3-5动量守恒定律预科资料

3-5动量守恒定律预科资料
3-5动量守恒定律预科资料

高考物理知识点之动量守恒定律

考试要点

基本概念

1.力的三种效应:

力的瞬时性(产生a)F=ma、?运动状态发生变化?牛顿第二定律

时间积累效应(冲量)I=Ft、?动量发生变化?动量定理

空间积累效应(做功)w=Fs?动能发生变化?动能定理

一、动量和冲量

1.动量

按定义,物体的质量和速度的乘积叫做动量:p=mv

(1)动量是描述物体运动状态的一个状态量,它与时刻相对应。

(2)动量是矢量,它的方向和速度的方向相同。

(3)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。

2.动量的变化:

=

?

p-'

p

p

由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。

(1)若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。(2)若初末动量不在同一直线上,则运算遵循平行四边形定则。

3冲量

按定义,力和力的作用时间的乘积叫做冲量:I =Ft

(1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

(2)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。

(3)高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

(4)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。

二、动量定理

1.动量定理

物体所受合外力的冲量等于物体的动量变化。既I =Δp

(1)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

(2)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。

(3)现代物理学把力定义为物体动量的变化率:t

P F ??=(牛顿第二定律的动量形式)。 (4)动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。

点评:要注意区分“合外力的冲量”和“某个力的冲量”,根据动量定理,是“合外力的冲量”等于动量的变化量,而不是“某个力的冲量” 等于动量的变化量。这是在应用动量定理解题时经常出错的地方,要引起注意。

2动量定理的定量计算

利用动量定理解题,必须按照以下几个步骤进行:

(1)明确研究对象和研究过程。研究对象可以是一个物体,也可以是几个物体组成的质点组。质点组内各物体可以是保持相对静止的,也可以是相对运动的。研究过程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析。只分析研究对象以外的物体施给研究对象的力。所有外力之和为合外力。研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力。如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和。

(3)规定正方向。由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。

(5)根据动量定理列式求解。

3在F-t图中的冲量:

F-t图上的“面积”表示冲量的大小。

动量守恒定律

1.守恒条件

(1)系统不受外力或所受外力的合力为零,则系统动量守恒.

(2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.

(3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒.

2.几种常见表述及表达式

(1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).

(2)Δp=0(系统总动量不变).

(3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相

反).

其中(1)的形式最常用,具体到实际应用时又有以下三种常见形式:

①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统).

②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率

与各自质量成反比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完

全非弹性碰撞).

4.应用动量守恒定律解题的步骤:

(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);

(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);

(3)规定正方向,确定初、末状态动量;

(4)由动量守恒定律列出方程;

(5)代入数据,求出结果,必要时讨论说明.

动量守恒定律的应用

碰撞现象

1.碰撞的种类及特点

分类标准种类特点

机械能是否守恒弹性碰撞动量守恒,机械能守恒

非弹性碰撞动量守恒,机械能有损失完全非弹性碰撞动量守恒,机械能损失最大

碰撞前后动量是否共线对心碰撞(正碰) 碰撞前后速度共线

非对心碰撞(斜碰) 碰撞前后速度不共线

t

F

O

F

t

v 1

两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。

仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B

的速度分别为21

v v ''和。全过程系统动量一定是守恒

的;而机械能是否守恒就

要看弹簧的弹性如何了。 (1)弹簧是完全弹性的。

Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:12

1121212112,v m m m v v m m m m v +='+-='。(这个结论最好背下来,以后经常要用到。) (2)弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。

(3)弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。

这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12

1121

v m m m v v +='='。在完全非弹性碰撞过程中,系统的动能损失最大,为: ()()

21212122121122121m m v m m v m m v m E k +='+-=?。 (这个结论最好背下来,以后经常要用到。)

v 1 v v 1/ v 2/ Ⅰ Ⅱ Ⅲ

2.动量观点

动量:p=mv=K mE 2

冲量:I =Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F 决定,单位是牛顿·秒} 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。

公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)

I=F 合t=F 1t 1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初

动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=?

P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P′)

ΔP =0 (系统总动量变化为0)

如果相互作用的系统由两个物体构成,动量守恒的具体表达式为

P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量)

m 1V 1+m 2V 2=m 1V 1′+m 2V 2′

ΔP =-ΔP ' (两物体动量变化大小相等、方向相反)

实际中应用有:m 1v 1+m 2v 2='

22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共

原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0

注意理解四性:系统性、矢量性、同时性、相对性

矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。

相对性:所有速度必须是相对同一惯性参照系。

同时性:表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相互作用后同一时刻的瞬时速度。

解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。

1.动量守恒定律成立的条件

⑴系统不受外力或者所受外力之和为零;

⑵系统受外力,但外力远小于内力,可以忽略不计;

⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

2.动量守恒定律的表达形式

(1)221

12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/,

v 1

(2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和1

221v v m m ??-= 3.应用动量守恒定律解决问题的基本思路和一般方法

(1)分析题意,明确研究对象。

(2)对各阶段所选系统内的物体进行受力分析,判断能否应用动量守恒。

(3)确定过程的始、末状态,写出初动量和末动量表达式。

注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。

(4)建立动量守恒方程求解。

4.注意动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.

【例1】 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H 和物块的最终速度v 。

解析:系统水平方向动量守恒,全过程机械能也守恒。 在小球上升过程中,由水平方向系统动量守恒得:()v m M mv '+=1 由系统机械能守恒得:()mgH v m M mv +'+=2212121 解得()g m M Mv H +=221 全过程系统水平动量守恒,机械能守恒,得1

2v m M m v += 点评:本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。

【例2】 动量分别为5kg ?m/s 和6kg ?m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞后。若已知碰撞后A 的动量减小了2kg ?m/s ,而方向不变,那么

A 、

B 质量之比的可能范围是什么?

解析:A 能追上B ,说明碰前v A >v B ,∴B

A m m 65>;碰后A 的速度不大于

B 的速度, B A m m 83≤;又因为碰撞过程系统动能不会增加, B

A B A m m m m 282326252222+≥+,由

以上不等式组解得:7

483≤≤B A m m 点评:此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理。

2.子弹打木块类问题

子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。

【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:

()v m M mv +=0 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d 对子弹用动能定理:22012

121mv mv s f -=? ……① 对木块用动能定理:2221Mv s f =

? ……② ①、②相减得:()()

2022022121v m M Mm v m M mv d f +=+-=? ……③ 点评:这个式子的物理意义是:f ?d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =?,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

若m M >>,则s 2<

共同运动的类型,全过程动能的损失量均可用公式:()202v m M Mm E k +=?…④

当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔE K = f ?d (这里的d 为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔE K 的大小。 s 2 d s 1 v 0 v

3.反冲问题

在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。

【例4】 质量为m 的人站在质量为M ,长为L 的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?

解析:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L 。设人、船位移大小分别为l 1、l 2,则:

mv 1=Mv 2,两边同乘时间t ,ml 1=Ml 2,而l 1+l 2=L , ∴L m

M m l +=2 点评:应该注意到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。

做这类题目,首先要画好示意图,要特别注意两个物体相对于地面的移动方向和两个物体位移大小之间的关系。

以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,那就不能再用m 1v 1=m 2v 2这种形式列方程,而要利用(m 1+m 2)v 0= m 1v 1+ m 2v 2列式。

【例5】 总质量为M 的火箭模型 从飞机上释放时的速度为v 0,速度方向水平。火箭向后以相对于地面的速率u 喷出质量为m 的燃气后,火箭本身的速度变为多大?

解析:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质量变为M-m ,以v 0方向为正方向,()m

M mu Mv v v m M mu Mv -+=''-+-=00, 4.爆炸类问题

【例6】 抛出的手雷在最高点时水平速度为10m/s ,这时突然炸成两块,其中大块质

量300g 仍按原方向飞行,其速度测得为50m/s ,另一小块质量为200g ,求它的速度的大小和方向。

分析:手雷在空中爆炸时所受合外力应是它受到的重力G =( m 1+m 2 )g ,可见系统的动量并不守恒。但在爆炸瞬间,内力远大于外力时,外力可以不计,系统的动量近似守恒。

设手雷原飞行方向为正方向,则整体初速度s m v /100=;m 1=0.3kg 的大块速度为50 1=v m/s 、m 2=0.2kg 的小块速度为2 v ,方向不清,暂设为正方向。

由动量守恒定律:

2211021)(v m v m v m m +=+

502

.0503.010)2.03.0()(2110212-=?-?+=-+=m v m v m m v m/s 此结果表明,质量为200克的部分以50m/s 的速度向反方向运动,其中负号表示与所设正方向相反

5.某一方向上的动量守恒

【例7】 如图所示,AB 为一光滑水平横杆,杆上套一质量为M 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当线绳与A B 成θ角时,圆环移动的距离是多少?

解析:虽然小球、细绳及圆环在运动过程中合外力不为零(杆的支持力与两圆环及小球的重力之和不相等)系统动量不守恒,但是系统在水平方向不受外力,因而水平动量守恒。设细绳与AB 成θ角时小球的水平速度为v ,圆环的水平速度为V ,则由水平动量守恒有:

MV =mv

且在任意时刻或位置V 与v 均满足这一关系,加之时间相同,公式中的V 和v 可分别用其水平位移替代,则上式可写为:

Md =m [(L -L cos θ)-d ]

解得圆环移动的距离:

d =mL (1-cos θ)/(M +m )

点评:以动量守恒定律等知识为依托,考查动量守恒条件的理解与灵活运用能力

易出现的错误:(1)对动量守恒条件理解不深刻,对系统水平方向动量守恒感到怀疑,无法列出守恒方程.(2)找不出圆环与小球位移之和(L -L cos θ)。

6.物块与平板间的相对滑动

【例8】如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v 0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:

(1)A 、B 最后的速度大小和方向;

(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

解析:(1)由A 、B 系统动量守恒定律得:

Mv 0-mv 0=(M +m )v

① 所以v =m

M m M +-v 0 方向向右

(2)A 向左运动速度减为零时,到达最远处,此时板车移动位移为s ,速度为v ′,则由动量守恒定律得:Mv 0-mv 0=Mv ′

① 对板车应用动能定理得:

-μmg s=21mv ′2-21mv 02

联立①②解得:s =m g

m M μ22-v 02 【例9】两块厚度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为kg m A 5.0=,kg m B 3.0=,它们的下底面光滑,上表面粗糙;另有一质量kg m C 1.0=的滑块C (可视为质点),以s m v C /25=的速度恰好水平地滑到A 的上表面,如图所示,由于摩擦,滑块最后停在木块B 上,B 和C 的共同速度为3.0m/s ,求:

(1)木块A 的最终速度A v ; (2)滑块C 离开A 时的速度C

v '。

解析:这是一个由A 、B 、C 三个物体组成的系统,以这系统为研究对象,当C 在A 、B 上滑动时,A 、B 、C 三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。

(1)当C 滑上A 后,由于有摩擦力作用,将带动A 和B 一起运动,直至C 滑上B 后,

A 、

B 两木块分离,分离时木块A 的速度为A v 。最后

C 相对静止在B 上,与B 以共同速度s m v B /0.3=运动,由动量守恒定律有

B C B A A C C v m m v m v m )(++= ∴A B C B C C A m v m m v m v )(+-=

s m s m /6.2/5.00.3)1.03.0(251.0=?+-?

(2)为计算C

v ',我们以B 、C 为系统,C 滑上B 后与A 分离,C 、B 系统水平方向动量守恒。C 离开A 时的速度为C

v ',B 与A 的速度同为A v ,由动量守恒定律有 B C B C C B B v m m v m v m )(+='+ ∴C A B B C B C

m v m v m m v -+=')(

s m s m /2.4/1.06.23.00.3)1.03.0(=?-?+=

三、针对训练

练习1

1.质量为M 的小车在水平地面上以速度v 0匀速向右运动。当车中的砂子从底部的漏

斗中不断流下时,车子速度将( )

A .减小

B .不变

C .增大

D .无法确定

2.某人站在静浮于水面的船上,从某时刻开始人从船头走向船尾,设水的阻力不计,那么在这段时间内人和船的运动情况是( )

A .人匀速走动,船则匀速后退,且两者的速度大小与它们的质量成反比

B .人匀加速走动,船则匀加速后退,且两者的速度大小一定相等

C .不管人如何走动,在任意时刻两者的速度总是方向相反,大小与它们的质量成反比

D .人走到船尾不再走动,船则停下

3.如图所示,放在光滑水平桌面上的A 、B 木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各自在桌面上滑行一段距离后,飞离桌面落在地上。A 的落地点与桌边水平距离0.5m ,B 的落地点距离桌边1m ,那么( )

A .A 、

B 离开弹簧时的速度比为1∶2

B .A 、B 质量比为2∶1

C .未离开弹簧时,A 、B 所受冲量比为1∶2

D .未离开弹簧时,A 、B 加速度之比1∶2

4.连同炮弹在内的车停放在水平地面上。炮车和弹质量为M ,炮膛中炮弹质量为m ,炮车与地面同时的动摩擦因数为μ,炮筒的仰角为α。设炮弹以速度0v 射出,那么炮车在地面上后退的距离为_________________。

5.甲、乙两人在摩擦可略的冰面上以相同的速度相向滑行。甲手里拿着一只篮球,但总质量与乙相同。从某时刻起两人在行进中互相传球,当乙的速度恰好为零时,甲的速度为__________________,此时球在_______________位置。

6.如图所示,在沙堆表面放置一长方形木块A ,其上面再放一个质量为m=0.10kg 的爆竹B ,木块的质量为M=6.0kg 。当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=50cm ,而木块所受的平均阻力为f=80N 。若爆竹的火药质量以及空气阻力可忽略不计,g 取2

/10s m ,求爆竹能上升的最大高度。

参考答案

1.B 砂子和小车组成的系统动量守恒,由动量守恒定律,在初状态,砂子落下前,砂子和车都以0v 向前运动;在末状态,砂子落下时具有与车相同的水平速度0v ,车的速度为v ′,由v M mv v M m '+=+00)(得0v v =',车速不变。

此题易错选C ,认为总质量减小,车速增大。这种想法错在研究对象的选取,应保持初末状态研究对象是同系统,质量不变。

2.A 、C 、D 人和船组成的系统动量守恒,总动量为0,∴不管人如何走动,在任意时刻两者的动量大小相等,方向相反。若人停止运动而船也停止运动,∴选A 、C 、D 。B 项错在两者速度大小一定相等,人和船的质量不一定相等。

3.A 、B 、D A 、B 组成的系统在水平不受外力,动量守恒,从两物落地点到桌边的距离t v x 0=,∵两物体落地时间相等,∴0v 与x 成正比,∴2:1:=B A v v ,即A 、B 离开弹簧的速度比。由B B A A v m v m -=0,可知2:1:=B A m m ,未离开弹簧时,A 、B 受到的弹力相同,作用时间相同,冲量I=F ·t 也相同,∴C 错。未离开弹簧时,F 相同,m 不同,加速度m F a =,与质量成反比,∴2:1:=B A a a 。

4.22

0)(2)cos (m M g mv -μα

提示:在发炮瞬间,炮车与炮弹组成的系统在水平方向上动量守恒

v m M mv )(cos 00--=α, ∴m M m v v -=

α

cos 0 发炮后,炮车受地面阻力作用而做匀减速运动,利用运动学公式,

as v v t 222=-,其中0=t v ,

g

m M g

m M a μμ-=---=)()(, ∴22

0)(2)cos (m M g mv s -=μα

5.0 甲

提示:甲、乙和篮球组成的系统动量守恒,根据题设条件,可知甲与篮球的初动量与乙的初动量大小相等,方向相反,∴总动量为零。由动量守恒定律得,系统末动量也为零。因乙速度恰好为零,∴甲和球一起速度为零。

6.解:爆竹爆炸瞬间,木块获得的瞬时速度v 可由牛顿第二定律和运动学公式求得 Ma Mg f =-,2/620s m a =,s m ah v /332==

爆竹爆炸过程中,爆竹木块系统动量守恒 00=-mv Mv

s m s m m Mv v /320/1.03360=?==

动量守恒定律模块知识点总结

动量守恒定律模块知识点总结 1.定律内容:相互作用的几个物体组成的系统,如果不受外力作用,或者它们受到的外力之和为零,则系统的总动量保持不变。 2.一般数学表达式:''11221122m v m v m v m v +=+ 3.动量守恒定律的适用条件 : ①系统不受外力或受到的外力之和为零(∑F 合=0); ②系统所受的外力远小于内力(F 外 F 内),则系统动量近似守恒; ③系统某一方向不受外力作用或所受外力之和为零,则系统在该方向上动量守恒(分方向动量守恒) 4.动量恒定律的五个特性 ①系统性:应用动量守恒定律时,应明确研究对象是一个至少由两个相互作用的物体组成的系统,同时应确保整个系统的初、末状态的质量相等 ②矢量性:系统在相互作用前后,各物体动量的矢量和保持不变.当各速度在同一直线上时,应选定正方向,将矢量运算简化为代数运算 ③同时性:12,v v 应是作用前同一时刻的速度,''12,v v 应是作用后同—时刻的速度 ④相对性:列动量守恒的方程时,所有动量都必须相对同一惯性参考系,通常选取地球作参考系 ⑤普适性:它不但适用于宏观低速运动的物体,而且还适用于微观高速运动的粒子.它与牛顿运动定律相比,适用范围要广泛得多,又因动量守恒定律不考虑物体间的作用细节,在解决问题上比牛顿运动定律更简捷 例题. 1.质量为m 的人随平板车以速度V 在平直跑道上匀速前进,不考虑摩擦阻力,当此人相对于车竖直跳起至落回原起跳位置的过程中,平板车的速度 ( A ) A .保持不变 B .变大 C .变小 D .先变大后变小 E .先变小后变大 2.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在其中一人向另一人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是 ( B ). A .若甲先抛球,则一定是V 甲>V 乙 B .若乙最后接球,则一定是V 甲>V 乙 C .只有甲先抛球,乙最后接球,才有V 甲>V 乙 D .无论怎样抛球和接球,都是V 甲>V 乙 3.一小型宇宙飞船在高空绕地球做匀速圆周运动如果飞船沿其速度相反的方向弹射出一个质量较大的物体,则下列说法中正确的是( CD ). A .物体与飞船都可按原轨道运行 B .物体与飞船都不可能按原轨道运行 C .物体运行的轨道半径无论怎样变化,飞船运行的轨道半径一定增加 D .物体可能沿地球半径方向竖直下落 4.在质量为M 的小车中挂有一单摆,摆球的质量为m 。,小车(和单摆)以恒定的速度V 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪些说法是可能发生的( BC ). A.小车、木块、摆球的速度都发生变化,分别变为V 1、V 2、V 3,满足(m 。十M )V =MV l 十mV 2十m 。V 3 B .摆球的速度不变,小车和木块的速度变为V 1、V 2,满足MV =MV l 十mV 2 C .摆球的速度不变,小车和木块的速度都变为V ’,满足MV=(M 十m )V ’ D.小车和摆球的速度都变为V 1,木块的速度变为V 2,满足(M +m o )V =(M +m o )V l +mV 2

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

人教版高一化学预科班笔记

第一章从实验学化学 第一节化学实验基本方法 一、化学实验安全 (1) 实验安全措施 ①化学实验中,手上不小心沾上浓硫酸应立即用大量水冲洗,然后涂上3%~5%的NaHCO3;不小心沾上烧碱应立即用大量水冲洗,然后涂上硼酸溶液;②水银洒在桌面上,可洒上硫粉进行回收;③误食重金属离子,可服用大量鸡蛋、牛奶等含蛋白质的食物进行解毒;④误食钡盐溶液,可服用Na2SO4(不可用Na2CO3)解毒。⑤实验中要做到“五防”:防爆炸,防倒吸,防暴沸,防失火,防中毒。⑥有毒、有腐蚀性的药品取用时做到“三不”,即不能用手接触药品、不能把鼻孔凑到容器口去闻药品的气味、不能尝药品的味道。⑦常见的需要水浴加热的实验有:银镜反应、乙酸乙酯的水解。⑧ ⑨做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。⑩进行易燃易爆气体的实验时应注意验纯,尾气应燃烧掉或作适当处理。 (2)掌握正确的操作方法 直接加热:试管坩埚蒸发皿加石棉网:烧杯烧瓶锥形瓶 水浴:---受热均匀 ?实验基本常识 1、量筒为“量出式”容器,量出液体即所需液体体积 容量瓶为“容纳式”仪器,容器中的量即为真实量 2、称量(NaOH称量需将NaOH放在小烧杯中进行称量) 3、洗涤沉淀:洗净沉淀表面可溶物 方法:向过滤器中加水,是水面没过沉淀,洗涤2—3次 检验:将最后一次洗涤的上层清液,加相应的试剂检验是否洗净 二、混合物的分离和提纯 ?过滤 适用类型:液体和不溶物 1贴2低3靠一贴:滤纸紧贴漏斗内壁,二低:滤纸边缘低于漏斗边缘,漏斗中的液面低于滤纸边缘,三靠:烧杯紧靠玻璃棒,玻璃棒紧靠三层滤纸,漏斗的下端紧靠接收滤液的烧杯内壁。 仪器:漏斗 ?蒸发 适用类型:易溶于溶液的物质 原理:溶剂与溶质的挥发性不同,两种物质沸点不同 操作要点:①蒸发皿中溶液量不宜太多(不超过蒸发皿的三分之二) ②加热时不停搅拌(防止液体局部温度过高,造成液滴飞溅)

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

动量守恒定律教学设计

《动量守恒定律》教学设计 一、教学目标: (一)知识与技能 1、能够运用牛顿定律推导动量守恒定律。 2、知道动量守恒定律的适用条件,并会用动量守恒定律解决简单的实际问题。(二)过程与方法 1、在探究推导的过程中培养学生协作学习的能力。 2、运用动量定理和牛顿第三定律推导出动量守恒定律,培养学生的逻辑推理能力。 3、会应用动量守恒定律分析、计算有关问题。 (三)情感、态度与价值观 1、培养实事求是的科学态度和严谨的推理方法。 2、引导学生通过对动量守恒定律的学习,了解归纳与演绎两种思维方法的应用,并体会定律中包含的对称与和谐的美。 二、学情分析: 通过第一、二节的学习,学生已经掌握了动量概念,再加上之前对牛顿第二,第三定律及运动学公式的学习,为本节课的学些打下了坚实的基础。但是由于学生的物理基础不是很好,所以在教学过程中注重基础问题的研究。 重点:运用牛顿定律推导动量守恒定律 难点:动量守恒定律的成立条件 四、教学方法 教师启发、引导、学生讨论、交流 五、教学设计: 引入新课 上节课学习了动量定理,研究了一个物体受到力的作用后,动量怎样变化,例如,站在冰面上的甲乙两个同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化。那么这两个同学的总动量怎样变化呢也就说

说两个或两个以上的物体相互作用时,又会出现怎样的总结果呢这节课我们就要探讨这个问题。 (一)动量守恒定律的推导 过渡:在本章的第一节我们通过对实验现象分析得到:两辆小车在相互作用前后,它们的总动量是相等的,那么我们能否用数学推导来证明一下呢 用多媒体展示下列物理情景:在光滑水平面上做匀速运动的两个小球,质量分是m1和m2,沿着同一直线向相同的方向运动,速度分别是v1和v2,且v1>v2,经过一段时间后,m2追上了m1,两球发生碰撞,碰撞后的速度分别是v′1和v′2

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

普通学生的自述向着北大努力,我选择了不一样的高中三年

普通学生的自述:向着北大努力,我选择了不一样的高中三年! 我是刘畅之,一个彻彻底底成长在普通班的学生。 怀着我不入地狱谁入地狱的悲壮心情,拖着一车教材和练习册,来长郡报到,我绝望地认为这就是高中生活的全部。开学后才发现,地狱的生活其乐融融,每天乐得像个傻子一样,这里跑跑那里看看,放学后和一帮同学横扫路边的小吃摊,课间时凑在一起谈论各自喜欢的歌手,成天玩得没心没肺,不知天高地厚。 这一年我十五岁,打网游,听苦情歌,追美剧追到发疯。 有一次班主任做了一个“你心目中理想的大学”的调查,我在问卷上毫不犹豫地填下“北京大学”这四个字,然后得瑟了好久,仿佛自己一只脚已经跨进了北大校门一样。当时我同桌填的是“清华大学”,他坚持认为清华比北大好,为此我还跟他吵了好久。那时候真的天真得以为考清华北大就像自己当初考长郡那样,只要高三熬熬夜,最后再来个百日大冲刺总会上来的。现在想来真是幼稚,清华北大怎么可能说考就考呢,如果当初不用功读书,只怕考湖大都会成问题。 开学后不久,那份可爱的闲情逸致一点点地被吞噬,我开始后悔初三那个暑假的无所作为,痛恨当初怎么就没报个预科班什么的,别的同学都是一副学过了的样子,而我还在为作业绞尽脑汁,从前可不是这样的啊。从前我可是学得轻松玩得自在,老师喜欢爸妈骄傲,作业在学校就能做完,晚上看看电视上上网,考试照样考得好,怎么突然就成了这个样子呢?数学的难度一下子来了个三级跳,定义域值域奇函数偶函数那都是什么跟什么啊?好几次我还因为做不出题哭鼻子,恨不得把《考一本》撕得稀巴烂,怒气过后,还是不得不很窝囊地回到座位上,继续冥思苦想。 就这样迎来了第一次期中考试,成绩出来,在班级排名13,年级排名248,比想象中的要好,但并不是我想要的。同样是一个脑袋,凭什么别人的就那么好使?同样是一张卷子,凭什么有的人一路做下来顺风顺水还大呼过瘾,而我拼死拼活只能得一点步骤分?我是一个要强的人,我真的不甘心就这样落于人后 这个世界上有很多偶然的事情,但很多偶然里边都藏着必然。 高一上期期末考试,因为暴雪,不得不推迟到下学期开学。我们一家人在乡下过年,由于天冷,我一个人窝在房间里看书复习,扎扎实实从概念入手,课本上的例题被我做了一遍又一遍,辅导书上的题目被我扫得一干二净。题目做多了,一种成就感便油然而生,很多之前怎么也想不明白的东西回头再看,一下子豁然开朗。 开学前的考试,很多题我都有一种他乡遇故人之感,我终于明白了什么叫如鱼得水,原来我也可以一张卷子做下来不喘气不卡壳。所以在得知自己考了班上第一名的时候,我一点也不觉得惊讶,开心倒是真的,回报竟然来得这样快。 正是这次考试给了我莫大的信心,激起了我学习的欲望。如果把人的学问比作一个圆,把圆外的空白比作未知,那么刚开始我只是一个小圆,因为对未知了解甚少,很容易感到满足。但渐渐地,当这个圆慢慢变大,我才发现,其实自己不知道的比知道的要多得多,并开始对探索未知充满了兴趣。

2020高考物理重难点07 动量守恒定律(解析版)

重难点07 动量守恒定律 【知识梳理】 一、动量守恒定律的条件及应用 1.动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 2.动量守恒定律的适用条件 (1)前提条件:存在相互作用的物体系; (2)理想条件:系统不受外力; (3)实际条件:系统所受合外力为0; (4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力; (5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。 3.动量守恒定律的表达式 (1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和; (2)Δp1=–Δp2,相互作用的两个物体动量的增量等大反向; (3)Δp=0,系统总动量的增量为零。 4.动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。 5.应用动量守恒定律解题的步骤: (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); (3)规定正方向,确定初、末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明。 二、碰撞与动量守恒定律 1.碰撞的特点 (1)作用时间极短,内力远大于外力,总动量总是守恒的。 (2)碰撞过程中,总动能不增。因为没有其他形式的能量转化为动能。 (3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。 (4)碰撞过程中,两物体产生的位移可忽略。 2.碰撞的种类及遵从的规律

3.关于弹性碰撞的分析 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。 在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2 221101v m v m v m +=① 2 222112012 12121v m v m v m +=② 由①②可得:02 12 11v m m m m v +-= ③ 02 11 22v m m m v += ④ 利用③式和④式,可讨论以下五种特殊情况: a .当21m m >时,01>v ,02>v ,两钢球沿原方向原方向运动; b .当21m m <时,01v ,质量较小的钢球被反弹,质量较大的钢球向前运动; c .当21m m =时,01=v ,02v v =,两钢球交换速度。 d .当21m m <<时,01v v ≈,02≈v ,m 1很小时,几乎以原速率被反弹回来,而质量很大的m 2几乎不动。例如橡皮球与墙壁的碰撞。 e .当21m m >>时,0v v ≈,022v v ≈,说明m 1很大时速度几乎不变,而质量很小的m 2获得的速度是原来运动物体速度的2倍,这是原来静止的钢球通过碰撞可以获得的最大速度,例如铅球碰乒乓球。 4.一般的碰撞类问题的分析 (1)判定系统动量是否守恒。 (2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。

【最新】培训班延迟上课通知word版本 (3页)

本文部分内容来自网络整理所得,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即予以删除! == 本文为word格式,下载后可方便编辑修改文字! == 培训班延迟上课通知 通知是一种使用范围较广的文体。凡需要特定机关和人员知道、办理的事宜,都可以用通知。但也不能因为通知便于使用而滥用通知。下面是培训班延迟上课通知,欢迎参考阅读! 培训班延迟上课通知1 因培训教室改造和新风系统安装,原定于9月4日开班的常德市文化馆公益培训班推迟至9月11日(星期一),不便之处,敬请谅解!另,除电脑班外(招生简章另行通知),其他班级无需重新报名,延续上个学期的班级与上课时间,请各位学员相互转告。 常德市文化馆 20xx年8月29日 培训班延迟上课通知2 由于参加马尔代夫旅游的伙伴昨日刚回国,经公司商讨决定,将21日-23日总裁班报名截止时间调整到4月18日晚24点整,请大家积极报名参加。为确保本次会议圆满顺利完成,保障每个人的食宿安排,参会人员必须凭胸牌入场,逾期系统端口关闭不再接受报名,请大家把握时机,相互转告! 特此通知! 商学院 20xx年4月15日

培训班延迟上课通知3 由于10月25日为周六,10月份地税局纳税人学校新办企业培训班顺延至10月27日早上8:30在市地税局四楼视频会议开班,请各位纳税人准时参加。 特此通知。 铜陵市地方税务局 20xx年10月20日 培训班延迟上课通知4 我校开办初中升高中衔接(高一预科)班和高中一年级升高二课程培训补习班,原定上课时间:高一升高二数理化补习班7月20日至8月9日,高一预科班7月9日至8月14日,更改为:高一升高二数理化补习班7月22日至8月11日,高一预科班7月11日至8月16日 培训科目:语文、英语、数学、物理、化学、历史、地理,聘请重点高中把关教师任教,欢迎同学们前来咨询、学习。 校址:人民广场对面百佳惠楼上(二楼) 电话:188XXXX828(黄老师) XX县XX培训学校 二〇XX年X月X日 附:通知的格式 通知的格式,包括标题、称呼、正文、落款。

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得 25m /s v = 考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求: ?子弹射入木块 时的速度; ?弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2) Mm a M m M m ++b 【解析】 试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得: 解得:

《高一决定高考》

目录 新高一衔接学习是必须的吗?---------------------------3 学大教育新高一衔接课程简介---------------------------8 数学篇------------------------------------------10 物理篇------------------------------------------13 化学篇------------------------------------------14 英语篇------------------------------------------17 家长和学生关心的问题回答----------------------------20

初中没学好, 高中是否一定学不好? 初中学得好, 高中是否一定学得好? 其实, 转折 就在新高一! 不, 就在高一前的这个暑假!

新高一衔接学习是必须的吗? 实例一 王同学,初中在一所市重点就读,年级排名30名以内。中考结束后,顺利升入本校高中部。 初三暑假,家长感觉孩子整个初中的学习尤其初三一年比较辛苦,就让孩子过了一个充分放松的暑期,参加了一个国际游学夏令营后,基本没有安排过学科方面的学习。 高一开学后,学校组织了分班考试,王同学突然感觉初三的知识不是那么熟练了,忘记了很多,涉及到高中需要的知识部分,更是回答不上来。结果以全年级400名的成绩分到了普通班。 这个名次延续下去的话,根据本校高中的高考录取排名,只能有望上一本线附近的院校。家长和孩子都感觉到了问题的严重性,就开始奋起直追。到期中考试,孩子的成绩排名追到了200名以内,班主任和学校都对孩子的巨大进步提出了表扬。但家长和孩子都明白这

动量守恒定律

动量、动量守恒定律 所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。 例1从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是: aA.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小 B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 【错解】选B。 【错解原因】认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t=△P,认为F大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量改变量大,所以,容易破碎。 【分析解答】设玻璃杯下落高度为h。它们从h高度落地瞬间的 量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子 所以掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。正确答案应选C,D。 【评析】判断这一类问题,应从作用力大小判断入手,再由动量 大,而不能一开始就认定水泥地作用力大,正是这一点需要自己去分析、判断。

例2 把质量为10kg的物体放在光滑的水平面上,如图5-1所示,在与水平方向成53°的N的力F作用下从静止开始运动,在2s内力F对物体的冲量为多少?物体获得的动量是多少? 【错解】错解一:2s内力的冲量为 设物体获得的动量为P2,由动量定理 【错解原因】对冲量的定义理解不全面,对动量定理中的冲量理解不移。 错解一主要是对冲量的概念的理解,冲最定义应为“力与力作用时间的乘积”,只要题目中求力F 的冲量,就不应再把此力分解。这类解法把冲量定义与功的计算公式W=Fcosa·s混淆了。 错解二主要是对动量定理中的冲量没有理解。实际上动量定理的叙述应为“物体的动量改变与物体所受的合外力的冲量相等”而不是“与某一个力的冲量相等”,此时物体除了受外力F的冲量,还有重力及支持力的冲量。所以解错了。 【分析解答】首先对物体进行受力分析:与水平方向成53°的拉力F,竖直向下的重力G、竖直向上的支持力N。由冲量定义可知,力F的冲量为: I F=F·t=10×2=10(N·s) 因为在竖直方向上,力F的分量Fsi n53°,重力G,支持力N的合力为零,合力的冲量也为零。所以,物体所受的合外力的冲量就等干力F在水平方向上的分量,由动量定理得: Fcos53°·t=P2-0 所以P2=Fcos53°·t=10×0.8×2(kg·m/s) P2=16kg·m/s

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

预科班高二生物考

北晨学校高二理科预科班8月月考考试 生物试题 本试卷共两大部分,满分100分,答题时间90分钟 第一卷 一、选择题(每题2分,共计70分) 1.关于人体内环境的描述中,错误的是() A.血浆的主要成分包括水、葡萄糖、血红蛋白和激素等 B.免疫对内环境稳态具有重要作用 C.HCO3_、HPO42_等参与维持血浆pH相对稳定 D.淋巴细胞生活的液体环境是淋巴、血浆等 2.右图是人体局部内环境示意图。以下各项中正确的是 A.某人长期营养不良,则会引起C液减少 B.3处细胞的内环境为淋巴 C.新陈代谢主要发生在1中 D.A液中的02进入组织细胞中被利用至少要通过3层生物膜 3.在安静状态下,血浆、组织液和细胞内液中的O2和CO2浓度关系分别为() A.血浆>组织液>细胞内液,血浆<组织液<细胞内液 B.血浆>组织液=细胞内液,血浆=组织液>细胞内液 C.血浆>组织液<细胞内液,血浆<组织液>细胞内液 D.血浆<组织液=细胞内液,血浆>组织液=细胞内液 4.如图为高等动物的体内细胞与外界环境的物质交换 示意图,下列叙述正确的是 A.①③都必须通过消化系统才能完成 B.人体的体液包括内环境和细胞外液 C.细胞与内环境交换的④为养料和氧气 D.⑥可表述为:体内细胞可与外界环境直接进行物 质交换 5.下列关于人体内环境及其稳态的叙述,正确的是 A.葡萄糖以自由扩散方式从消化道腔进入内环境 B.CO32-、HPO4-对血浆PH相对稳定有重要作用 C.内环境的温度一般不随气温变化而变化 D.人体的内环境即体液 6.下列关于神经兴奋的叙述,错误的是 A.兴奋部位细胞膜两侧的电位表现为膜内为正、膜外为负 B.神经细胞兴奋时细胞膜对Na+通透性增大 C.兴奋在反射弧中以神经冲动的方式双向传递 D.细胞膜内外K+、Na+分布不均匀是神经纤维兴奋传导的基础 7.下表表示人体组织液和血浆的物质组成和含量的测定数据。叙述不正确的是 8.人体细胞与外界环境之间进行物质交换,必须经过的系统是() ①消化系统②呼吸系统③神经系统④泌尿系统 ⑤循环系统⑥运动系统⑦生殖系统⑧内分泌系统 A.①②③④ B.⑤⑥⑦⑧ C.①②④⑤ D.③⑥⑦⑧ 9.某大学的新生在军训长途行军时,好多同学脚底部都打了泡,泡破后,流出的 淡黄色液体来源于A.血浆B.组织液C.淋巴D.细胞外液 10.神经系统的结构和功能的基本单位是 A.神经元B.神经纤维C.反射弧D.神经 11.下列生理活动中,必须有大脑皮层参与的是 A.排尿和排便 B.呼吸急促C.心血管运动 D.谈虎色变 12.关于内环境与稳态的叙述,正确的是 A、内环境主要由血液、组织液和淋巴组成 B、内环境中多余的H+主要从肺排出 C、血浆是内环境中最活跃的部分 D、Na+、K+以重吸收方式从消化道进入内环境 13.下图表示神经元联系的一种形式,与此相关的表述正确的是 A.刺激a处,会导致b处兴奋或抑制,c处也发生电位变化 B.刺激b处,不会引起a和c处发生电位变化 C.刺激c处,a和b处都会发生兴奋 D.刺激a处,b、c同时兴奋或抑制 14.在一个以肌肉为效应器的反射弧中如果传出神经受损,而其他部分正常,感受 器受到刺激后将表现为() A.既有感觉,又能运动B.失去感觉,同时肌肉无收缩能力 外界环境食物 O2 CO2 废物 内 环 境 组织 细胞 ① ② ③ ④ ⑤ ⑥

(完整版)《动量守恒定律》说课稿

《动量守恒定律》说课稿 一、教材分析: (一)教材的内容、地位和作用 动量守恒定律是自然界普遍适应的基本规律之一,在自然界中,大到天体的相互作用,小到基本粒子间的作用,都遵循动量守恒定律,它是宏观世界和微观世界都遵循的共同规律,应用非常广泛.因而是物理教学的重点内容。它比牛顿定律发现的早,应用比牛顿定律更为广泛:可以适用于牛顿定律不能够解决的接近光速的运动问题和微观粒子的相互作用;在牛顿定律的应用范围内的某些问题,如碰撞、反冲及天体物理中的“三体问题”等,动量守恒定律也更能够体现它简单、方便的优点。动量守恒定律作为高中物理第三册选修课(人教版)的重要内容来学习,可以加深学生对物理基本体系的了解,掌握研究问题的方法,提高解决问题的能力。 (二)教学目标及重难点分析 高中物理课程标准对这一节的内容提出了如下要求: 1、通过实验,理解动量和动量守恒定律,能用动量守恒定律定量分析一维碰撞问题。知道动量守恒定律的普遍意义。 2、通过物理学中的守恒定律,体会自然界的和谐与统一。 结合三维教学目标,提出本次教学设计的目的: 1、知识与技能:掌握运用动量守恒定律的一般步骤。 2、过程与方法:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。 3、情感、态度与价值观:学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。 学习本节的主要目的是为了掌握动量守恒定律这一应用广泛的自然规律,要达到这目的,就必须让每个学生正确理解其成立的条件和特点,因此,确定本节的教学重点和难点为: 1、掌握动量守恒定律及成立的条件。 2、应用动量守恒定律解决问题。

动量守恒定律的典型例题

动量守恒定律的典型例题 【例1】 把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些? [] A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.车.枪和子弹组成的系统动量守恒 D.车.枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【例2】 一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s 2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离. 【例3】 一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为 [] 【例4】 质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二

个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何? 【例5】 甲.乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s 的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰. 【例6】 两辆质量相同的小车A和B,置于光滑水平面上,一人站在A 车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A 车,仍与A车保持相对静止,则此时A车的速率 [] A.等于零B.小于B车的速率 C.大于B车的速率D.等于B车的速率【例7】甲.乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲.乙两船的速度变化多少? 【分析】 由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系

相关文档
最新文档