering A437(2006)436–445

Fig.9.Bright?eld TEM micrographs of Nb-microalloyed steels showing(a)degenerated pearlite and(b)SAD pattern analysis for degenerated pearlite shown in (a).

Fig.10.Bright?eld TEM micrographs of Nb-microalloyed steels showing(a)grain boundary precipitation and(b)precipitation on dislocations.

S.Shanmugam et al./Materials Science and Engineering A437(2006)436–445

443

Fig.12.Bright?eld TEM micrographs of V-microalloyed steels showing(a)grain boundary precipitation and(b)precipitation on dislocations.

the?ne precipitates were MC type of cubic niobium carbides and the precipitates exhibited[100]?//[110]NbC Baker–Nutting orientation relationship with the ferrite matrix.Grain boundary precipitation and precipitation on dislocations in ferrite region of V-microalloyed steels was also observed and is presented in Fig.12.Fig.13a shows precipitation in ferrite matrix of V-microalloyed steels and the corresponding selected area diffrac-tion(SAD)pattern is shown in Fig.13b.In a manner similar to Nb-microalloyed steel the SAD pattern analysis indicated that the?ne precipitates were MC type of cubic vanadium carbides and the precipitates exhibited a cube–cube[001]?//[001]VC Baker–Nutting orientation relationship with the ferrite matrix. The characteristics of precipitates in terms of mean particle size,mean inter-particle distance and particle density in ferrite matrix of both Nb-and V-microalloyed steels are summarized in Table4.

The above results suggest that Nb-and V-microalloyed steels experienced strain induced precipitation at grain boundaries,and dislocations,while the?ne precipitates in ferrite formed during cooling.The precipitation of microalloying elements occurs dur-ing various stages of thermomechanical processing of steels.At soaking temperatures,the microalloying elements,Nb and V,are taken into solution depending on the limitation imposed by the solubility product.For carbide and nitride forming elements,the solubility in austenite at any given temperature depends on C and N content of the steel.When the temperature is lowered during cooling,supersaturation of these solute elements increases and precipitation begins at favorable kinetic conditions.Deforma-tion of austenite introduces large amount of lattice defects such as dislocations and vacancies that assist the diffusional process that control the precipitation kinetics.As a result,strain induced precipitation occurs at the prior austenite grain boundaries or defects.In summary,the Nb-and V-microalloyed steels exhib-ited similar precipitation behavior in ferrite and the size range was from~5to10nm(Table4).It is reported that the effec-tive size range for precipitation hardening is~5–20nm[9,14]. These?ne precipitates exhibited Baker–Nutting orientation rela-tionship(Figs.11b and13b)with the ferrite matrix of Nb-

and

444S.Shanmugam et al./Materials Science and Engineering A 437(2006)

436–445

Fig.14.Schematic illustration of deformation of cementite in lamellar pearlite and degenerated pearlite.

V-microalloyed steels,con?rming that the precipitation occurred in ferrite.

3.4.Toughness behavior of Nb-and V-microalloyed steels

In the present case the microstructural parameters that are likely to in?uence toughness are ferrite grain size,degenerated pearlite,and acicular ferrite.A ?ner grain size and higher conti-guity ratio is expected to impart higher toughness.From Table 3,it may be noted that the ferrite grain size and ferrite contiguity ratio are similar for both the steels processed at conventional and relatively high cooling rates.However,there are signi?cant differences in the area fraction of degenerated pearlite for the two steels (Fig.1b and Table 3).A schematic diagram illus-trating the nature of cementite plates present in the lamellar pearlite and degenerated pearlite and its effect on plastic defor-mation is presented in Fig.14a and b.It is reported that the cementite thickness in degenerated pearlite is ?ner as compared to the conventional pearlite (Fig.14b),and hence the volume fraction of cementite and ferrite are different in the former as compared to the latter [15].Coarse pearlite deforms inhomo-geneously (Fig.14a)with strain localized in narrow slip bands,where as ?ne degenerated pearlite is expected to experience uni-form strain distribution during deformation.It is also shown that the steels containing degenerated pearlite with speci?c cementite thickness exhibit maximum ductility [15].It is also reported that though cementite is characterized by hard and brittle in nature,it can endure large strain when the cementite platelets are thinner [16].Thus,at present,we believe that the increase in the tough-ness of Nb-and V-microalloyed steels at relatively high cooling rate is a consequence of higher fraction of degenerated pearlite and the presence of lath-type ferrite.While,the higher toughness of Nb-microalloyed steels in relation to V-microalloyed steels at conventional or normal cooling rate is a consequence of higher fraction of degenerated pearlite,with ferrite grain size being similar for the two steels.

The above data is further supported by the recent observations nantly bainitic ferrite with increase in cooling rate is responsi-ble for the strength–toughness combination of Nb-microalloyed steels at high cooling rate.4.Conclusions

1.At conventional cooling rates employed in the mill,the microstructure of Nb-and V-microalloyed steels primarily contained polygonal ferrite–pearlite,while Nb-microalloyed steels contained signi?cant fraction of degenerated pearlite.The Nb-and V-microalloyed steels processed at relatively higher cooling rate compared to conventional or normal cooling rate contained degenerated pearlite and lath-type (acicular)ferrite in addition to the primary ferrite–pearlite constituents.The fraction of degenerated pearlite was higher in Nb-microalloyed steels than in the V-microalloyed steels.

2.Both Nb-and V-microalloyed steels exhibited similar precip-itation characteristics with precipitation at grain boundaries,dislocations and in the ferrite matrix.Fine-scale (~5–10nm)precipitation occurred in the ferrite matrix of both the steels.The SAD pattern analysis revealed that these ?ne precipitates were MC type niobium and vanadium carbides in the respec-tive steels and obeyed Baker–Nutting orientation relationship with the ferrite matrix.

3.The Nb-and V-microalloyed steels experienced improve-ment in toughness with increase in cooling rates during processing.However,Nb-microalloyed steels seem to exhibit relatively higher toughness than the V-microalloyed steels during processing at conventional and high cooling rates.The increase in toughness of Nb-microalloyed steels is attributed to its higher fraction of degenerated pearlite in the steel.References

[1]X.Fang,Z.Fan,B.Ralph,P.Evans,R.Underhill,Mater.Sci.Technol.18

(2002)47–53.

[2]M.Thompson,M.Ferry,P.A.Manohar,ISIJ Int.41(2001)891–899.[3]J.H.Ai,T.C.Zhao,H.J.Gao,Y .H.Hu,X.S.Xie,J.Mater.Proc.Technol.

S.Shanmugam et al./Materials Science and Engineering A437(2006)436–445445

[5]P.C.M.Rodrigues,E.V.Pereloma,D.B.Santos,Mater.Sci.Eng.A283

(2000)136–143.

[6]A.B.Cota,R.Barbosa,D.B.Santos,J.Mater.Proc.Technol.100(2000)

156–162.

[7]A.B.Cota,D.B.Santos,Mater.Charact.44(2000)291–299.

[8]J.Kong,C.Xie,Mater.Des.27(2006)1169–1173.

[9]R.R.Thridandapani,S.Shanmugam,R.D.K.Misra,T.Mannering,D.

Panda,S.Jansto,Proc.MS&T,TMS,Pittsburgh,USA,2005,p.129.

[10]G.Krauss,S.W.Thompson,ISIJ Int.35(1995)937–945.

[11]Y.Ohmori,Trans.ISIJ Int.11(1971)339–348.[12]Y.Ohmori,R.W.K.Honeycombe,Proc.ICSTIS(Suppl.)Trans.ISIJ11

(1971)1160–1165.

[13]T.Yamane,K.Hisayuki,Y.Kawazu,T.Takahashi,Y.Kimura,Tsukuda,J.

Mater.Sci.37(2002)3875–3879.

[14]R.D.K.Misra,G.C.Weatherly,J.E.Hartmann,A.J.Boucek,Mater.Sci.

Technol.17(2001)1119–1129.

[15]H.Joung Sim,Y.Bum Lee,W.J.Nam,J.Mater.Sci39(2004)1849–

1851.

[16]Y.Ivanisenko,W.Lojkowski,R.Z.Valiev,H.J.Fecht,Acta Mater.51(2003)

5555–5570.

社会化问答社区用户体验影响因素模型研究——基于扎根理论的知乎案例分析

E-Commerce Letters 电子商务评论, 2020, 9(3), 59-70 Published Online August 2020 in Hans. https://www.360docs.net/doc/6618885612.html,/journal/ecl https://https://www.360docs.net/doc/6618885612.html,/10.12677/ecl.2020.93007 Research on the Model of Influencing Factors of User Experience in Social Q & A Community —A Case Study of Zhihu Based on Grounded Theory Yingliang Wu, Keying Ma Department of Electronic Business, South China University of Technology, Guangzhou Guangdong Received: Jul. 11th, 2020; accepted: Jul. 24th, 2020; published: Jul. 31st, 2020 Abstract [Purpose/Significance] Research and practice have shown that user online reviews are having an increasingly important impact on consumer purchasing behavior and business operating deci-sions, but there is a gap in research on online reviews in social Q & A communities. [Me-thod/Process] Taking Zhihu as a typical case, user online reviews as research data, D&M model as the basis, and grounded theory as the main research method, the factors affecting the user expe-rience of the social Q & A community are refined and analyzed, and then according to the coding method of grounded theory, six core factors affecting user experience are obtained and a model is constructed. [Result/Conclusion] Based on the case, combined with the model, it provides theo-retical references and suggestions for optimizing products and services. Keywords Social Q & A Community, Online Reviews, Grounded Theory, Influencing Factors 社会化问答社区用户体验影响因素模型研究 ——基于扎根理论的知乎案例分析 吴应良,马可盈 华南理工大学,电子商务系,广东广州 收稿日期:2020年7月11日;录用日期:2020年7月24日;发布日期:2020年7月31日

Xilinx开发板初学者问题总结

开发板初学者问题总结 1. Impact软件或者ISE软件停止工作 系统升级了Win10,安装ISE14.7后发现了一些问题,影响了软件的使用,非常不爽,检索了网上的解决信息,尝试了一些方法,基本解决了问题,先总结如下: 1.ISE(64bit)软件在进行打开文件或文件夹操作时,软件出现闪退的现象,ISE (32bit)没有这个问题。 解决方法: 找到程序安装路径下的这两个文件夹 X:\Xilinx\14.7\ISE_DS\ISE\lib\nt64 X:\Xilinx\14.7\ISE_DS\common\lib\nt64 首先在第一个文件夹中,重命名libPortability.dll为libPortability.dll.orig,然后复制libPortabilityNOSH.dll 的一个副本并重命名为libPortability.dll,这样你就又有一个libPortability.dll文件了;然后在第二个文件夹,将之前得到的新的libPortability.dll覆盖到这个文件夹中。 EDK没有libPortabilityNOSH.dll这个文件,把ISE的复制过来就可以了 2.Xilinx下载电缆找不到的问题 原先在Win7下电缆去驱动是自己安装的,没有这个烦恼,Win10下虽然也会自己安装,但是在iMpact或ChipScope下面会提示找不到电缆错误。 解决方法:进入这个目录:X:\Xilinx\14.7\ISE_DS\common\bin\nt64 双击install_drivers.exe,如果电脑有连接Cable请按照提示断开连接,安装完毕后就可以正常使用了。

Izod 缺口冲击强度(Notched Izod Impact Strength )试验方法是悬臂梁法

Izod 缺口冲击强度(Notched Izod Impact Strength )试验方法是悬臂梁法 性能测试条件单位标准 lzod缺口冲击强度| 23℃3.2mm | kj/m2 | ISO 180-A 9 抗冲击强度 采用有缺口试样测定材料的抗冲击性能,试验方法分为悬臂梁法(izod type)和简支梁法(charpy type)两种。 9.1 悬臂梁法试样安装成垂直的悬臂梁,摆锤在缺口同侧距缺口中心及钳口一定距离处把试样冲断。 9.1.1 设备刚性结构的摆锤式悬臂梁冲击试验机(见图3),示值误差不大于1%,冲击速度约为335cm/s,摆锤高度约为61cm。摆锤与试样接触处应做成半径R 0.79mm的圆柱面,摆锤落下时,应在钳口上方22mm处与试样相切,钳口上部应作成R 0.25mm的圆角(见图4)。 图4 悬臂梁式冲击试验机的钳口、试样和摆锤 9.1.2 试样除非另有规定,应从板的纵、横两个方向各取5个试样,厚度不超过12.7mm 的板,试样厚度即为板的厚度。厚度大于12.7mm的板,应加工到12.7mm厚。可以根据产品标准进行平向或侧向试验。当进行平向试验时,缺口应加工在单面机械加工板的加工面上。对从厚板切取的试样,应注明试样取自厚板的表层还是中心。 厚度3.2mm以上,12.7mm以下的试样,可用几块试样叠起来进行试验,此时各块应排列整齐,而且都进行侧向试验,如果薄于12.7mm的单块试样能够牢固而准确地夹固,且其冲击能可在所用试验机上精确测定,允许单块进行试验。 注:平(侧)向试验冲击方向垂直(平行)于层向。 试样及缺口详细尺寸如图5所示: 9.1.3 缺口的加工 9.1.3.1 缺口可在铣床上用单齿或多齿铣刀加工,由于单齿铣刀容易磨出需要的形状。因而采用的较多,刀具应仔细磨,以保证其锋利并避免加工粗糙。采用无前角,后角为15°~20°的刀具可获得满意的加工状况。刀齿的形状应能在试样上加工出形状和尺寸符合规定的缺口(见图5)。 缺口所含角度为45±1°,顶部曲率半径为R0.25±0.025mm,缺口角平分面应基本垂直于试样表面,误差不得大于2°。 9.1.3.2 通常,采用较高的铣削线速度和低进刀量可以避免加工中过热,不同材料的良好铣加工条件,可通过试验确定。 9.1.3.3 一个铣刀加工500个或更多缺口之后,应用60倍放大镜对缺口的粗糙度,角度和顶部半径进行检查,若不符合规定,应更换磨好的新刀具。 9.1.4 处理试样在试验之前应在23±2℃和相对湿度50±5%的条件下处理不少于24h。 试验在同上条件下进行,或在每一试样从受控气氛中取出后3min内开始试验。 9.1.5 步骤 9.1.5.1 测量每一试样缺口部尺寸,准确至0.02mm,记录缺口下宽度和试样厚度。 9.1.5.2 紧固好试样,使冲断试样的耗能示值在刻度的15%~85%范围内,记下冲击能。9.1.5.3 冲击强度用冲击能量除以缺口处厚度表示,其单位为kgf·cm/cm2。 9.1.6 试验报告

ISE使用指南(输入)

第4章ISE开发环境使用指南 第1节ISE套件的介绍与安装 4.1.1 ISE简要介绍 Xilinx是全球领先的可编程逻辑完整解决方案的供应商,研发、制造并销售应用范围广泛的高级集成电路、软件设计工具以及定义系统级功能的IP(Intellectual Property)核,长期以来一直推动着FPGA技术的发展。Xilinx的开发工具也在不断地升级,由早期的Foundation 系列逐步发展到目前的ISE 9.1i系列,集成了FPGA开发需要的所有功能,其主要特点有: ?包含了Xilinx新型SmartCompile技术,可以将实现时间缩减2.5倍,能在最短的时间内提供最高的性能,提供了一个功能强大的设计收敛环境; ?全面支持Virtex-5系列器件(业界首款65nm FPGA); ?集成式的时序收敛环境有助于快速、轻松地识别FPGA设计的瓶颈; ?可以节省一个或多个速度等级的成本,并可在逻辑设计中实现最低的总成本。 Foundation Series ISE具有界面友好、操作简单的特点,再加上Xilinx的FPGA芯片占有很大的市场,使其成为非常通用的FPGA工具软件。ISE作为高效的EDA设计工具集合,与第三方软件扬长补短,使软件功能越来越强大,为用户提供了更加丰富的Xilinx平台。 4.1.2 ISE功能简介 ISE的主要功能包括设计输入、综合、仿真、实现和下载,涵盖了FPGA开发的全过程,从功能上讲,其工作流程无需借助任何第三方EDA软件。 ?设计输入:ISE提供的设计输入工具包括用于HDL代码输入和查看报告的ISE文本编辑器(The ISE Text Editor),用于原理图编辑的工具ECS(The Engineering Capture System),用于生成IP Core的Core Generator,用于状态机设计的StateCAD以及用于约束文件编辑的Constraint Editor等。 ?综合:ISE的综合工具不但包含了Xilinx自身提供的综合工具XST,同时还可以内嵌Mentor Graphics公司的LeonardoSpectrum和Synplicity公司的Synplify,实现无缝链接。?仿真:ISE本身自带了一个具有图形化波形编辑功能的仿真工具HDL Bencher,同时又提供了使用Model Tech公司的Modelsim进行仿真的接口。 ?实现:此功能包括了翻译、映射、布局布线等,还具备时序分析、管脚指定以及增量设计等高级功能。 ?下载:下载功能包括了BitGen,用于将布局布线后的设计文件转换为位流文件,还包括了ImPACT,功能是进行设备配置和通信,控制将程序烧写到FPGA芯片中去。 ?使用ISE进行FPGA设计的各个过程可能涉及到的设计工具如表4-1所示。 表4-1 ISE设计工具表

ISE的使用说明

ISE的使用说明 启动桌面上名为Project Navigator的ISE软件图标,进入ISE开发系统如图所示。

在上拉菜单file栏打开,单击New project选项,开始新建一项工程。 如果想打开已有的ISE工程文件(文件格式为*.npl),则单击open project选项。

下面我们将以一个包括了24进制和60进制计数器的复合计数器的VHDL程序为例,来说明ISE的具体使用。首先单击New project选项,出现如图所示对话框: 在Project name一栏填上工程文件名,我们在此工程名命名为counter,放在目录F:\teacher_li 下。

下一步,进行可编程器件型号的选择以及设计流程的设置。在器件型号栏有Device family ,Device (型号),封装,speed grade,可以根据实验平台所用的可编程逻辑器件分别设置相应选项。对话框下半部分是对设计语言和综合仿真工具的选择。 然后下一步,采用默认设置,完成了New Project Information的设置。如图所示:

单击“完成”按钮,进入到如下对话框: 在Source in Project一栏,选择菜单Module View选项,在工程名counter的图标位置单击右键,出现如下对话框。

New Project :新建一项文件,单击ew Project图标,出现的对话框包括了以下选项:新建IP核,电路设计,状态机,新建测试波形,用户文档,Verilog编写文件,Verilog测试文件,VHDL库,VHDL编写文件,VHDL包,VHDL测试平台。 Add Source :添加一项已经存在的文件。

ColorImpact教程

Web配色软件colorimpact中文版使用图文教程ColorImpact是一个非常好的色彩选取工具,程序提供的非常友好的界面,提供了多种色彩选取方式,支持屏幕直接取色,非常方便易用如图6.57所示。 图6.57 ColorImpact软件主界面 1 使用ColorImpact选择颜色 启动ColorImpact后,在软件窗口的左侧区域是用来选择颜色的,在默认状态下是以一个色环的方式来帮助我们选择颜色,同样也可以使用类似于Fireworks CS3的“混色器”面板方式和网络安全色方式来选择颜色,如图6.58所示。 图6.58 三种不同的选择颜色方式

除此以外,在软件窗口的左下方,还可以按照RGB和HSB的颜色模式来选取颜色,并且控制颜色的明度和饱和度,如图6.59所示。 图6.59 按照颜色模式来选择颜色 通过使用ColorImpact选择好的颜色,会在软件窗口的左上角显示,并且能够显示其详细的颜色值等参数。很多时候,我们需要从屏幕上直接吸取颜色,使用ColorImpact来实现同样很方便。我们可以点击窗口左上角的“滴管”工具按钮,这时会弹出一个“滴管工具设置”对话框,如图6.60所示。 图6.60 “滴管工具设置”对话框 在这个对话框中可以设置所吸取颜色的范围和是否隐藏主窗口,设置完毕,点击“确定”按钮,就可以从屏幕的任意位置吸取所需要的色彩了。 2 使用ColorImpact进行网页配色

在ColorImpact软件主界面的上方,有一行快速选择按钮,通过选择这些不同的按钮,我们可以以不同的方式来浏览色彩。当我们在软件窗口左侧的区域选择了颜色以后,软件会自动给出所选择的颜色的搭配方案,并且在软件窗口的中间部分显示出来。 1.色彩调和 选择色彩调和按钮,即可以色环的方式来浏览色彩,如图6.61所示。 图6.61 色彩调和 2.高级色环 选择高级色环按钮,可以显示更为复杂的色环效果,并且可以对色环进行详细的设置,如图1-15所示 图6.62 高级色环 3.色彩方案 选择色彩方案按钮,ColorImpact会自动给出相应的颜色配色方案,需要选择不同的配色方案,可以在“属性”面板中进行设置,如图6.63所示。

PHOTOIMPACT全套教程

PHOTO IMPACT全套教程 第一章凝胶思考题 1.什么是凝胶?有何特征(两个不同)? 外界条件(如温度、外力、电解质或化学反应)的变化使体系由溶液或溶胶转变为一种特殊的半固体状态,即凝胶。(又称冻胶)其一,凝胶与溶胶(或溶液)有很大的不同。溶胶或溶液中的胶体质点或大分子是独立的运动单位,可以自由行动,因而溶胶具有良好的流动性。凝胶则不然,分散相质点互相连接,在整个体系内形成结构,液体包在其中,随着凝胶的形成,体系不仅失去流动性,而且显示出固体的力学性质,如具有一定的弹性、强度、屈服值等。 其二,凝胶和真正的固体又不完全一样,它由固液两相组成,属于胶体分散体系,共结构强度往往有限,易于遭受变化。改变条件,如改变温度、介质成分或外加作用力等,往往能使结构破坏,发生不可逆变形,结果产生流动。由此可见,凝胶是分散体系的一种特殊形式,共性质介于固体和液体之间。 2.举例说明什么是弹性和非弹性凝胶? 由柔性的线性大分子物质,如洋菜吸附水蒸气先为单分子层吸附,然后转变为多分子层吸附,硫化橡胶在苯蒸气中的吸附则是从一开始即为多分子层吸附。这类凝胶的干胶在水中加热溶解后,在冷却过程中便胶凝成凝胶。如明胶、纤维素等,在水或水蒸气中都发生吸附。不同的吸附体系,其吸附等温线的形状不同,弹性凝胶的吸附与解析通常会形成较窄的滞后圈。 由刚性质点(如SiO2、TiO2,V2O5、Fe2O3等)溶胶所形成的凝胶属于非弹性凝胶,亦称刚性凝胶。大多数的无机凝胶,因质点本身和骨架具有刚性,活动性很小,故凝胶吸收或释出液体时自身体积变化很小,属于非膨胀型。通常此类凝胶具有多孔性结构,液体只要能润湿,均能被其吸收,即吸收作用无选择。这类凝胶脱水干燥后再置水中加热一般不形成原来的凝胶,更不能形成产生此凝胶的溶胶,因此这类凝胶也称为不可逆凝胶。 3.试述凝胶形成的基本推荐? ①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。②析出的质点即不沉降,也不 能自由行动,而是构成骨架,在整个溶液中形成连续的网状结构。 4.凝胶形成的方法有哪几种? 改变温度转换溶剂加电解质进行化学反应 5.凝胶的结构分为哪4种类型? A 球形质点相互联结,由质点联成的链排成三维的网架Ti02、Si02等凝胶。 B 棒状或片状质点搭成网架,如V205凝胶、白土凝胶等。 C 线型大分子构成的凝胶,在骨架中一部分分子链有序排列,构成微晶区,如明胶凝胶、棉花纤维等。 D 线型大分子因化学交联而形成凝胶,如硫化橡胶以及含有微量:二乙烯苯的聚苯乙烯都属于此种情形。 6.溶胶≒凝胶转变时有哪些现象? 转变温度(大分子溶液转变为凝胶时,无严格恒定的转变温度,它往往与冷却快慢有关,并且凝点(胶凝温度)常比熔点(液化温度)低.两者相差可达(10-20)度或更大些。) 热效应(大分子溶液形成凝胶时常常放热,这可视为结晶作用的潜热) 光学效应(溶胶转变为凝胶时,Tyndall效应(光散射)增强,这是由于质点增大、水化程度减弱的缘故)流动性质(溶胶转变为凝胶后流动性质变化很大,溶胶失去流动性.凝胶获得了弹性、屈服值等)电导(溶胶胶凝后,体系的电导无明显变化) 凝胶表面的亲水性(溶胶中的质点表面若具有亲水性基团,则胶凝后其表面仍具有亲水性) 7.要制备很浓的明胶溶液而又不使胶凝,应加入什么物质比较好?为什么?(P147) 导电和扩散等,还可以是凝胶中的物质和外加溶液间的化学反应,也可以是两种溶液在凝胶中进行化学反应。 8.什么是凝胶的触变作用?简单叙述其机理? 由于在外力作用下体系的粘度减小,流动性变大.因此这个现象习惯上也称为切稀。 机理:颗粒之间搭成架子,流动时架子被拆散。之所以存在触变性是因为被拆散的颗粒再搭成架子时需

LMS https://www.360docs.net/doc/6618885612.html,b中文操作指南_Impact锤击法模态测试

LMS https://www.360docs.net/doc/6618885612.html,b中文操作指南— Impact锤激发模态测试与分析 比利时LMS国际公司北京代表处 2009年2月

LMS https://www.360docs.net/doc/6618885612.html,b中文操作指南 — Impact锤激发模态测试与分析 目录 LMS Test. Lab锤击法模态测试及分析的流程: (3) 第一步,通道设置(Channel setup) (4) 第二步,锤击示波(Impact scope) (6) 第三步,锤击设置(Impact setup) (7) 1. 触发级设置 (8) 2. 带宽设置 (10) 3. 加窗设置 (12) 4. 驱动点设置 (14) 第四步,测量(measure) (16) 第五步,数据验证(validate) (18)

LMS Test. Lab锤击法模态测试及分析的流程: 在软件窗口底部以工作表形式表示,按照每一个工作表依次进行即可,如下图示。 ? Documentation――可以进行备忘录,测试图片等需要记录的文字或图片的输入,作为测试工作的辅助记录,如下图示。 ? Geometry――创建几何(参见创建几何步骤说明) ? Channel setup――通道设置,在该选项卡中可进行数采前端对应通道的设置,如定义传感器名称,传感器灵敏度等操作。 ? Calibration――对传感器进行标定 ? Impact scope――锤击示波,用来确定各通道量程 ? Impact setup――锤击设置,设置触发级、带宽、窗以及激励点选择 ? Measure――设置完成后进行测试

第一步,通道设置(Channel setup) 假设已创建好了模型,传感器已布置完成,数采前端已连接完成。 通道设置窗口如下图示,在锤击法试验中,首先将力锤输入的通道定义为参考通道,其他为传感器对应的通道 1——选取测试通道 2——定义参考通道,通常为力锤输入的通道 3——依次在ChannelGroupld中定义传感器测量类型(对加速度计和力锤则选vibration),在point中定义测点名称(也可对应为几何模型上的节点名,见后),在Direction中设置测点所测振动的方向,InputMode中设置传感器类型(通常为ICP,若为应变则选Bridge,若为位移则选Vlltage DC),在Measured Quantity中定义测量量(加速度、力、位移等),在Electrical Unit中定义输入量的单位,通常均为mv.另外若已经确定传感器的灵敏度则可在Actual Sensitivity中直接输入灵敏度值,否则可在Calibration工作表中进行标定。

colorimpact中文版使用图文教程ColorImpact是一个非常好的色彩

colorimpact中文版使用图文教程 ColorImpact是一个非常好的色彩选取工具,程序提供的非常友好的界面,提供了多种色彩选取方式,支持屏幕直接取色,非常方便易用如图6.57所示。 图6.57 ColorImpact软件主界面 ColorImpact V3.1.0.222 绿色汉化免费版校内网下载地址:http://172.168.168.216:80/l/z5imVW 1 使用ColorImpact选择颜色 启动ColorImpact后,在软件窗口的左侧区域是用来选择颜色的,在默认状态下是以一个色环的方式来帮助我们选择颜色,同样也可以使用类似于Fireworks CS3的“混色器”面板方式和网络安全色方式来选择颜色,如图6.58所示。

图6.58 三种不同的选择颜色方式 除此以外,在软件窗口的左下方,还可以按照RGB和HSB的颜色模式来选取颜色,并且控制颜色的明度和饱和度,如图6.59所示。 图6.59 按照颜色模式来选择颜色 通过使用ColorImpact选择好的颜色,会在软件窗口的左上角显示,并且能够显示其详细的颜色值等参数。很多时候,我们需要从屏幕上直接吸取颜色,使用ColorImpact来实现同样很方便。我们可以点击窗口左上角的“滴管”工具按钮,这时会弹出一个“滴管工具设置”对话框,如图6.60所示。

图6.60 “滴管工具设置”对话框 在这个对话框中可以设置所吸取颜色的范围和是否隐藏主窗口,设置完毕,点击“确定”按钮,就可以从屏幕的任意位置吸取所需要的色彩了。 2 使用ColorImpact进行网页配色 在ColorImpact软件主界面的上方,有一行快速选择按钮,通过选择这些不同的按钮,我们可以以不同的方式来浏览色彩。当我们在软件窗口左侧的区域选择了颜色以后,软件会自动给出所选择的颜色的搭配方案,并且在软件窗口的中间部分显示出来。 1.色彩调和 选择色彩调和按钮,即可以色环的方式来浏览色彩,如图6.61所示。

LMS_操作指南

LMS 操作指南 一仪器配置与启动 LMS模态测试系统包括36个采集通道和4个控制输出通道。系统启动时必须先启动SCADAS.3,再启动配套计算机,以便于系统的初始化。 二测试系统的软件组成 LMS 测试系统软件包括两个模块:Test Lab 和 Cada x, 其中后者是前者的早期版本,基于UNIX系统开发。目前Test Lab还不包含步进扫频激励模块和纯模态模块,其它模块都已经包括。因此应用本套系统进行振动试验,除上述两大功能外,其它的都可以直接在TEST Lab完成。安装Cada x时必须先安装UNIX server 和exceed v10. 实用指南一:双点随机扫频模态试验 1 配置试验系统:被测试件(本试验为四寸柔性刚架),加速度传感器(16个),激振器(2台MB50),2路力传感器。 2打开TestLab的Spectral Acquisition,建立一新的Project。 可以看到它的操作界面由主菜单和活动菜单组成。主菜单主要进行一些系统性的操作,并且在Tools下拉菜单中的Add ins选项可以对活动sheets进行增加、减少,排序操作可以在点击workbook Configuration后弹出菜单中来完成。活动菜单由多个sheets组成,每一个sheets对应一个大的实验操作步骤。一般活动菜按从左到右的顺序,将整个实验过程各个功能模块排列。

2)Documentation 主要分为三个小的窗口,见下图,可以用来记录一些和试验相关的信息,如试验时间、试验单位、操作人信息、试验方案等。一些已经准备好的实验说明文挡可以直接通过右上窗口Documention List直接插入,文件内容可在Attachment中直接浏览。 整个Documention sheet中的内容可以单独保存为一个模板。 注意:为了使https://www.360docs.net/doc/6618885612.html,b和Cada-x及其他软件交互使用的方便建议文件名用英文字母且不能使用空格。 3)Geometry几何 主要用来建立被测对象的几何模型信息。对复杂结构可以分部件建立几何模型信息。首先建立部件组(component),并指定其局部坐标系(亦可不建局部坐标系);然后输入每个component 的nodes坐标;再依次在line,surface,slave中进行对应的几何设置。 注意:Node编号使用多位计数,如01、05、08、10、13… 部件在命名时使用字母不超过4个。 在建立好几何模型后,可以在Navigator里看整体的效果图。 Slave用于指定从动节点,主要应用于对称结构。

相关文档
最新文档