简述高光谱遥感及其进展与应用综述

简述高光谱遥感及其进展与应用综述
简述高光谱遥感及其进展与应用综述

高光谱遥感及其进展与应用综述

摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在植被生态、大气科学、地质矿产、海洋、农业等领域的应用。

关键词:高光谱遥感;发展;应用

高光谱遥感(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一,是当前遥感的前沿技术。高光谱遥感在光谱分辨率上具有巨大的优势,被称为遥感发展的里程碑。世界各国对此类遥感的发展都十分重视,随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。本文系统地阐述了高光谱遥感及其发展的概况,并简要介绍了高光谱遥感技术的主要应用。

1 高光谱遥感

孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。[1]

高光谱遥感具有较高的光谱分辨率,通常达到10~2λ数量级。[2]

1.1 高光谱遥感特点

综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点:

(1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。

[3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。[4]

(2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。

(3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。

(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。

(5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。

1.2 高光谱遥感的优势

高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:

(1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取地物近似连续的光谱反射率曲线,与地面实测值相匹配,将实验室地物光谱分析模型应用到遥感过程中。

(2)地表覆盖的识别能力极大提高。高光谱数据能够探测具有诊断性光谱吸收特征的物质,能够准确区分地表植被覆盖类型、道路的铺面材料等。

(3)地形要素分类识别方法灵活多样。影像分类既可以采用各种模式识别方法,如贝叶斯判别、决策树、神经网络、支持向量机等,又可以采用基于地物光谱数据库的光谱匹配方法。分类识别特征,可以采用光谱诊断特征,也可以进行特征选择与提取。

(4)地形要素的定量或半定量分类识别成为可能。在高光谱影像中,能估计出多种地物的状态参量,提高遥感高定量分析的精度和可靠性。[5]

2 高光谱遥感的发展

2.1 高光谱遥感在国外的发展

自80年代以来,美国已经研制了三代高光谱成像光谱仪。1983年,第一幅由航空成像光谱仪(AIS-1)获取的高光谱分辨率图像的正式出现标志着第一代高光谱分辨率传感器面世。

第一代成像光谱仪(AIS),由美国国家航空和航天管理局(NASA)所属的喷气推进实验室设计,共有两种,AIS-1(1982年~1985年,128波段)和AIS-2(1985年~1987年,128波段),其光谱覆盖范围为1.2~2.4μm。

1987年,由NASA喷气推进实验室研制成功的航空可见光/红外光成像光谱仪(AVIRIS)成为第二代高光谱成像仪的代表。与此同时,加拿大、澳大利亚、日本等国家竞相投入力量研究成像光谱仪。在AVIRIS之后,美国地球物理环境研究公司(GER)又研制了1台64通道的高光谱分辨率扫描仪(GERIS),主要用于环境监测和地质研究。其中63个通道为高光谱分辨率扫描仪,第64通道是用来存储航空陀螺信息。

第三代高光谱成像光谱仪为克里斯特里尔傅立叶变换高光谱成像仪(FTHSI),其重量仅为35kg,采用256通道,光谱范围为400~1050nm,光谱分辨率为2~10nm,视场角为150°。而于1999年和2000年发射升空的中分辨率成像光谱仪(MODIS和Hyperion)都已经成为主要的应用数据来源。[3]

经过20世纪80年代的起步与90年代的发展,一系列高光谱成像系统在国际上研制成功并在航空平台上获得了广泛的应用。至20世纪90年代后期,在高光谱遥感应用的一系列重要技术问题,如高光谱成像信息的定标和定量问题,成像光谱图像信息可视化及多维表达问题,图像——光谱变换和光谱信息提取、大数据量信息处理、光谱匹配和光谱识别、分类等问题得到基本解决之后,高光谱遥感一方面由实验研究阶段逐步转向实际应用阶段,而在技术发展方面则由以航空系统为主开始转向于航空和航天高光谱分辨率遥感系统相结合的阶段。迄今为止,国际上已有许多套航空成像光谱仪处于运行状态,在实验、研究以及信息的商业化方面发挥着重要作用。

2.2 高光谱遥感在国内的发展

我国紧密跟踪国际高光谱遥感技术的发展,并结合国内不断增长的应用需求,于20世纪80年代中后期着手发展自己的高光谱成像系统。主要的成像光谱仪有中科院上海技术物理研究所研制的推扫式成像光谱仪(PHI)系列、实用型模块化成像光谱仪(OMIS)系列、中科院长春光机所研制的高分辨率成像光谱仪(C2HR IS)和西安光机所研制的稳态大视场偏振干涉成像光谱仪(SLP IIS) 。

中科院上海技术物理研究所研制的中分辨率成像光谱仪(CMOD IS)于2002年随“神舟”三号发射升空,并成功获取航天高光谱影像,其获取影像从可见光到近红外共30波段,中红外到远红外的4波段,空间分辨率为500m。

2007年10月年发射的“嫦娥1号”卫星已携带中科院西安光机所研制的干涉成像光谱仪升空,用于获取月球表面二维多光谱序列图像及可分辨地元光谱图,通过与其他仪器配合使用对月球表面有用元素及物质类型的含量与分布进行分析,获得的数据用于编制各元素的月面分布图。

从2007年到2010年,我国将组建环境与灾害监测预报小卫星星座,将携带超光谱成像仪,采用0.45~0.95μm波段,平均光谱分辨率为5nm,地面分辨率为100m。我国在积极研制具有自主知识产权的成像光谱仪的同时,在地物光谱数据技术、高光谱影像分析技术等方面的研究中也取得了部分的成果。

20世纪90年代初期,中科院安徽光机所、遥感所等单位对大量的典型地物进行了波谱采集,建立了我国第一个综合性“地物波谱特性数据库”。

1998年,中国国土资源航空物探与遥感中心建立了“典型岩石矿物波谱数据库”,其中包含了我国主要的典型岩石和矿物500余种。2000年,中国科学院遥感所基于GIS和网络技术研制了典型地物波谱数据库及其管理系统,记录了10000多条地物波谱,并能动态生成相应的波谱曲线和遥感器模拟波段,实现了波谱数据库与“3S”技术的链接。[5]

3 高光谱遥感的应用领域

通过阅读相关文献,高光谱遥感在以下领域有重要应用。

3.1 在植被和生态研究中的应用

高光谱遥感能够提供图像每个像元高的光谱分辨率,使一些在常规宽波段遥感中不能探测到的物质,在高光谱遥感中能被探测。高光谱遥感数据能够精确估算关键生态系统过程中的生物物理和生物化学参量,特别是在大尺度上冠层水分、植被干物质和土壤生化参量的精确反演,在生态学研究中有广阔的应用前景。 在生态系统方面,高光谱遥感还应用于生态环境梯度制图、光合作用色素含量提取、植被干物质信息提取、植被生物多样性监测、土壤属性反演、植被和土地覆盖精细制图、土地利用动态监测、矿物分布调查、水体富营养化检测、大气污染物监测、植被覆盖度和生物量调查、地质灾害评估等等。

植被高光谱遥感数据,按获取方式的不同,采用相应的高光谱遥感信息处理技术处理后可用于植被参数估算与分析,植被长势监测及估产等领域。另外,高光谱的出现使植物化学成分的遥感估测成为可能。

3.2 在大气科学研究中的应用

高光谱遥感具有非常高的光谱分辨率,它不仅可以探测到常规遥感更精细的地物信息,而且能探侧到更精细的大气吸收特征。大气的分子和粒子成份在反射光谱波段反映强烈,能够被高光谱仪器监测。高光谱遥感技术在大气研究中的突出应用是云盖制图、云顶高度与云层状态参数估算、大气水汽含量与分布估算、气溶胶含量估计以及大气光学特性评价等。利用高光谱数据,在准确探测大气成分的基础上,能提高天气预报、灾害预警等的准确性与可靠性。

3.3 在地质矿产中的应用

区域地质制图和矿产勘探是高光谱技术主要的应用领域之一,也是高光谱遥感应用中最成功的一个领域。80年代以来,高光谱遥感被广泛地应用于地质、矿产资源及相关环境的调查中。

最近15 年来的研究表明,高光谱遥感可为地质应用的发展做出重大贡献,尤其是在矿物识别与填图、岩性填图、矿产资源勘探、矿业环境监测、矿山生态恢复和评价等方面。 高光谱遥感能成功地应用于地质领域的主要原因是高光谱遥感有许多不同于宽波段遥感的性质,各种矿物和岩石在电磁波谱上显示的诊断性光谱特征可以帮助人们识别不同矿物成分,高光谱数据能反映出这类诊断性光谱特征。

随着高光谱遥感地质应用的不断扩展和日益深入,高光谱遥感技术和方法也在不断改进。近年来在基于高光谱数据的矿物精细识别、高光谱影像地质环境信息反演、基于高光谱遥感的行星地质探测等方面取得了突出的进展。高光谱遥感在地质成因环境探测、蚀变矿物与矿化带的探测、成矿预测、岩性的识别与分类、油气资源及灾害探测、高光谱植被重金属污染探测等方面也有应用。

3.4 在海洋研究中的应用

随着科学技术的发展,高光谱遥感已成为当前海洋遥感前沿领域。由于中分辨率成像光谱仪具有光谱覆盖范围广、分辨率高和波段多等许多优点,因此已成为海洋水色、水温的有效探测工具。它不仅可用于海水中叶绿素浓度、悬浮泥沙含量、某些污染物和表层水温探测,也可用于海冰、海岸带等的探测。

国内海洋遥感应用基础研究主要是一些数学模型的构建。关于如何解决水体的低反射率、大气对蓝紫波段光谱的散射影响等难题的研究还未涉足。在海洋水质监测应用方面,只有可见光光谱能够观测水下的状况。另外,陆源污染、海水养殖、滩涂等海岸带典型要素的光谱特性研究工作也在开展,研究人员以航空高光谱图像为数据源,选取陆源污染、海水养殖、滩涂为监测要素,进行上述要素的光谱波段敏感性研究,试图获得其探测的最佳波段,并进一步发展准确、快速识别和探测技术。在海洋表面温度测量、海洋表层悬浮泥沙浓度的定性或半定量的观测、海洋动力现象的研究等方面都开展了相应的研究。

国际上开展的主要研究有:海洋碳通量研究,认识其控制机理和变化规律;海洋生态系统与混合层物理性质的关系研究;海岸带环境监测与管理。[4]

3.5 在农业方面的应用

高光谱遥感技术的出现拓宽了遥感信息定量获取新领域,逐渐成为农业遥感应用的重要前沿技术手段之一。农业遥感应用中,充分利用高光谱图谱合一的优点,能够精准监测作物长势,为精准农业服务,特别是作物长势评估、灾害监测和农业管理等方面。利用高光谱遥感数据能准确地反映田间作物本身的光谱特征以及作物之间光谱差异,可以更加精准地获取一些农学信息,如作物含水量、叶绿素含量、叶面积指数(LAI)等生态物理参数,从而方便地预测作物长势和产量。

目前,高光谱遥感技术在农业遥感应用中的研究取得了较大进展,主要研究包括以下方面:作物叶片光谱特征研究、作物分类与识别、作物生态物理参数反演与提取、作物养分诊断与监测研究、作物长势监测与产量预测、农业遥感信息模型研究、农业灾害监测。

随着精准农业研究的深入,遥感光谱分辨率和空间分辨率的不断提高,今后高光谱遥感在农业方面的应用从理论走向业务化运作,特别是简单实用的高光谱农学信息提取与农情监测模型的设计与推广,将成为一个主要发展方向。[2]

3.6 在其他领域的应用

高光谱在其他领域也有广泛应用。如城市下垫面特征和环境,高光谱遥感的发展使得人们有能力对城市地物的光谱特性进行深人研究,人们用实验室光谱、地物光谱、航空和航天的高光谱遥感器对城市的光谱进行了一系列的深人分析。研究的内容包括城市地物的光谱特性及

可分性,为城市环境遥感分析及制图提供基础。一些研究人员利用高光谱数据结合光谱检测算法对城市地物分类进行了研究。[9]

在军事领域,最为先进技术,高光谱影像的军事应用主要集中在目标侦察、近海环境监测、伪装与反伪装和打击效果评估。

在土壤质量信息监测方面,高光谱遥感主要用于获取土壤质量信息,如土壤有机质的反射光谱特征、土壤水分与土壤反射光谱关系、土壤氧化铁的光谱反射特性等。通过对土壤理化性质与土壤精细光谱信息的定量分析,进行土壤的特性参数评价。

4 结束语

高光谱遥感以其光谱分辨率高、图谱合一的特点受到了国内外研究者的广泛关注。从二十世纪八十年代开始到现在的二十多年中,无论在成像光谱仪等硬件方面还是在图像处理系统等软件方面都得到了的迅速的发展。高光谱遥感的发展历史虽然只有短短十年左右的时间,但在很多国家、许多领域已得到了越来越广泛的应用。目前主要应用于植被生态、大气、地质、海洋、农业等领域。

迄今为止,国内外常用的成像光谱仪还是以航空机载的为主,要进入实用阶段,需要由航空遥感转向卫星遥感。所以,未来携带更高光谱和空间分辨率成像光谱仪的卫星会陆续发射。当前,面向高光谱遥感应用,发展以地物精确分类、地物识别、地物特征信息提取为目标的高光谱遥感信息处理和定量化分析模型,提高高光谱数据处理的自动化和智能化水平,开发专用的高光谱遥感数据处理分析软件系统和地物光谱数据库仍是高光谱遥感研究的主要任务,旨在将高光谱遥感更精确地应用于更多更广的领域。

参考文献:

[1]向娟,李钢.高光谱遥感影像管理系统的设计与实现[J].现代测绘,2008.31(2):6~8.

[2]姚云军,秦其明,张自力,李百寿.高光谱技术在农业遥感中的应用研究进展[J].农业

工程学报,2008,24(7):301~305.

[3]袁迎辉,林子瑜.高光谱遥感技术综述[J].中国水运,2007,7(8):155~57.

[4]娄全胜,陈蕾,王平,张晨,谢健.高光谱遥感技术在海洋研究的应用及展望[J].海洋湖沼

通报,2008(3):168~172.

[5]杨国鹏,余旭初,冯伍法,刘伟,陈伟.高光谱遥感技术的发展与应用现状[J].测绘通报, 2008(10):1~4.

[6]魏娜,姚艳敏,陈佑启.高光谱遥感土壤信息提取与挖掘研究[J].中国农学通报,

2008,24(10):491~495.

[7]岳跃民,王克林,张兵,陈正超.高光谱遥感在生态系统研究中的应用进展[J].遥感技术

与应用, 2008,23(4):471~476.

[8]李志忠,杨日红,党福星,张显峰,谭炳香,赵慧洁.高光谱遥感卫星技术及其地质应用[J]. 地质通报,2009,28(2~3):271~277.

[9]束炯,王强,孙娟.高光谱遥感的应用研究[J].华东师范大学学报(自然科学版),

2006(4):1~7.

高光谱遥感综述

高光谱遥感及其发展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 1高光谱遥感 高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它的基础是测谱学。测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。 1.1高光谱遥感的特点 (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。 (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2高光谱的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势: (1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取地物近似连续的光谱反射率曲线,与地面实测值相匹配,将实验室地物光谱分析模型应用到遥感过程中。 (2)地表覆盖的识别能力极大提高。高光谱数据能够探测具有诊断性光谱吸收特征的物质,能够准确区分地表植被覆盖类型、道路的铺面材料等。

高光谱遥感技术的发展与展望

高光谱遥感技术的发展与展望 中科院上海技术物理研究所 引言 高光谱遥感技术,又称成像光谱遥感技术,是20世纪最后20年中遥感领域最重要的发展之一,它将传统遥感的成像技术和物理中的光谱分析技术有机结合起来,利用图像和光谱二合一(图谱和一)的优势,在探测物体空间特征的同时,研究地球表层物质特征,识别其类型,进行物质成分分析。十几年来,高光谱成像技术和理论一直是遥感对地观测领域内一个活跃的研究和发展方向,随着本世纪初多个星载高光谱成像仪器的发射和实用化机载商业系统的出现,高光谱遥感图像数据开始进入主流遥感数据源的行列,越来越多的用户将在资源管理、农林矿业调查、环境监测等方面发现其独特的作用。 高光谱遥感技术属于多学科交叉技术,主要由信息获取系统——“成像光谱仪”或“高光谱成像仪”和高光谱图像数据处理系统两大部分组成。成像光谱仪的突出特点是:光谱分辨力高、空间分辨力高,波段数多,数据量大,因此高光谱图像数据包含的地物信息更加丰富,要充分发挥高光谱数据的潜能,必须深刻全面地了解要测量的地表物质的光谱特性及其与高光谱传感器的真实测量值之间的关系,并开发适合高光谱数据特点的严密、精确的数据处理方法和理论。正是高光谱成像设备性能的不断提高和高光谱遥感图像数据处理技术的进步促进了高光谱遥感技术实用化的进程,这两大支撑技术的进一步发展也是该技术的应用能否走向辉煌的保证。 1.高光谱遥感的原理 任何物质都会反射、吸收、透射和辐射电磁波,且不同的物体对不同波长的电磁波的吸收、反射或辐射特性是不同的,物质的这种对电磁波固有的波长特性叫光谱特性,是由物质本身包含的原子、分子与电磁波的关系决定的,因此分析物质的光谱曲线是识别物质的有效手段。遥感成像光谱学所研究的波长范围包括可见光、近红外、短波红外,以及中-热红外波段,在可见光、近红外和短波红外波段,地表物质以反射太阳光能量为主,固体盐矿物质、水体、植被、冰雪、土壤等物质都有诊断性识别信息的特征谱,而在热红外区,地表物质以热辐射为主,其辐射光谱也可以作为矿物岩石等的物质识别的判据[ ]。本文主要介绍反射光的高光谱图像。 反映物质差别的特征光谱的吸收峰或反射峰的宽度一般在5~50nm左右[ ],且越精细的物质分类需要越高的光谱分辨力,而传统的多光谱遥感数据源的光谱分辨力(几十到几百nm)显然无法满足需要,必须采用高光谱图像数据,例如图1为三条光谱曲线,分别属于健康叶面,病害叶面和松软土地,其中土地和叶面的光谱差别很大,利用多光谱数据就可以区分,而两种状况的叶面光谱差别比较小,只能利用光谱分辨力更高的数据才能区分。目前国际上典型的高光谱成像仪,包括我国上海技术物理研究所研制高光谱成像仪的光谱分辨力都优于5-20nm,基本满足地物分类的要求。 图1 光谱曲线与相应的地物波长 反射率

遥感原理与应用知识点

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用. 高光谱遥感技术的介绍及应用 在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人 类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,

遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文 简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常 <10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪 为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点

同其他常用的遥感手段相比 ,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度 < 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如 AVIRIS在 0. 4~214 波段范围内提供了224 个波段。研究表明许多这是传统的多光谱等。40 nm~20地物的吸收特征在吸收峰深度一半处 的宽度为 遥感技术所不能分辨的(多光谱遥感波段宽度在 100~200 nm 之间),而高光 谱遥感甚至光谱分辨率更高的超光谱遥感却能对地物的吸收光谱特征进行很好的识别,这使得过去以定性、半定量的遥感向定量遥感发展的进程被大大加快。另外,在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以 使高光谱图像中的每一个像元在各通道的灰度值都能产生一条完整、连续的光谱曲线,即所谓的“谱像合一”,它是高光谱成像技术的一大特点。 2)、由于波段众多,波段窄且连续,相邻波段具有很高的相关性,使得高光数据

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

遥感技术综述

遥感技术综述 遥感是指非接触的,远距离的探测技术。一般指运用传感器/遥感器对物体的电磁波的辐射、反射特性的探测,并根据其特性对物体的性质、特征和状态进行分析的理论、方法和应用的科学技术。遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。它是60年代在航空摄影和判读的基础上随航天技术和电子计算机技术的发展而逐渐形成的综合性感测技术。任何物体都有不同的电磁波反射或辐射特征。 一、遥感技术的基本内容 遥感可按数据获取、处理、分析和应用的整个过程中的主要内容分类。遥感技术包括五个方面的内容: 传感器研制、数据获取、数据处理、信息提取和遥感应用。从这几方面的内容可见,遥感是一个多学科交叉的产物。 二、遥感技术的应用 遥感技术已广泛应用于农业、林业、地质、海洋、气象、水文、军事、环保等领域。在未来的十年中,预计遥感技术将步入一个能快速,及时提供多种对地观测数据的新阶段。遥感图像的空间分辨率,光谱分辨率和时间分辨率都会有极大的提高。其应用领域随着空间技术发展,尤其是地理信息系统和全球定位系统技术的发展及相互渗透,将会越来越广泛。 1、在地质找矿中的应用 遥感地质找矿是遥感信息获取含矿信息提取以及含矿信息成矿分析与应用的过程。(1) 遥感岩石矿物识别 遥感岩矿识别技术非常适宜于植被稀少基岩裸露区的区域性地质。 (2) 矿化蚀变信息提取 矿化蚀变信息提取技术对于地质工作程度低的西部地区在一定程度上相当于区域化探扫面的功效,具体运用时应注意多种矿化蚀变信息提取方法的结合。 (3) 地质构造信息提取 (4) 植被波谱特征的找矿应用 高植被覆盖区遥感地质找矿可以结合植物波谱信息和植物地球化学方法来进行实践证明,对寻找隐伏矿床卓有成效但目前仍主要处于研究阶段。 2、在土地荒漠化监测中的应用 20世纪70年代,国外开始使用遥感技术进行土地荒漠化的监测。如阿根廷完全基于遥感手段对土地荒漠化的状态进行了评估;Tripathy等利用MSS和印度资源卫星(IRS)数据对印度古尔伯加的土地荒漠化进行了评价;Michael等应用遥感技术结合土地荒漠化的理论,通过对荒漠化动态变化规律的监测编制土地退化野外调查手册。我国从20世纪70年代开始利用国外卫星数据进行资源调查和灾害环境的监测80年代初期开始运用遥感技术进行有关土地荒漠化的资源调查 三、遥感科学技术的发展趋势 随着科学技术的进步,光谱信息成像化,雷达成像多极化,光学探测多向化,地学分析智能化,环境研究动态化以及资源研究定量化,大大提高了遥感技术的实时性和运行性,使其向多尺度、多频率、全天候、高精度和高效快速的目标发展。

遥感原理与应用实习

学号xxxx 天津城建大学 实习报告 遥感原理与应用实习 起止日期:2013 年12 月23日至2014年1月3 日 学生姓名Xx 班级XX 成绩 指导教师(签字) XX学院 2014年1 月3日

一、实习目的 “遥感原理与图像处理”课程是测绘工程专业的一门重要专业课,遥感信息是测绘、资源调查、环境监测、灾害评价诸方面应用的主要数据源。已在科学研究、工农业生产、军事、公安、医疗卫生、教育等许多领域得到广泛应用,产生了巨大的经济效益和社会效益,对推动社会发展,改善人们生活水平都起到了重要作用。未来要建立的数字地球是对真实地球及其相关现象数字化描述的一个虚拟地球。遥感技术将为数字地球提供动态的高分辨率、高光谱影像,用遥感影像生成的三维数字地面模型(DEM),以及地物和环境的各种属性数据等一些数字地球中最基础的数据。 “遥感实习”目的是培养学生进行遥感技术应用和图像数字处理的实际操作能力。要求了解一些基本的地物波谱反射率的野外测定方法,理解遥感图像目视解译,了解航天(或航空)像片识读与野外调绘。 二、实验项目基本要求 1.熟悉一种遥感图像处理软件 2.遥感影像的认知,进行图像剪切,波段组合与图像显示 3.图像的几何校正 4.遥感影像增强处理 5.遥感影像解译 三、实习步骤(包括原理,方法,操作过程) 1.图象剪切, 波段组合与图像显示 原图像比较大,数据量大处理不方便,对齐剪切便于计算机处理,也能达到实习目的 剪切DatePrep>SubsetImage命令如下图所示

波段组合Raster>Band Combinations 打开波段设置对话框 1)真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图 像,图像的色彩与原地区或景物的实际色彩一致.如下图 2)标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红 色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。

遥感原理与应用考试复习题

2014——2015年度《遥感原理与应用》考试复习题 (命题:2011级土管系) 第一章绪论 主要内容: ①遥感信息科学的研究对象、研究内容、应用领域 ②电磁波及遥感的物理基础 ③遥感平台和传感器 第二章遥感图像处理的基础知识 主要内容: 1.图像的表示形式 2.遥感数字图像的存储 3.数字图像处理的数据 4.数字图像处理的系统 考题: 第一二章(A卷) 1.电磁波谱中(A)能够监测油污扩散情况,(D)可以穿透云层、冰层。(2分) A.紫外电磁波(0.01-0.4μm) B.可见光(0.4-0.76μm) C.红外电磁波(0.76-100 0μm) D.微波电磁波(1mm-1m) 2.遥感按遥感平台可分为地面遥感、航空遥感、航天遥感。(2分) 3.遥感数字图像的存储格式包括BS、BIL、GeoTIFF。(1分) 4.遥感传感器由收集器、探测器、处理器、输出器几部分组成。(2分) 5.地图数据有哪些类型?(3分) 答:DEM 数字高程模型 DOM 数字正射影像图

DLG 数字线划图 DRG 数字栅格图 6.何谓遥感?遥感具有哪些特点?(5分) 答:遥感,即遥远的感知,是在不直接接触的情况下,使用传感器,接收记录物体或现象反射或发射的电磁波信息,并对信息进行传输加工处理及分析与解译,对物体现象的性质及其变化进行探测和识别的理论与技术。特点:①感测范围大,具有综合、宏观的特点②信息量大,具有手段多,技术先进的特点③获取信息快,更新周期短,具有动态监测的特点④其他特点:用途广,效益高,资料性、全天候、全方位等. B卷 1.绿色植物在光谱反应曲线可见光部分中的反射峰值波长是( B )。(1分) A 0.50μm B 0.55μm C 0.63μm D 0.72μm 2.遥感数字图像处理的数据源包括多光谱数据源、高光谱数据源、全色波段数据 源和SAR数据源。(3分) 3.数字化影像的最小单元是像元,它具有位置和灰度两个属性。(2分) 4.函数I=f(x,y,z,λ,t)表示的是一幅三维彩色动态图。(1分) 5.遥感在实际中的应用有哪些方面?(4分) 答:资源调查应用 环境监测评价 区域分析及建设规划 全球性宏观研究。

高光谱遥感

高光谱遥感

? ? ? ?
高光谱遥感的基本概念 高光谱遥感器及平台简介 高光谱遥感技术 高光谱应用概况

高光谱遥感的基本概念
? 高光谱分辨率(简称为高光谱)遥感或成像光 谱遥感技术的发展是过去二十年中人类在对地 观测方面所取得的重大技术突破之一,是当前 遥感的前沿技术。它是指利用很多很窄的电磁 波波段获取许多非常窄且光谱连续的图像数据 的技术,融合了成像技术和光谱技术,准实时 地获取研究对象的影像和每个像元的光谱分布。

国际遥感界认为光谱分辨率在10-1λ数量级范围内的为多 光谱(Multispectral),这样的遥感器在可见光和近红外光谱区 只有几个波段,如美陆地卫星TM和法国SPOT卫星等; 光谱分 辨率在10-2λ的遥感信息称之为高光谱(Hyperspectral)遥感。由 于其光谱分辨率高达纳米(nm)数量级,往往具有波段多的特 点,即在可见到近红外光谱区其光谱通道多达数十甚至超过 100以上。随着遥感光谱分辨率的进一步提高,在达到10-3λ 时,遥感即进入了超高光谱(Ultraspectral)阶段 、
光谱区域(nm) : 400 700 1100 2500 5500 14000
VIS VNIR
PIR
MIR
Sunlight 光谱分辨率 波段数 多光谱 高光谱 5-10 100-200 Δλ/λ 0.1 0.01 VNIR 50-100 5-20
IRT
MIR 100-200 10-50
IRT 1000-2000 100-500

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点 同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如A VIRIS在0. 4~214 波段范围内提供了224 个波段。研究表明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。这是传统的多光谱等

《遥感原理与应用》习题答案

遥感原理与应用习题 第一章遥感物理基础 一、名词解释 1遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。 2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。 3电磁波:电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、4电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱 5绝对黑体:能够完全吸收任何波长入射能量的物体 6灰体:在各种波长处的发射率相等的实际物体。 7绝对温度:热力学温度,又叫热力学温标,符号T,单位K(开尔文,简称开) 8色温:在实际测定物体的光谱辐射通量密度曲线时,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照这时的黑体辐射温度就叫色温。 9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。 10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。 11光谱反射率:物体的反射辐射通量与入射辐射通量之比。 12波粒二象性:电磁波具有波动性和粒子性。

13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。 问答题 1黑体辐射遵循哪些规律? (1 由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。 (2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。 (3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。 (4 好的辐射体一定是好的吸收体。 (5 在微波段黑体的微波辐射亮度与温度的一次方成正比。 2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些? a. 包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等 b. 微波、红外波、可见光 3物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少? (1 与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。 (2.b为常数2897.8 4叙述沙土、植物、和水的光谱反射率随波长变化的一般规律。 1)沙土:自然状态下,土壤表面反射曲线呈比较平滑的特征,没有明显的峰值和谷值。干燥条件下,土壤的波谱特征主要与成土矿物和土壤有机质有关。土壤含水量增加,土壤的反射率就会下降 2)植物:在可见光波段绿光附近有一个波峰,两侧蓝、红光部分各有一个吸收带,近红外波段(0.8-1.0um)有一个有一个反射陡坡,至1.1um附近有一峰值。近红外波段(1.3-2.5um)吸收率大增反射率下降。

高光谱应用研究综述

浙江师范大学 研究生课程论文封面 课程名称:遥感理论与技术 开课时间: 2014-2015年第一学期 学院地理与环境科学学院学科专业自然地理学 学号2014210580 姓名张勇 学位类别全日制硕士 任课教师陈梅花 交稿日期2015年1月21日 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

高光谱遥感应用研究综述 张勇 (浙江师范大学地理环境与科学学院,浙江金华321004) 摘要:高光谱遥感是近二十年发展起来的谱像和一的遥感前沿技术。虽然发展时间不长,但由于其本身的特点,使其获得了广泛的重视和应用。本文阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。 关键字:高光谱遥感;应用;成像光谱以;研究综述 Conclusion application of hyperspectral remote sensing Zhang Yong (Geography and environmental sciences, Zhejiang Normal University, Jinhua 321004) Abstract:Hyperspectral remote sensing, developed in the late twenty years, is the advanced technology of remote sensing. Because of its characters, Hyperspectral Remote Sensing has been attached importance to and used widly. The characteristics and advantages of hyperspectral remote sensing, and development situation are presented in the fields of aviation and aerospace. Several typical hyperspectral imager optical system principle and the main technical indicators are particularized. At the same time, the applications with hyperspectral remote sensing in vegetation ecology, atmospheric science ,geology and mineral resources, marine and military fields are summarized. The suggestions for the future development trend of hyperspectral remote sensing are given in the end,including the remote sensing of low reflectivity target, high signal-to-noise ratio, high spatial resolution and wide coverages. Keywords: hyperspectral remote sensing;application;imaging spectrometer 1 引言 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 1.1高光谱遥感简介 高光谱遥感技术又称为成像光谱技术,是指利用很多很窄的电磁波波段从感兴趣的物体

(完整word版)遥感原理与应用的复习资料

第一张绪论 1、环境空间数据获取的方法: 基于地面的采集方法:现场观测、实际测量、实际调查 基于遥感的采集方法 2、遥感的概念: 即遥远的感知,是一种不直接接触物体而取得其信息的探测技术。 从远处探测、感知物体或事物的技术。即不直接接触物体本身,从远处通过各种传感器探 测和接收来自目标物体的信息,经过信息的传输及处理分析,来识别物体的属性及其分布等特 征的综合技术。 是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,接触处物体的特征性质及其变化的综合性探测技术。 3、遥感系统包括: 被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理、信息的应用。其中 信息的处理包括:辐射校正、姿态校正、几何校正、增强处理、聚合分类。 4、遥感的分类:(P4) a.按遥感平台:地面、航空、航天、航宇 b.按探测波段:紫外、可见光、红外、微波、多波段 c.按工作方式:主动、被动 d.按应用领域: e.按传感器:地磁波、高光谱、声波、重力、磁力、地震波 f.按照资料的记录方式:成像方式、非成像方式 5、遥感的特点: 宏观性、时效性、综合性(概括性)、经济性、局限性 6、遥感技术发展的四个阶段: a.瞬时信息的定性分析阶段(是什么) b.空间信息的定位分析阶段(在哪里) c.时间信息的趋势分析阶段(如何变化) d.环境信息的综合分析阶段(多源信息的复合) 第二章电磁辐射与地物光谱特征 1、电磁波谱:按电磁波在真空中传播的波长与频率,递增或递减排列,构成了电磁波谱。 (波长由小到大):γ射线、X射线、紫外线、可见光、红外线、无线电波(微波、超短 波、短波、中波、长波)。 2、目前遥感应用的各电磁波波段及特征: 紫外线0.01-0.4μm 源于太阳辐射应用于荧石矿、石油勘探 可见光0.4-0.7μm 源于太阳辐射遥感的主要波段 红外线0.7-3μm 3-6μm 6μm-1mm 近红外主要源于太阳辐射 中红外源于太阳辐射和地物热辐射 远红外源于地物热辐射 城市热岛、热污染、热惯 量 微波1mm-1m 主动遥感 3、电磁辐射量度: a.辐射能量Q/W:以电磁波形式传播的能量 b.辐射通量Φ:在单位时间内传送的辐射能量 c.辐射强度I:在单位立体角、单位时间内,微小辐射源向某一方向辐射的能量 d.辐射照度E:在单位时间内、单位面积上接收的辐射能量 e.辐射出射度Me:在单位时间内、单位面积上辐射出的辐射能量 f.辐射亮度Le:在单位立体角、单位时间,从外表的单位面积上辐射出的辐射能量

高光谱遥感的发展与应用_张达

第11卷 第3期2 013年6月光学与光电技术 OPTICS &OPTOELECTRONIC  TECHNOLOGYVol.11,No.3  June,2013收稿日期 2012-09-29; 收到修改稿日期 2012-12- 13作者简介 张达(1981-) ,男,博士,副研究员,硕士生导师,主要从事空间光学遥感仪器的研制、空间光学成像,以及光谱探测技术方面的研究。E-mail:zhangda@ciomp .ac.cn基金项目 国防预研基金(SA050),国家863高技术研究发展计划(2010AA1221091001) ,吉林省科技发展计划(201101079 )资助项目文章编号:1672-3392(2013)03-0067- 07高光谱遥感的发展与应用 张 达 郑玉权 (中国科学院长春光学精密机械与物理研究所,吉林长春130033) 摘要 阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上, 概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。关键词 高光谱遥感;发展;应用;成像光谱仪中图分类号 TP70 文献标识码 A 1 引 言 遥感技术是20世纪60年代发展起来的对地 观测综合性技术[1] ,随着20世纪80年代成像光谱 技术的出现, 光学遥感进入了高光谱遥感阶段。从20世纪90年代开始, 高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。 高光谱遥感技术作为对地观测技术的重大突破[ 2] ,其发展潜力巨大。 高光谱遥感实现了遥感数据图像维与光谱维信息的有机融合,在光谱分辨率上有巨大优势,是遥感发展的里程碑。随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛,已渗透到国民经济的各个领域,如环境监测、资源调查、工程建设等,对于推动经济建设、社会进步、环境的改善和国防建设起到了重大的作用。本文主要阐述高光谱遥感的特点、优势以及在航空及航天领域的发展情况,概括了高光谱遥感在植被生态、大气环境、地质矿产, 海洋军事等领域的应用情况。2 高光谱遥感特点与优势 高光谱遥感是高光谱分辨率遥感(Hypersp ec-tral Remote Sensing) 的简称[3] ,它是在电磁波谱的紫外、可见光、近红外、中红外和热红外波段范围 内,获取许多非常窄且光谱连续的影像数据的技 术,是在传统的二维遥感的基础上增加了光谱维,形成的一种独特的三维遥感。对大量的地球表面物质的光谱测量表明, 不同的物体会表现出不同的光谱反射和辐射特征,这种特征引起吸收峰和反射峰的波长宽度在5~50nm左右,其物理内涵是不同的分子、 原子和离子的晶格振动,引起不同波长的光谱发射和吸收,从而产生了不同的光谱特征。运用具有高光谱分辨率的仪器,通过获取图像上任何一个像元或像元组合所反映的地球表面物质的光谱特性, 经过后续数据处理,就能达到快速区分和识别地球表面物质的目的[ 4] 。高光谱遥感的成像光谱仪具有光谱分辨率高(5~10nm),光谱范围宽(0.4μm~2.5μm) 的显著特点,可以分离成几十甚至数百个很窄的波段来接收信息, 所有波段排列在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光、近红外到短波红外的全部电磁辐射波谱范围。高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱 维信息的有机融合[ 5] 。高光谱遥感在光谱分辨率方面的巨大优势,使得空间对地观测时可获取众多连续波段的地物光谱图像, 从而达到直接识别地球表面物质的目的。地物光谱维信息量的增加为遥感对地观测、地物识别及地理环境变化监测提供了

高光谱在遥感技术的应用

高光谱在遥感技术的应用 高光谱遥感技术(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一.作为当前遥感的前沿技术,高光谱遥感在光谱分辨率上具有巨大的优势。,随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。本文主要阐述高光谱遥感的特点和主要应用。 1 高光谱遥感 孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。 [1]高光谱遥感具有较高的光谱分辨率,通常达到10~2λ数量级。[2] 1.1 高光谱遥感特点 综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点: (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。[3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。[4] (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。 (4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2 高光谱遥感的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:

高光谱遥感技术综述_袁迎辉

第07卷 第08期 中 国 水 运 Vol.7 No.08 2007年 08月 China Water Transport August 2007 收稿日期:2007-5-4 作者简介:袁迎辉 女(1983—) 东华理工大学矿产普查与勘探专业在读硕士研究生 (344000) 高光谱遥感技术综述 袁迎辉 林子瑜 摘 要:高光谱分辨率遥感是20世纪80年代兴起的新型对地观测技术,与传统遥感相比,高光谱遥感具有更为广泛的应用前景。文中概述了高光谱遥感的特点、发展过程、发展程度及目前几种典型的成像光谱仪数据特点。 关键词:高光谱遥感 数据处理技术 成像光谱仪 中图分类号:TP72 文献标识码:A 文章编号:1006-7973(2007)08-0155-03 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 一、高光谱遥感的概念及特点 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据[3];与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴ 波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。⑵ 光谱分辨率高。成像光谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。⑶ 数据量大。随着波段数的增加,数据量呈指数增加[2]。⑷ 信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。⑸ 可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。 近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80年代以来,美国已经研制了三代高光谱成像光谱仪。1983年,第一幅由航空成像光谱仪(AIS-1)获取的高光谱分辨率图像的正式出现标志着第一代高光谱分辨率传感 器面世。第一代成像光谱仪(AIS),由美国国家航空和航天管理局(NASA)所属的喷气推进实验室设计,共有两种,AIS-1(1982年~1985年,128波段)和AIS-2(1985年~1987年,128波段),其光谱覆盖范围为1.2~2.4μm。 1987年,由NASA 喷气推进实验室研制成功的航空可见光/红外光成像光谱仪(AVIRIS)成为第二代高光谱成像仪的代表。与此同时,加拿大、澳大利亚、日本等国家竞相投入力量研究成像光谱仪。在AVIRIS 之后,美国地球物理环境研究公司(GER)又研制了1台64通道的高光谱分辨率扫描仪(GERIS),主要用于环境监测和地质研究。其中63个通道为高光谱分辨率扫描仪,第64通道是用来存储航空陀螺信息。 第三代高光谱成像光谱仪为克里斯特里尔傅立叶变换高光谱成像仪(FTHSI),其重量仅为35kg,采用256通道,光谱范围为400~1050nm,光谱分辨率为2~10nm,视场角为150°。而于1999年和2000年发射升空的中分辨率成像光谱仪(MODIS 和Hyperion)都已经成为主要的应用数据来源。 在国内,成像光谱仪的研制工作紧跟国际前沿技术,目前已跻身国际先进行列。先后研制成功了专题应用扫描仪、红光细分光谱扫描仪FIMS、热红外多光谱扫描仪TIMS、19波段多光谱扫描仪AMSS、71波段的模块化航空成像光谱仪MAIS、128波段的OMIS 以及244波段的推扫式成像仪PHI 等。此外,中国科学院上海技术物理研究所研制的中分辨率成像光谱仪于2002年随“神州”三号飞船发射升空,这是继美国1999年发射EOS 平台之后第二次将中分辨率成像光谱仪送上太空,从而使中国成为世界上第二个拥有航天载成像光谱仪的国家。 经过20世纪80年代的起步与90年代的发展,至90年代后期,高光谱遥感应用由实验室研究阶段逐步转向实际应用阶段。迄今为止,国际上已有许多套航空成像光谱仪与少数几个卫星成像光谱仪处于运行状态,在实验、研究以及信息的商业化方面发挥着重要作用。

相关文档
最新文档