简单整流滤波电路功率因数的认识误区

简单整流滤波电路功率因数的认识误区
简单整流滤波电路功率因数的认识误区

简单整流滤波电路功率因数的认识误区问题的提出礼经电器

用正弦波交流电对带有整流滤波电路的电子设备供电功率因数接近100%。但是,很多测试仪器却测出0.5?0.6的数据,人们也都普遍认可这个错误的结果。尤其严重的是许多标准化及检测部门的技术人员也这样认为,这就给行业造成了概念上的混乱。因此,有必要澄清这个问题。并且,对于简单整流滤波电路的电流谐波的危害也需要有明确的认识和相应的对策。

用电设备产生无功功率的条件

用正弦波交流电给电器设备供电,如果用电设备的阻抗特性含有电抗成分,则会在外界正弦波电压变化的过程中形成能量的存储和释放,电容器件电场中存储的能量为Ec=0.5CV2,电感器件磁场中存储的能量为El=0.5LI2,电抗性器件在输入的正弦波电压变化的过程中存储的能量并且在输入的正弦波电压变化的过程中又把存储的能量释放回电网,这就形成了无功功率。由此可见,用电设备形成无功功率有两个必要条件:

1、用电设备中必须包含能存储电能的电抗成分的负载,以在正弦波电压变化时存储能量。

2、在正弦波电压变化的过程中,存储在电抗器器件中的能量要能返回电网。

有功功率、无功功率、视在功率及功率因数的定义

为了描述用电设备的特性,提出了有功功率、无功功率、视在功率和功率因数的概念。

有功功率是用电设备真正实现了能量转换对外做功的功率,而无功功率就是指用电设备电抗器件中存储的返回电网的能量,这部分能量没有对自身负载做功。用正弦波电源给对用电设备供电时,如果测量用电设备的输入电流和输入电压再相乘换算的输入功率,则既包括了有功功率又包括了无功功率,这个功率在电工学中叫做视在功率。即:

视在功率=有功功率+无功功率

功率因数是用电设备输入端有功功率与视在功率的比值。即:

功率因数=有功功率/视在功率

供给用电设备的无功功率没有在负载上做功,而是先把输入的电能存储在电抗器件内然后又送回电网。无功功率形成的电流在线路上流动会在线路的电阻上发热,形成线路功耗,并且,供电设备为了提供这部分无功能量还需要加大容量,这就会使电力系统的运行成本提高。用电设备的无功功率高对电网的运行不利。功率因数就是量化表示用电设备有功功率和无功功率比值的相关技术参数。

可以用一个电容和电阻并联的电路来说明这种情况。

IN AC

在电容和电阻并联的电路中,正弦波电压加在这个并联阻容网络的两端,电阻上的电压和流过电阻的电流的乘积使电阻发热。电能转换成热能做功,这就是电阻上的有功功率。但是,电能同时会在电容上存储和释放电荷从而形成容性电流,这个充放电过程并没有任何形式的能量转换,也就是没有做功,这部分容性电流和输入电压的乘积就形成了这个网络上的无功功率。如果测量网络总的输入电流,即大于电祖上的电流又大于电容上的电流,具体的数值服从矢量运算规则。这个输入电流乘以输入电压就是视在功率。显然视在功率是电祖上的有功功率和电容上的无功功率的矢量和。由于视在功率大于有功功率,所以电路的功率因数小于1。实际上,任何电抗性器件和电阻性器件组成的无源网络都存在无功功率,也就是说:功率因数都小于1。为了减小无功功率对电网造成的负担,希望用电设备有尽可能高的功率因数。

电子设备电源输入部分的结构及其功率因数

一般电子产品中的电子线路都是用直流电工作的。但是,给电子设备供电的市电是正弦波交流电,交流电必须经过整流以后才能变成直流电。所以,电子设备中电源部分最简单的也是最常用的处理

方式就是用二极管组成整流电路。正弦波电量经过整流电路以后成为按正弦规律变化的单向脉动的直流电。为了使直流电的脉动减小,还需要滤波电路。最简单也是最常用的滤波电路就是在整流电路的输出端并联一个滤波电容,电路结构如下:

对于这种整流滤波电路,许多人都认为等同于电容和负载并联,是容性负载,功率因数很低。实际上这种观点是错误的。

在带有整流滤波的电子线路中,虽然正弦波电量上升期间通过整流二极管给后面的滤波电容充了电,也就是形成了能量存储,并且这个充电过程电流和电压相位也是不相同的,但是,电容上的电压充到峰值以后,外部正弦波电压下降时,由于二极管的隔离作用,存储在电容上的电能却不能反向通过二极管返回电网形成无功功率,而只能在正弦波下降周期内继续向后级负载传送形成有功功率。因此,在带有二极管整流滤波的电路中形成无功功率的第2个条件不成立,所以二极管整流滤波电路没有无功功率存在,如果不考虑整流二极管的反向漏电,其功率因数就是100%。

如果用这个观点来分析电源变换器就可以看出,正弦波电量经过整流以后对滤波电容充电,外界正弦波直接提供的能量和存储在滤波电容上的能量经过电源变换器做变换以后向负载供电,变换器自身在做电源变换的过程中产生一定的能量损耗,自身的能量损耗和向负载提供的能量值单位时间内的总和就是总的有功输入功率。如果测量这个电路的输入电流和输入电压再相乘可以得出电源变换器的视在功率,但是,分析测试结果并作数值对比可以看出,输入端的视在

功率的值等于变换器自身的热损耗功率和输出功率之和,也就是说,这个视在功率和有功功率相等,输入功率中没有无功功率成分。所以,二极管整流后再用电容滤波的电路功率因数是1,试验结果和理论分析的结果一致。原因就是在带有整流二极管的电路中,正弦波上升期存储在电容上的能量不能在正弦波电压下降时反向通过二极管返回

电网形成无功功率,而只能向后级负载传送做功形成有功功率。

导致错误概念的原因

但是,现在业内却普遍存在一种说法,说简单整流滤波电路的功率因数是0.5?0.6。并且这种说法得到了广泛的认可,为什么会出现这种情况?

为了得到功率因数的数值,一般是用功率因数测试仪器测量用电设备的功率因数。对于这种带有整流滤波电路,许多测试仪器往往得到功率因数0.5?0.6的测量数据,按照以上分析,这显然是个错误的结果,问题出在哪里?原因是测量仪表所使用的测量方法不适合测试这种带有二极管整流电路的电子设备。

我们分析,一般的功率因数测试仪器可能是用测量电流和电压之间的相位差的方式换算功率因数的,这实际上是一种间接测量功率因数的方法。这种间接测试功率因数的方法在一般电抗器件和电阻器件串/并联的负载电路中能得到正确结果。但是,在带有二极管整流滤波的电路上不适用。原因是用测量输入电压、电流相位差的办法换算功率因数要基于一个条件:礼经电器

电压和电流连续相关

在一般电阻器件和电抗器件互联的电路中电压的变化将导

致电流的变化,因此这个条件是存在的,用这种方法间接测量功率因数可以得到正确的结果。但是,在带有整流二极管的电容电路中电流出现了断续,电压/电流连续相关的条件不存在了,因此,在只有电压没有电流这段时间内,已经不可能对应出一个功率因数值。仪表的显示值已经毫无意义。详细分析如下:

对于带有二极管整流和电容滤波的电路,开机瞬间滤波电容是空的,而市电电网的阻抗很小,外界输入的正弦波电压一个周波就会把滤波电容充到峰值电压,当外界正弦波电压下降时,滤波电容上的电压下降的慢得多,这样,在整个正弦波电压下降周期内外部电压都低于滤波电容上的电压,因此电流不能继续向滤波电容和后级负载流动,由于二极管的单向隔离作用,电解电容上存储的电能也不能反向通过二极管返回电网,只能继续向负载传送做功形成有功功率。此时外界正弦波电压存在但输入端却没有电流,电流出现了断续。在外界正弦波电压回到零点后又开始上升时,如果外部正弦波电压值没有超过滤波电容上的电压值,整流二极管也不导通,还是只有输入电压没有输入电流,只有当外部正弦波电压上升到超过了滤波电容上的电压以后,二极管正向导通,外部电能除了提供负载消耗的能量之外还向滤波电容上充电,形成了超前于电压的大脉冲电流。正弦波电压上升到越过峰值以后又开始下降,开始一个新的循环周期。这个过程,使电流形成了断续的脉冲状,在输入正弦波电压的大部分时间内没有电流。测量电流/电压相位差折算功率因数的方法在这种情况下产生

了一个根本没有参考价值的显示数据。所以,这一类功率因数测试仪器都不能正确的反映整流滤波电路实际的功率因数。(有关单位在实际测试中用原上海电表三厂生产的一种电磁式指针型功率因数表(具体型号不祥)测试这种二极管整流滤波电路能得到功率因数98%的正确结果。)

整流滤波电路实际存在的真正问题及相应对策

虽然上述分析证明了简单整流滤波电路的功率因数是1,但简单的用二极管整流再用电容滤波给电子设备提供直流电实际性能并不好,其真正的问题不是功率因数低,而是如前所述的输入电流不按照输入电压的正弦规律变化而形成很大的断续脉冲电流,这样就给电网带来两个严重问题:

1、对电网造成谐波干扰导致电网供电性能恶化。

电网上的许多设备都是按照正弦波供电设计的,谐波会干扰电网上这些电子电器设备的正常工作,并且造成额外的热损耗和辐射损耗。

2、在零线上形成大脉冲电流,增加了零线损耗,严重时可能烧毁零线甚至引发火灾。

市电电网是三相四线制,正常工作时如果三根相线负载平衡,零线上产生的电流相位差为120度,正弦波电流在零线上互相抵消使总电流为零。当三根相线负载功率不同时零线起一定的平衡作用。此时零线上会有一个远小于相线电流的零线电流流过。因此,供电系统设计时零线的截面积选用的都比相线小得多,但是,如果相线

的电流变成了脉冲电流,则零线上的电流就不能抵消,其强度是三根相线电流之和,造成极大的零线损耗甚至烧毁零线,严重时可能引发火灾。因此,解决电流谐波问题才是简单整流滤波电路的关键所在。

解决整流电路的谐波问题最有效的方法是在二极管整流之

后不用大容量电容滤波,而是直接对整流之后的单向脉冲正弦波作变换,主要电路结构是升压电路和反激电路。

升压电路方案是把整流之后的单向脉冲正弦波用高频变换

的方式升到高于市电正弦波峰值电压的高直流电压值,再根据需要作二次变换得到所需电压。这种方案电路结构复杂,总变换效率低,成本高,但输出直流电压的波纹比较小。

反激变换方案是直接用反激电路对单向脉冲正弦波作变换

产生所需的电压,反激变换电路结构简单,变换效率高,成本低,但输出波纹较大。

明确区分功率因数和电流谐波的概念,采取相应的应对措施提高电气系统的电气性能指标

谐波和功率因数完全是两个不同的概念,这一点目前在业界有许多混乱,很多人认为谐波大就是功率因数低,功率因数低就是因为谐波大,实际上这是两个完全不同的电参数,分别用来描述不同的电路特性。谐波大不等同于功率因数低,功率因数低谐波也不一定大,比如在电容和电阻并联的电路中功率因数一定小于1,但谐波却不大。

功率因数讲的是送到用电设备的电能是做功了还是又返回

电网了的问题。而谐波的问题傅里叶定理也早有明确的阐述:一个周

期性的非正弦波可以分解为若干个周期性正弦波,这些周期性正弦波中除了包含基波的频率外,其余是频率高于基波并是基波频率整倍数的谐波。也就是说,谐波就是周期性非正弦波中包含的高频波。但高频波的电能照样可以做功,和无功功率没有直接的关系。而基波频率的电能也可能不做功,不一定就是有功功率。因此,必须明确这两个不同的概念,以在实际操作中采取适当的技术措施提高用电设备相应的技术指标。礼经电器

整流滤波电路详解

为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。电感滤波缺点是体积大,成本高. 桥式整流电感滤波电路如图2所示。电感滤波的波形图如图2所示。根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。 图2电感滤波电路 在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。当u2超过90°后开始下降,电感上的反电势有助于D1、D3继续导电。当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提供。由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。 图3电感滤波电路波形图 已知桥式整流电路二极管的导通角是180°,整流输出电压是半个半个正弦波,其平均值约为。电感滤波电路,二极管的导通角也是180°,当忽略电感器L的电阻时,负载上输出的电压平均值也是。如果考虑滤波电感的直流电阻R,则电感滤波电路输出的电压平均值为 要注意电感滤波电路的电流必须要足够大,即RL不能太大,应满足wL>>RL,此时IO(AV)可用下式计算 由于电感的直流电阻小,交流阻抗很大,因此直流分量经过电感后的损失很小,但是对于交流分量,在wL和上分压后,很大一部分交流分量降落在电感上,因而降低了输出电压中的脉动成分。电感L愈大,RL愈小,则滤波效果愈好,所以电感滤波适用于负载电流比较大且变化比较大的场合。采用电感滤波以后,延长了整流管的导电角,从而避免了过大的冲击电流。 电容滤波原理详解 1.空载时的情况 当电路采用电容滤波,输出端空载,如图4(a)所示,设初始时电容电压uC为零。接入电源后,当u2在正半周时,通过D1、D3向电容器C充电;当在u2的负半周时,通过D2、D4向电容器C充电,充电时间常数为

单相整流滤波电路

第二节 单相整流滤波电路 整流电路是利用二极管的单向导电性将交流电变换为脉动直流电的电路。根据交流电的相数,整流电路可分为单相整流电路与三相整流电路等,在小功率电路中(1kV A 以下)一般采用单相整流,常见的有单相半波、全波和桥式整流。本节重点讨论单相半波和桥式整流电路。 一、单相整流电路 1.单相半波整流 电路由整流变压器Tr 、整流二极管VD 以及负载电阻R L 组成,如图6-2-1(a )所示。 VD 图6-2-1 单相半波整流电路 a ) b ) (a )电路图 (b )波形图 图6-2-1(a )中,设电源变压器次级电压u 2为 t U u ω=sin 222 式中,U 2为次级电压的有效值。 当u 2的波形为正半周时,A 端为正,B 端为负,二极管正向导通,忽略二极管的正向导通压降时,负载电压为u o =u 2;当u 2为负半周时,A 端为负,B 端为正,二极管反向截止,电路中电流为零,负载电压u o =0,u 2全部加在二极管两端。各电压波形如图6-2-1(b )所示,由图可知,负载上得到的是单相脉动直流电压和电流。由于输出电压u o 仅为电源电压u 2的正半波,所以称为半波整流。 负载上脉动直流电压的大小用平均值Uo 来示,根据数学推导有 2U 450U .O ≈ (6-5) 通过负载的电流Io 为 L L O O .R U 450R U I 2≈= (6-6) 二极管与负载串联,因此流经二极管的平均电流为

L .R U 450I I 2O D == (6-7) 此外,由图6-3(b )可知,二极管反向截止时,管子两端承受的最高反向电压就是u 2的最大值,即 2DRM 2U U = (6-8) 在选择二极管时,所选管子的最大整流电流I F 和最高反向工作电压U RM 应大于式(6-7)和式(6-8)的计算值,即 L .R U 450I I 2D F =≥ (6-9) 2RM U 2U U =≥DRM (6-10) 实际应用中,应根据I F 和U RM 的计算值查阅半导体器件手册,选择合适的二极管型号。 单相半波整流电路的优点是结构简单,缺点是输出电压脉动大、整流设备利用率低,一般用于电流较小(几十毫安以下)、对脉动要求不高的场合。 2.单相桥式全波整流电路 如图6-2-2(a )所示,单相桥式全波整流电路由四个整流二极管接成电桥的形式,二极管VD1和VD2的负极接在一起作为输出端的正极,VD3和VD4的正极接在一起作为输出端的负极。它们相互之间的连接方式以及与电源变压器和负载的连接,必须按照图示方式进行,任何一个二极管的反接均可造成变压器短路烧坏。图6-2-2(b )所示为桥式整流电路的简化画法。 当u 2的波形为正半周时,电路中A 点电位高于B 点电位,二极管VD1、VD3正向导通,VD2、VD4反向截止。电流的流向为A →VD1→R L →VD 3→B ,如图中实线箭头所示;当u 2的波形为负半周时,二极管VD2、VD4导通,VD1、VD3截止,电流的流向为B →VD2→RL →VD4→A ,如图中虚线箭头所示。由此可见,VD1、VD3与VD2、VD4 轮流导通半个周期,在整个周期内,负载R L 上均有电流流过,并且始终是一个方向,故称为全波整流。其电压电流波形如图6-2-3所示。 由图6-5可见,桥式整流电路的输出电压平均值应为半波整流电路的两倍,因此有 2U 90U .O ≈ (6-11)

第一章--整流滤波电路(附答案)[1]

第一章整流滤波电路 一、填空题 1、(1-1,低)把P型半导体N型半导体结合在一起,就形成。 2、(1-1,低)半导体二极管具有单向导电性,外加正偏电压,外加反偏电压。 3、(1-1,低)利用二极管的,可将交流电变成。 4、(1-1,低)根据二极管的性,可使用万用表的R×1K挡测出其正负极,一般其正反向的电阻阻值相差越越好。 5、(1-1,低)锗二极管工作在导通区时正向压降大约是,死区电压是。 6、(1-1,低)硅二极管的工作电压为,锗二极管的工作电压为。 7、(1-1,中)整流二极管的正向电阻越,反向电阻越,表明二极管的单向导电性能越好。 8、(1-1,低)杂质半导体分型半导体和型半导体两大类。 9、(1-1,低)半导体二极管的主要参数有、,此外还有、、等参数,选用二极管的时候也应注意。 10、(1-1,中)当加到二极管上的反向电压增大到一定数值时,反向电流会突然增大,此现象称为现象。 11、(1-1,中)发光二极管是把能转变为能,它工作于状态;光电二极管是把能转变为能,它工作于状态。 12、(1-2,中)整流是把转变为。滤波是将转变为。电容滤波器适用于的场合,电感滤波器适用于的场合。 13、(1-1,中)设整流电路输入交流电压有效值为U2,则单相半波整流滤波电路的输出直流电压U L(AV)= ,单相桥式整流电容滤波器的输出直流电压U L(AV)= ,单相桥式整流电感滤波器的输出直流电压U L(AV)= 。 14、(1-1,中)除了用于作普通整流的二极管以外,请再列举出2种用于其他功能的二极管:,。 15、(1-1,低)常用的整流电路有和。 16、(1-2,中)为消除整流后直流电中的脉动成分,常将其通过滤波电路,常见的滤波电路有,,复合滤波电路。

电源滤波电路(图) 电源滤波电路解析

电源滤波电路、整流电源滤波电路分析 电源滤波电路 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

整流滤波稳压实验报告

整流滤波及稳压电路 学院:机电工程学院专业:电气工程及其自动化学号:14040410039 姓名:廖芳群 一、实验目的 1.掌握单相桥式整流电路的应用 2.掌握电容滤波电路的特性 3.掌握稳压管稳压的应用和测试 二、实验仪器 电路板,示波器,函数信号发生器等。 三、实验原理 直流稳压电源是所有电子设备的重要组成部分,它的基本任务是将电力网交流电压变换为电子设备所需要的交流电压值,然后利用二极管单向导电性将交流电压整流为单向脉冲的直流电压,再通过电容或电感等储能元件组成的滤波电路来减小其脉动成分,从而得到较平滑的直流电压。同时,由于该直流电压易受电网波动及负载变化的影响,必须加稳压电路,利用负反馈来维持输出直流电压的稳定。直流稳压电源的基本组成框图和工作波形如图一所示: 220V a b c 50Hz 图一 1、整流电路 利用二极管的单向导电作用,将电网的交流电转变成单方向的脉冲直流电,这就是整流。常用的整流电路有半波整流、桥式整流以及倍压整流。这次实验中主要采用桥式整流的方式获得单向脉冲的直流电源。 桥式整流电路(如图二)由四个二极管组成,负载电流也由两路二极管轮流导通(如V1,V2)而提供,波纹小,截止一路两个二极管(如V3,V4)分担反向电压,对整流管要求较低,是最常用的整流电路。

图二 2、 滤波电路 整流电路输出的是直流脉冲电压,这种脉冲电压中含有较大的交流成分,因而不能保证电子设备正常工作,尤为明显的是在音响设备中会出现较严重的交流哼声。因此需要进一步减小输出电压的这种脉动,使其更加平滑。滤波电路就是利用电容或电感在电路中的储能作用来完成此功能的。常用的滤波器有电容滤波和电感滤波,但是相同的滤波效果时,采用电容滤波比采用电感滤波更经济有效。如图三,以桥式整流为例,说明整流滤波的工作原理。 图三 3、 稳压电路 虽然整流滤波电路可使交流电变成平滑的直流电,但由于受到电网电压的波动、负载电阻的变化以及环境温度的变化,这些均会导致输出直流电压的不稳定。因此,大多数电子设备还需要采取一定的稳压电路(措施),以保证输出电压值的稳定。稳压电路的种类通常有稳压管稳压电路、串联型稳压电路、集成稳压电路和开关型稳压电路。 对稳压电路的主要要求如下: ⑴稳压系数s (i i U U U U /0/0/??=)小,稳定度高,即输出电压相对变化量要 远小于输入电压变化量。 ⑵输出电阻0R 小,L I U R ??=/00,0R 小,一般为m Ω量级,表示负载电流变化时,输出电压稳定。 ⑶温度系数T S 小,T U S T ??=/0(mV/℃),T S 表示温度变化时,输出电压稳定。 四、实验内容

全波整流滤波电路

二极管全波整流滤波电路 ①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。 首先,介绍桥式整流电路,其工作原理为如下: 电路图 图10.02(a) 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.02(b)。

下面介绍滤波电路的工作原理: (1)滤波的基本概念 滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (2)电容滤波电路 现以单相桥式电容滤波整流电路为例来说明。电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。 若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。此时C相当于并联在v2上,所以输出波形同v2,是正弦形。当v2到达90°时,v2开始下降。先假设二极管关断,电容C就要以指数规律向负载RL放电。指数放电起始点的放电速率很大。 在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。 所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。通过以上分析画出波形图如下:

经验整流电路简单的计算公式

整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 整流电路分类: 单向、三相与多项整流电路; 还可分为半波、全波、桥式整流电路; 又可分为可控与不可控;当全部或部分整流元件为可控硅(晶闸管)时称可控整流电路 (一)不可控整流电路 1、单向二极管半波整流电路 半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低;因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 输出直流电压U=0.45U2 流过二极管平均电流I=U/RL=0.45U2/RL 二极管截止承受的最大反向电压是Um反=1.4U2 2、单向二极管全波整流电路 因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=0.9e2,比半波整流时大一倍) 另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。 输出直流电压U=0.9U2

流过二极管平均电流只是负载平均电流的一半,即流过负载的电流I=0.9U2/RL流过二极管电流I=0.45U2/RL 二极管截止时承受2.8U2的反向电压 因此选择二极管参数的依据与半波整流电路相比有所不同,由于交流正负两个半周均有电流流过负载,因此变压器的利用率比半波整流高。 二极管全波整流的另一种形式即桥式整流电路,是目前小功率整 流电路最常用的整流电路。 3、二极管全波整流的结论都适用于桥式整流电路,不同点仅是每个二 极管承受的反向电压比全波整流小了一半。 桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半! U=0.9U2 流过负载电流I=0.9U2/RL 流过二极管电流I=0.45U2/RL 二极管截止承受反向电压U=1.4U2 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。 图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半,三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。这种均流电阻R 一般选用零点几欧至几十欧的电阻器。电流越大,R应选得越小。

《电工技术》习题及答案--整流滤波电路

《电工技术》习题及答案-- 整流滤波电路 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章整流滤波电路 一、填空题 1、(1-1,低)把P型半导体N型半导体结合在一起,就形成PN结。 2、(1-1,低)半导体二极管具有单向导电性,外加正偏电压导通,外加反偏电压截至。 3、(1-1,低)利用二极管的单向导电性,可将交流电变成直流电。 4、(1-1,低)根据二极管的单向导电性性,可使用万用表的R×1K挡测出其正负极,一般其正反向的电阻阻值相差越大越好。 5、(1-1,低)锗二极管工作在导通区时正向压降大约是0.3,死区电压是。 6、(1-1,低)硅二极管的工作电压为0.7,锗二极管的工作电压为0.3。 7、(1-1,中)整流二极管的正向电阻越小,反向电阻越大,表明二极管的单向导电性能越好。 8、(1-1,低)杂质半导体分型半导体和型半导体两大类。 9、(1-1,低)半导体二极管的主要参数有、,此外还有、、等参数,选用二极管的时候也应注意。 10、(1-1,中)当加到二极管上的反向电压增大到一定数值时,反向电流会突然增大,此现象称为现象雪崩。 11、(1-1,中)发光二极管是把能转变为能,它工作于状态;光电二极管是把能转变为能,它工作于状态。 12、(1-2,中)整流是把转变为。滤波是将转变为。电容滤波器适用于的场合,电感滤波器适用于的场合。 13、(1-1,中)设整流电路输入交流电压有效值为U2,则单相半波整流滤波电路的输出直流电压U L(AV)=,单相桥式整流电容滤波器的输出直流电压U L(AV)=,单相桥式整流电感滤波器的输出直流电压U L(AV)=。 14、(1-1,中)除了用于作普通整流的二极管以外,请再列举出2种用于其他功能的二极管:,。 15、(1-1,低)常用的整流电路有和。 16、(1-2,中)为消除整流后直流电中的脉动成分,常将其通过滤波电路,常见的滤波电路有,,复合滤波电路。 17、(1-2,难)电容滤波器的输出电压的脉动τ与有关,τ愈大,输出电压脉动愈,输出直流电压也就愈。 18、(1-2,中)桥式整流电容滤波电路和半波整流电容滤波电路相比,由于电容充放电过程(a. 延长,b.缩短),因此输出电压更为(a.平滑,b.多毛刺),输出的直流电压幅度也更(a.高,

整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻 并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω 100Ω 50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω) 200Ω 100Ω

50 Ω 25 Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: a v g ) r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

整流滤波电路

第一节整流电路 电力网供给用户的是交流电,而各种无线电装置需要用直流电。整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和 负载电阻R fz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变 电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的 波形如图5-2(a)所示。在0~π时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,R fz,上无电压。在2π~3π时间内,重复0~π 时间的过 程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电 压U sc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流 得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc=0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但 极性相反的两个电压e2a 、e2b ,构成e2a 、D1、R fz与e2b 、D2、R fz ,两个通电回路。

整流滤波电路实验报告(模板加实验图片)

学生姓名: XX 学号:00000000 专业班级:XXXXXXXXXXXXXX 实验时间:XXXX时XXX分第XX周星期X 座位号:XX 上面是我自己的信息,被我改成“XX”,下载者自行修改,最下面还有我做实验的图片,如果没做实验或者实验一塌糊涂可以参照,或者P成黑白or照着画,这5财富值,你看值,就下载!我很给力的!!!!! 整流滤波电路实验 一.实验目的 1.研究半波整流电路、全波桥式整流、滤波电路; 2.测绘电学原件的伏安特性曲线,学习图示法表示实验结果。 二.实验器材 6伏交流电源,双踪示波器,电解电容470μF×1、100μF×1,整流二极管IN4007×4,电阻箱,导线若干。 三.实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四.实验步骤

1、连接好示波器,将信号输入线与6V 交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。 3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。改变电阻大小(200Ω、100Ω、50Ω、25Ω) 6、更换10μF的电容,改变电阻大小(200Ω、100Ω、50Ω、25Ω) 7、分别记下并描绘出各波形图。 五.实验数据以及波形图

整流滤波稳压电路看不懂你砍我

整流、滤波、稳压电路看不懂你砍我 好久的电路原理说明,终于能够看懂整流滤波稳压电路了,分享一下。 一、整流与滤波电路 整流电路的任务是利用二极管的单向导电性,把正、负交变的50Hz电网电压变成单方向脉动的直流电压。 整流电路只是将交流电变换为单方向的脉动电压和电流,由于后者含有较大的交流成分,通常还需在整流电路的输出端接入滤波电路,以滤除交流分量,从而得到平滑的直流电压。

由波形可知: 1.开关S打开时,电容两端电压为变压器付边的最大值。 2 .开关S闭合,即为电容滤波电阻负载,当变压器付边电压大于电容上电压时 ,电容充电,输出电压升高,当时电容放电,输出下降。如此充电快,放电慢的不断反复,在负载上将得到比较平滑的输出电压。当负载电阻越大时,放电越慢,纹波电压越小,负载电阻小时,放电快,纹波大,而且输出电压低。 为此有三种情况下的输出电压估算值: 1)电容滤波,负载开路时。 2)无电容滤波,电阻负载时,输出电压平均值为: 。

3)电容滤波,电阻负载时通常用下式进行估算,通常按 估算。 为确保二极管安全工作,要求:不同电子设备要求其电源电压的平滑程度不同,为此可采用不同的滤波电路。常见的有电容滤波、电感滤波和复式滤波电路(两个或两个以上滤波元件组成)。 二、线性串联型稳压电路 整流滤波后的电压是不稳压的,在电网电压或负载变化时,该电压都会产生变化,而且纹波电压又大。所以,整流滤波后,还须经过稳压电路,才能使输出电压在一定的范围内稳定不变。

1.稳压电路(电源)的主要性能指标 输出的稳定电压值Vo,最大输出电流Imax,输出纹波电压V~,稳压系数(电压调整率),该值越小,稳定性越好。 输出电阻(内阻),,内阻越小越好。 2.串联型稳压电路的基本结构基本思路: 串联型:

《电工技术》习题及答案--整流滤波电路

精心整理 第一章整流滤波电路 一、填空题 1、(1-1,低)把P型半导体N型半导体结合在一起,就形成PN结。 2、(1-1,低)半导体二极管具有单向导电性,外加正偏电压导通,外加反偏电压截至。 3、(1-1,低)利用二极管的单向导电性,可将交流电变成直流电。 4、(1-1,低)根据二极管的单向导电性性,可使用万用表的R×1K挡测出其正负极,一般其正反向的电阻阻值相差越大越好。 5、(1-1 6、(1-1,低)硅二极管的工作电压为,锗二极管的工作电压为 7、(1-1,中)整流二极管的正向电阻越小, 8、(1-1 9、(1-1 10、(1-1,中)当加到二极管上的反向电压增大到一定数值时,反向电流会突然增大,此现象称为现象雪崩。 11、(1-1 12、(1-2 13、(1-1,中) )=,单相桥式整流电容滤波器的输出直流电压U L U L(AV)=。 14、(1-12种用于其他功能的二极管:,。 15、(1-1 16、(1-2,复合滤波电路。 17、(1-2τ与有关,τ愈大,输出电压脉动愈,输出直流电压也就愈。 18、(1-2 a.延长,b.缩短), ,输出的直流电压幅度也更(a.高,b.低)。 二、选择题 1、(1-1,低)具有热敏特性的半导体材料受热后,半导体的导电性能将。 A、变好 B、变差 C、不变 D、无法确定 2、(1-1,中)P型半导体是指在本征半导体中掺入微量的。 A、硅元素 B、硼元素 C、磷元素 D、锂元素 3、(1-1,中)N型半导体是指在本征半导体中掺入微量的。 A、硅元素 B、硼元素 C、磷元素 D、锂元素 4、(1-1,难)PN结加正向电压时,空间电荷区将。

电源设计之整流桥和滤波电容的选择

1、整流桥的导通时间与选通特性 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波 电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通 范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电 压处的很短时间内,才有输入电流流经过整流桥对C充电。50Hz交流电的半 周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路 的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c) 所示。 总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。 (2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频 率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管 (例如1N4007)与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢 复时间trr≈250ns。 2、整流桥的参数选择 隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整 流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管 接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流 桥有4个引出端,其中交流输入端、直流输出端各两个。 硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工 作电压有50~1000V等多种规格。小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。 整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流 电流Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(μA)。整流 桥的反向击穿电压URR应满足下式要求:

LC滤波电路分析

LC滤波器具有结构简单、设备投资少、运行可靠性较高、运行费用较低等优点,应用很广泛。LC滤波器又分为单调谐滤波器、高通滤波器、双调谐滤波器及三调谐滤波器等几种。 LC滤波主要是电感的电阻小,直流损耗小.对交流电的感抗大,滤波效果好.缺点是体积大,笨重.成本高.用在要求高的电源电路中. RC滤波中的电阻要消耗一部分直流电压,R不能取得很大,用在电流小要求不高的电路 中.RC体积小,成本低.滤波效果不如LC电路 LC滤波器的组成 LC滤波器一般是由滤波电抗器、电容器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; LC 滤波的单相桥式整流网侧谐波分析 摘要: 对LC 滤波的单相桥式整流电路作了较深入的理论分析, 得到了与谐波有关的各项性能指标 和谐波含量的表达式及关系曲线, 仿真结果验证了所得结论的正确性。 1 引言 许多电力电子装置含有由直流电压源供电的逆变或斩波电路。在这类装置中直流电压源大多是由电网交流电源整流后, 再经并联有大电容的滤波电路滤波得到的。滤波电容的引入造成了这类装置网侧电流的较大畸变。近年来,这类装置越多地投入使用(如各种电压型交2直2交变频装置、直流斩波调速装置、开关电源及不间断电源等) , 其网侧谐波问题逐渐引起了人们的关注。对其网侧谐波进行深入的分析是一项有意义的工作。 以往对整流电路分析大多针对电感滤波型整流电路, 个别对含有滤波电容的整流电路也只是作了一些定性分析。作者曾对电容滤波型整流电路作了较深入的分析, 但分析中没有考虑电网电抗的影响, 然而当电网电抗影响不能忽略时必须进一步分析研究。另一方面,在并联电容前串一小电感以抑制电流冲击引起的畸变, 这种电路一般称为LC 滤波整流电路。可证明, 这种情况在一定条件下与电容滤波型整流电路考虑电网电抗的情况是完全等效的。 本文在考虑电网电抗影响情况下, 对LC滤波单相桥式整流电路的网侧谐波进行较深入的定性和定量分析, 给出网侧电流谐波含量和某些性能指标与电路参数的关系表达式及关系曲线, 分析电路参数对电流谐波成分和各项性能指标的影响, 仿真结果验证了结论的正确性。 2 电路模型及直流电流工作方式 在由直流电压源供电的装置中, 输出电压幅值可由逆变电路或斩波电路来调节, 因此其整流电路由二极管组成是常见的情况。文中的分析即针对二极管单相桥式整流电路。图1 是分析所采用的电路模型和电压、电流波形,C 是滤波电容,L 是抑制电流冲击的电感。稳态时逆变或斩波电路消耗的直流平均电流一定, 所以可用电阻模型代表逆变或斩波电路。 在图 1 中若L 取值由小变大(以至无穷大) , C 取值由大变小, 则整流电路负载由容性 逐渐变为感性, 直流侧充电电流 id 由断续方式1 经断续方式2 变成连续方式, 如图2 所示。因 是二极管整流, 所以不论是哪种方式, 二极管VD1和VD4只能在电压正半周时导通, 而VD2和 VD3只能在电压负半周时导通。在断续方式 1中, id 在电源电压过零前即为零, VD1、 VD4和 VD2、 VD3间不发生换相过程; 在断续方式 2 中,电源电压过零时 id 未降到零, 两组二极管间发

桥式整流滤波电路实验

桥式整流、滤波及稳压电路 一、实验目的 1.学会半导体二极管和稳压管极性的简单测试,了解其工作性能和作用; 2.掌握单相桥式整流、滤波、稳压电路的工作原理和对应电压波形及测试方法; 3.掌握输入交流电压与输出直流电压之间的关系; 4.了解倍压整流的原理与方法。 二、实验原理 整流电路是将交流电变为直流电以供负载使用。直流稳压电源先通过整流电路把交流电变为脉动的直流电,再经各种滤波电路、稳压电路,使输出直流电压维持稳定。由整流、滤波、稳压环节构成的简单稳压电路如图1所示 图1 桥式整流、滤波、稳压电路 三、实验仪器设备 注意事项:切勿用毫安表测电压。注意万用表的交直流电压挡、欧姆挡的转换及量程的选择;防止误操作,避免电源短路、烧损二极管和电容; 四、实验内容与要求根据实验室提供的实验设备完成以下实验内容的设计: 1.用万用表测量二极管,学会用万用表检查二极管极性和性能的好坏。 2.设计并连接单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA,测量并记录输入交流电压、整流电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述

3.设计并连接具有滤波的单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA 时,测量并记录输入交流电压,整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。 4. 在上一个电路(单相桥式整流、滤波电路)中,若改变滤波电容的容量,输出波形会发生什么样的变化?若改变负载电阻,输出波形会发生怎样的变化? 5.

6.设计并连接具有滤波、稳压的单相桥式整流电路,在下列两种情况下,测量并记录输入交流电压、整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。 (2) 当负载电流保持5mA不变时,使电源电压波动,即使输入的交流电压有效值在15V左右变

电子技术基础第二章整流与滤波电路习题册

第二章整流与滤波电路 一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)电容滤波适用于大电流场合,而电感滤波适用于高电压场合。() (2)全波整流电路中,流过每个整流管的平均电流只有负载电流的一半。() (3)单相桥式整流电容滤波电路中与单相半波整流电容滤波电路中,每个二极管承受的反向电压相同。() (4)半波整流电路中,流过二极管的平均电流只有负载电流的一半。() (5)硅稳压管并联型稳压电路的负载任意变化,稳压管都能起稳压作用。() (6)电解电容的电极有正、负之分,使用时正极接高电位,负极接低电位。() (7)任何电子电路都需要直流电源供电,因此需要直流稳压电源。() (8)在整流电路后仅用电阻就构成滤波电路。() (9)整流电路能将交流电压转换成单向脉动电压,是利用了二极管的单向导电性。(() (10)全波整流电路中,其中一个整流管短路时对整流电路不影响,输出仍为全波整流。() 二、选择正确答案填入空内。 1、滤波电路中整流二极管的导通角较大,峰值电流很小,输出特性较好,适用于低电压、大电流场合的滤波电路是() A、电感 B、电容 C、复式 D、有源 分析如下图,选择正确答案填在括号内(第2题~第5题),已知U2=10V。 2、接入滤波电容后,输出直流电压为() A、升高 B、降低 C、不变 D、为零 3、接入滤波电容后,二极管的导通角为() A、加大 B、减小 C、不变 D、为零

4、输出电压的平均值U O约为() A、10V B、14V C、16V D、12V 5、若D1短路,则() A、U0减小一半 B、U O不变 C、D3、D4发热 D、D2或变压器烧坏 分析如下图,选择正确答案填写在括号内(第6题~第11题)。 6、设U2有效值为10V,则电容两端电压为() A、 B、9V C、12V D、14V 7、若电容C脱焊,则Ui为() A、 B、9V C、12V D、14V 8、若二极管D4接反,则() A、变压器被短路,D1、D2或变压器被烧坏 B、变为半波整流 C、电容C将过压而击穿 D、稳压管过流而烧坏 9、若电阻R短路,则() A、U O将下降 B、变为半波整流 C、电容C将过压而击穿 D、稳定管过流而损坏 10、设电路正常工作,当电网电压波动而使U i增大时(负载不变),I R将增大,则I W将() A、增大 B、减小 C、基本不变 D、为零 11、设电路正常工作,当负载电流I O增大时(电网电压不变),I R将基本不变,则I W将() A、增大 B、减小 C、基本不变 D、为零

十个精密整流电路的详细分析

图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 分析: 当Ui>0时,分析各点电压正负关系可知D1截止,D2导通,R1,R2和A1构成了反向比例运算器,增益为-1,R4,R3,R5和A2构成了反向求和电路,通过R4的支路的增益为-1,通过R3支路的增益为-2,等效框图如下: 当Ui>0时,最终放大倍数为1,输入阻抗为R1||R4。 当Ui<0时,分析各点电压的正负关系可知,D1导通,D2截止,A1的作用导致R2左端电压钳位在0V ,A2的反馈导致R3右端电压钳位在0V ,所以R2、R3支路两端电位相等,无电流通过,R4,R5和A2构成反向比例运算器,增益为-1,输入阻抗仍为R1||R4。 因此,此电路的输出等于输入的绝对值。 此电路的优点:输入阻抗恒等于R1||R4,输入阻抗低,调节R5可调节此电路的增益大小,在R5上并联电容可实现滤波功能。 此电路适用低频电路,当频率大时,输出电压产生偏移,且输入电压接近0V 时,输出电压失真,二极管的选型也非常重要,需选导通压降大些的。输入信号小时,也会影响最终输出。

图2优点是匹配电阻少,只要求R1=R2 图2 四个二极管型 分析: 当Ui>0时,根据各点电压正负情况可知D1,D4导通,D2,D3截止,A1的作用导致R2左端电压钳位在0V,R3上无电流通过,所以无压降,Uo=Ui 当Ui<0时,根据各点电压正负情况可知D1,D4截止,D2、D3导通,A1为反向比例运算器,增益为-R2/R1,A2为电压跟随器,所以输出电压为Uo=-Ui。 此电路采用两个运放分别处理正电压和负电压的情况,所以R1和R2需配对,否则输入为负电压时电路增益不为1,。R3阻值不重要,但不能太小,否则输入为负电压时A1需向R3提供较大的电流,该电路的输入阻抗为R1。 当电压过零时,A1,A2的输出电压会发生突变,因此当频率较大时,会影响结果的输出,可选用高速型运放。

整流滤波稳压实验报告

整流滤波及稳压电路 一、实验目的 1.掌握单相桥式整流电路的应用 2.掌握电容滤波电路的特性 3.掌握稳压管稳压的应用和测试 二、实验仪器 电路板,示波器,函数信号发生器等。 三、实验原理 直流稳压电源是所有电子设备的重要组成部分,它的基本任务是将电力网交流电压变换为电子设备所需要的交流电压值,然后利用二极管单向导电性将交流电压整流为单向脉冲的直流电压,再通过电容或电感等储能元件组成的滤波电路来减小其脉动成分,从而得到较平滑的直流电压。同时,由于该直流电压易受电网波动及负载变化的影响,必须加稳压电路,利用负反馈来维持输出直流电压的稳定。直流稳压电源的基本组成框图和工作波形如图一所示: 220V a b c 50Hz →→→→ Uo 1、 整流电路 利用二极管的单向导电作用,将电网的交流电转变成单方向的脉冲直流电,这就是整流。常用的整流电路有半波整流、桥式整流以及倍压整流。这次实验中主要采用桥式整流的方式获得单向脉冲的直流电源。 桥式整流电路(如图二)由四个二极管组成,负载电流也由两路二极

管轮流导通(如V1,V2)而提供,波纹小,截止一路两个二极管(如V3,V4)分担反向电压,对整流管要求较低,是最常用的整流电路。 图二 2、 滤波电路 整流电路输出的是直流脉冲电压,这种脉冲电压中含有较大的交流成分,因而不能保证电子设备正常工作,尤为明显的是在音响设备中会出现较严重的交流哼声。因此需要进一步减小输出电压的这种脉动,使其更加平滑。滤波电路就是利用电容或电感在电路中的储能作用来完成此功能的。常用的滤波器有电容滤波和电感滤波,但是相同的滤波效果时,采用电容滤波比采用电感滤波更经济有效。如图三,以桥式整流为例,说明整流滤波的工作原理。 图三 3、 稳压电路 虽然整流滤波电路可使交流电变成平滑的直流电,但由于受到电网电压的波动、负载电阻的变化以及环境温度的变化,这些均会导致输出直流电压的不稳定。因此,大多数电子设备还需要采取一定的稳压电路(措施),以保证输出电压值的稳定。稳压电路的种类通常有稳压管稳压电路、串联型稳压电路、集成稳压电路和开关型稳压电路。 对稳压电路的主要要求如下: ⑴稳压系数s (i i U U U U /0/0/??=)小,稳定度高,即输出电压相对变化量要 远小于输入电压变化量。 ⑵输出电阻0R 小,L I U R ??=/00,0R 小,一般为m Ω量级,表示负载电流变化

小功率整流滤波电路

10.1小功率整流滤波电路 整流电路 一、引言 整流电路是将工频交流电转为具有直流电成分的脉动直流电。 滤波电路是将脉动直流中的交流成分滤除,减少交流成分,增加直流成分。 稳压电路对整流后的直流电压采用负反馈技术进一步稳定直流电压。 直流电源的方框图如图10.1.1所示。 如图10.1.1 直流电源的方框图 二、单相桥式整流电路 1.工作原理 单相桥式整流电路是最基本的将交流转换为直流的电路,其电路如图10.1.2所示。 (a)整流电路 (b)波形图 图10.1.2单相桥式整流电路 (a)整流电路 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.1.2(a)的电路图可知: 当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.1.2(b)。 2.参数计算 根据图10.1.2(b)可知,输出电压是单相脉动电压。通常用它的平均值与直流电压等效。 输出平均电压为 2 2 π 2 L O 9.0 π 2 2 d sin 2 π 1 V V t t V V V= = = =?ω ω

流过负载的平均电流为: 二极管所承受的最大反向电压为: 流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析。此时谐波分量中的二次谐波幅度最大,最低次谐波的幅值与平均值的比值称为脉动系数S。 3.单相桥式整流电路的负载特性曲线 单相桥式整流电路的负载特性曲线是指输出电压与负载电流之间的关系曲线该曲线如图10.1.3所示。曲线的斜率代表了整流电路的内阻。 图10.1.3 负载特性曲线 三、单相半波整流电路 单相整流电路除桥式整流电路外,还有单相半波和全波两种形式。单相半波整流电路如图10.1.4(a)所示,波形图如图10.1.4(b)所示。 (a)电路图 (b)波形图 图10.1.4 单相半波整流电路 根据图10.1.4可知,输出电压在一个工频周期内,只是正半周导电,在负载上得到的是半个正弦波。负载上输出平均电压为 L 2 L 2 L 9.0 π 2 2 R V R V I= = L 2 L 2 L D 45 .0 π 2 2R V R V I I= = = 2 Rm ax 2V V= ) (O O I f V= ) 4 cos π 15 4 2 cos π3 4 π 2 ( 22 O + - - =t t V vω ω 67 .0 3 2 π 2 2 π3 2 42 2= = = V V S

相关文档
最新文档