GB 10297-98 非金属固体材料导热系数的测定方法-热线法

GB 10297-98 非金属固体材料导热系数的测定方法-热线法
GB 10297-98 非金属固体材料导热系数的测定方法-热线法

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。

实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的

稳态双平板法测定非金属材料的导热系数

第二节 稳态双平板法测定非金属材料的导热系数 一、实验内容 以无限大平板的导热规律为基础,利用NK Ⅲ-200型双试件导热率测定装置、双路直流稳压电源、恒温水浴和测试系统用稳态双平板法测定非金属材料的平板两侧的大致的温度值,结合傅里叶定律,导出平均温度下的平均导热系数λm ,确立导热系数和温度之间的关系。 二、实验原理 双平板法是以无限大平板的导热规律为基础的。设有一块厚度为δ,导热系数为λ = A + Bt 的无限大平板,一侧以恒定流密度q (W/㎡)加热,平板两表面的温度分别保持恒等于t 1和t 2 。 如图1所示。根据付立叶定律,描写板内温度场的导热微分方程式为 dx dt Bt A dx dt q )(+-=-=λ (1) 相应 x = 0处,t = t 1 x =δ处,t = t 2 (2) 积分(1)式并代入(2)式的边界条件,则得 12122t t t t q A B δ+-? ?=+???? ? (3) 令 m m Bt A t t B A +=++=2 2 1λ (4) 即在平均温度t m =(t 1+t 2)/2的条件下,板材的导热 系数等于在t 1和t 2间材料的平均导热系数λm 。 图 1 平板导热原理图 (4)式则写为 δ λ) (21t t q m -= (5) 如果是为了确定板材的导热系数,则需在热稳定时,测出加热(或冷却)平板一侧的恒热流 密度q (W/m 2 )和温度t 1、t 2,依据(5)式便可得板材的平均导热系数: 2 1t t q m -= δ λ (6) 三、实验设备 如图2所示,它包括NK Ⅲ-200型双试件导热率测定装置、双路直流稳压电源、恒温水浴和测试系统。NK Ⅲ-200型双试件导热率测定装置为对称的双平板结构,它的中央为圆形主加热器,其周围为环形辅助加热器,它们均为薄片型加热器,由电阻带均匀绕成。二者共平面,其之间有一小的环形隔缝。在主、辅加热器上,各放置由导热系数较大的黄铜做的圆形均热板。主、辅均热板也是同厚度共平面,二者之间有1㎜的环形隔缝。实验时将两块直径均等于环形辅助加热器均热板外径相等厚度的同种试件分别置于两侧的均热板上。并在每块试材的另一面各安置一个圆盘形冷却器,最后从两个方向用力将它们压紧以减少各交界面上的接触热阻。一台超级恒温水浴向两个冷却器并联供给恒温水。冷却器内有盘香形小槽,恒温水沿槽盘旋流动,以便保持两块试材的冷却面具有相同的温度。双路直流稳压器分别对

导热系数测量

导热系数测量 在某些应用场合,了解陶瓷材料的导热系数,是测量其热物理性质的关键。陶瓷耐火材料常被用作炉子的衬套,因为它们既能耐高温,又具有良好的绝热特性,可以减少生产中的能量损耗。航天飞机常使用陶瓷瓦作挡热板。陶瓷瓦能承受航天飞机回到地球大气层时产生的高温,有效防止航天器内部关键部件的损坏。在现代化的燃气涡轮电站,涡轮的叶片上的陶瓷涂层(如稳定氧化锆)能保护金属基材不受腐蚀,降低基材上的热应力。作为有效的散热器能保护集成电路板与其它电子设备不受高温损坏,陶瓷已经成为微电子工业领域关键材料。若要在和热相关的领域使用陶瓷材料,则要求精确测量它们的热物理性能。在过去的几十年里,已经发展了大量的新的测试方法与系统,然而对于一定的应用场合来说并非所有方法都能适用。要得到精确的测量值,必须基于材料的导热系数范围与样品特征,选择正确的测试方法。 基本理论与定义 热量传递的三种基本方式是:对流,辐射与传导。对流是流体与气体的主要传热方式,对固态与多孔材料传热不起重要作用。 对于半透明与透明陶瓷材料,尤其在高温情况下,必须考虑辐射传热。除了材料的光学性质外,边界状况亦能影响传热。关于辐射传热方式的详细介绍见文献一(1)。 对于陶瓷材料而言传导是最重要的传热方式。热量的传导基于材料的导热性能——其传导热量的能力(2)。厚度为x 的无限延伸平板热传导可用Fourier 方程进行描述(一维热传递): Q = -λ·△T/△x Q 代表单位表面积在厚度(△x)上由温度梯度(△T)产生的热流量。两个因子都与导热系数(λ)相关联。在温度梯度与几何形状固定(稳态)的情况下,导热系数代表了需要多少能量才能维持该温度梯度。 在对建筑材料(如砖)与绝热材料进行表征时,经常用到k 因子。k 因子与材料的导热系数和厚度有关。 k –value = λ/ d 这一因子并不能用来鉴别材料,而是决定最终产品厚度的决定因素。 现代电子元件与陶瓷散热器上通常发生的是动态(瞬时)过程。需要更复杂的数学模型描述这些动态热传递现象,在此不做讨论。

导热系数的测量实验精选报告.doc

导热系数的测量 【实验目的】 用稳态法测定出不良导热体的导热系数,并与理论值进行比较。 【实验仪器】 导热系数测定仪、铜- 康导热电偶、游标卡尺、数字毫伏表、台秤 ( 公用 ) 、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 【实验原理】 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h、温度分别为T1、 T2的平行平面(设T1>T2),若平面面积均为 S,在t 时间内通过面积S 的热量Q 免租下述表达式: Q S (T 1 T 2 ) (3-26-1 ) t h 式中,Q 为热流量; 即为该物质的导热系数,在数值上等于相距单位长度的两平面t 的温度相差 1 个单位时,单位时间内通过单位面积的热量,其单位是W (m K ) 。 在支架上先放上圆铜盘P,在 P 的上面放上待测样品B,再把带发热器的圆铜盘 A 放在B 上,发热器通电后,热量从 A 盘传到 B 盘,再传到 P 盘,由于 A,P 都是良导体,其温度即可以代表 B 盘上、下表面的温度 T1、T2,T1、 T2分别插入 A、P盘边缘小孔的热电偶 E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G, 切换 A、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1 )可以知道,单位时间内通过待测样品 B 任一圆截面的热流量为 Q (T1 T2 ) R B2 (3-26-2) t h B B B 1 2 的值不变,式中, R 为样品的半径, h 为样品的厚度。当热传导达到稳定状态时, T 和 T 遇事通过 B 盘上表面的热流量与由铜盘 P 向周围环境散热的速率相等,因此,可通过铜 2 的散热速率来求出热流量Q 。实验中,在读得稳定时 1 2 盘 P 在稳定温度 T t T 和 T 后,即可将 B 盘移去,而使 A 盘的底面与铜盘 P 直接接触。当铜盘 P 的温度上升到高于稳定时的 T2值若干摄氏度后,在将 A 移开,让 P 自然冷却。观察其温度T 随时间 t 变化情况, 然后由此求出铜盘在T2的冷却速率T T , 而 mc , 就是铜盘 P 在温度为 T2时的散t T T2 t T T2 热速率。但要注意,这样求出的T 是铜盘 P 在完全表面暴露于空气中的冷却速率,t T T2 其散热表面积为 2 R B2 2 R P h P。然而,在观察测量样品的稳态传热时,P盘的上表面是被样品覆盖着的,并未向外界散热,所以当样品盘 B 达到稳定状态时,散热面积仅为:

非金属材料论文

本科课程论文 题目特种加工 学院工程技术学院 专业机械制造及其自动化 年级2014 学号 姓名 指导教师 成绩_____________________ 2016年11 月16 日

目录 摘要 (1) 1前言 (1) 2塑料的利弊 (1) 2.1塑料的优点 (1) 2.1.1耐磨性 (1) 2.1.2密度与比强度 (1) 2.1.3热性能 (2) 2.1.4电性能 (2) 2.1.5耐腐蚀性能 (2) 2.1.6塑料的加工 (2) 2.2塑料的缺点 (3) 2.2.1强度 (3) 2.2.2热性能 (3) 2.2.3耐气候性能 (3) 2.2.4废旧塑料的处理 (3) 3塑料的可持续发展 (4) 3.1废旧塑料回收现状 (4) 3.1.1填埋处理 (4) 3.1.2焚烧处理 (4) 3.1.3再生颗粒技术 (4) 3.2废旧塑料回收新型技术 (5) 3.2.1简单再生技术 (5) 3.2.2改性再生技术 (5) 3.2.3燃料热能利用技术 (5) 3.2.4裂解单体化技术 (5) 3.3我国废旧塑料回收利用领域的现状 (6) 4结束语 (6)

摘要:本文将对塑料的利弊进行分析,阐述塑料作为有机高分子材料对人类生产和生活的影响,在如今追求环保的时代大趋势下,向读者分析说明塑料走可持续发展路线的可行性和优越性。 关键词:塑料环保可持续发展 1.前言 作为常用的材料品种,塑料的应用越来越广泛。生活中如纽扣,雨衣雨靴,头盔;食品包装袋,餐具;灯具,桌椅;自行车零部件,汽车零部件等等……除了贯穿人们的衣食住行,在生产制造方 面塑料也有着极为重要的作用,在农业中作地膜,管道、喷头等;在机械制造业中作结构件、传动件、摩擦磨损件、耐蚀件、绝缘件、软饰件等;在化学工业中作各种管道、容器、泵、阀门等;在 电子、电气工业上作电机、变压器、绝缘包线、电线、电缆等原件;甚至在国防和航空航天工业中 也成为了不可缺少的材料。 随着时代的发展,生产力的增强,塑料的种类和生产工艺也越来约丰富多样。然而在满足人们 生活生产的需求之际,塑料的某些弊端亦逐渐开始暴露。其中最主要的就是废弃塑料的处理问题最 为严重。生产方便,应用广泛的塑料同时也带来了十分严重的污染问题。人类为了追求社会、文化 的发展已经令我们的地球家园千疮百孔,如今环保、可持续才是我们时代的主题、科技文明的发展 方向。 因此对塑料可持续发展的对策进行研究的任务迫在眉睫,也是我们文章接下来要探究的主要内容。 2.塑料的利弊 2.1塑料的优点 2.1.1耐磨性 塑料的硬度比金属低,但它的耐摩擦磨损性能却远优于金属,这是因为塑料的摩擦系数比较低。同时,有许多塑料,如聚四氟乙烯、尼龙等,本身就具有自润滑性能,因此它是制造轴承、保持架、活塞环等一类摩擦磨损零件的好材料。用塑料制成的零件,可以在各种液体摩擦、边界摩擦甚至干 摩擦的条件下有效地工作。 2.1.2密度与比强度

测定气体导热系数

测定气体导热系数集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

测定气体导热系数 【实验目的】 1.掌握低真空系统的基本操作方法,学会正确使用数显式电子真空计。 2.掌握用热线法测定气体导热系数的基本原理和正确方法。 3.学习应用“线性回归”和“外推法”对实验数据进行处理。 【实验原理】 1.“热线法”测量气体导热系数的原理 1) 稳定温度场的建立 由于T 1>T 2,容器中的待测气体必然形成一个沿径向分布的温度梯度,由于热传 导,钨丝温度下降,本实验用热线恒温自动控制系统来维持钨丝温度恒为T 1。这样,每秒钟由于气体热传导所耗散的热量就等于维持钨丝的温度恒为T 1时所消耗 的电功率,从而维持测量室中温度梯度稳定。故通过测量钨丝消耗的电功率来算出单位时间内热传导的热量。 2)由付里叶定律推导气体导热系数 K 即气体导热系数。其中l = 19.5 cm , r 1 = 0.0095 mm, r 2 = 7.5 mm . T 2近似等于室温,关键在于Q 与T 1怎么测定。 钨丝, T 2

2)Q与T1的测定 每秒钟通过气体圆柱面传输的热量Q等于钨丝所耗散的电功率,即 UI W Q= = 对于一定长度为l的钨丝而言,其电阻值与温度的关系为: 1 ) ( 273 R R R T α - + =。 R =37.2 Ω,是零度时的电阻值;R=U/I为实验测量。1 3 10 1.5- - ? =C α 2.二项修正 1)热辐射以及联接钨丝两端的电极棒的传热损失的修正。 2)测量在低气压(133.3帕~1333帕)条件下进行,低气压气体导热系数K 低 与压强P下导热系数之间的关系: 中的K 低 和K可以用Q 低 和Q来代替 3.作图法外推求Q 以1/P为横坐标,1/Q 低 为纵坐 标作图,所得到的实验曲线将近 似为一直线,此直线在纵坐标上 的截距即为1/Q 【实验内容】 外推法求Q

90个非金属材料的性能指标

90个非金属材料的性能指标, 原材料的质量指标中,经常会遇到一些术语,准确理解它的含义,有助于更好地掌握原材料的性能。现列出部分常用的名词术语。 1 密度与相对密度(Density and relative density) 密度是指物质单位体积内所含的质量,简言之是质量与体积之比,其单位是百万克/米3(Mg/m3)或千克/米3(kg/m3)或克/厘米3(g/cm3)。相对密度亦称密度之比,是指物质的密度与参考物质的密度在各自规定的条件下之比,或者是说一定体积的物质在t1温度下的质量与等体积参考物质在t2。温度下的质量之比。常用的参考物质为蒸馏水,并用Dt1/t2或t1/t2表示,为无因次量。 2 熔点与凝固点(Melting point and Freezing point) 物质在其蒸气压下液态—固态达到平衡时的温度称为熔点或凝固点。这是由于固体中原子或离子的有规则排列因温度上升,热运动变得杂乱而活化,形成不规则排列的液体的一种现象,相反的过程即为凝固。对于液体变为固体时的温度常称为凝固点或冰点,与熔点不同之处在于放出热量而不是吸收热量。其实物质的熔点和凝固点是一致的。 3 熔点范围(Melting range) 系指用毛细管法所测定的从该物质开始熔化至全部熔化的温度范围。 4 结晶点(Crystal point) 系指液体在冷却过程中,由液态转变为固态的相变温度。 5 倾点(Pour point) 表示液体石油产品性质的指标之一。系指样品在标准条件下冷却至开始停止流动的温度,也就是样品冷却时还能倾注时的最低温度。 6 沸点(Boiling point) 液体受热发生沸腾而变成气体时的温度。或者说是液体和它的蒸气处于平衡状态时的温度。一般来说,沸点越低,挥发性越大。 7 沸程(Boiling range) 在标准状态下(1013.25hPa,0℃),在产品标准规定的温度范围内的馏出体积。

测定气体导热系数

测定气体导热系数 【实验目的】 1.掌握低真空系统的基本操作方法,学会正确使用数显式电子真空计。 2.掌握用热线法测定气体导热系数的基本原理和正确方法。3.学习应用“线性回归”和“外推法”对实验数据进行处理。 【实验原理】 1.“热线法”测量气体导热系数的原理 1)稳定温度场的建立 T2 由于T1>T2,容器中的待测气体必然形成一个沿径向分布的温度梯度,由于热传导,钨丝温度下降,本实验用热线恒温自动控制系统来维持钨丝温度恒为T1。这样,每秒钟由于气体热传导所耗散的热量就等于维持钨丝的温度恒为T1时所消耗的电功率,从而维持测量室中温度梯度稳定。故通过测量钨丝消耗的电功率来算出单位时间内热传导的热量。

2)由付里叶定律推导气体导热系数 K 即气体导热系数。其中l = 19.5 cm , r 1 = 0.0095 mm, r 2 = 7.5 mm . T 2近似等于室温,关键在于Q 与T 1怎么测定。 2) Q 与T 1的测定 每秒钟通过气体圆柱面传输的热量Q 等于钨丝所耗散的电功率,即 UI W Q == 对于一定长度为l 的钨丝而言,其电阻值与温度的关系为: 001)(273R R R T α-+= 。 R 0=37.2 Ω,是零度时的电阻值;R=U/I 为实验测量。13101.5--?=C α 2.二项修正 1)热辐射以及联接钨丝两端的电极棒的传热损失的修正。 2)测量在低气压(133.3帕~1333帕)条件下进行,低气压

气体导热系数K 低 与压强P 下导热系数之间的关系: 中的K 低和K 可以用Q 低和Q 来代替 3.作图法外推求Q 以1/P 为横坐标,1/Q 低 为纵坐标作图,所得到的实 验曲线将近似为一直线,此 直线在纵坐标上的截距即 为1/Q 【实验内容】 1. 熟悉实验装置,选择合适的热线温度 外推法求 Q

固体导热系数的测定实验报告

学生物理实验报告 实验名称固体导热系数的测定 学院专业班级报告人学号 同组人学号 理论课任课教师 实验课指导教师 实验日期 报告日期 实验成绩 批改日期

1.数字毫伏表 一般量程为20mV。3位半的LED显示,分辨率为10uV左右,具有极性自动转换功能。 2.导热系数测量仪 一种测量导热系数的仪器,可用稳态发测量不良导体,金属气体的导热系数, 散热盘参数

傅里叶在研究了固体的热传定律后,建立了导热定律。她指出,当物体的内部有温度梯度存在时,热量将从高温处传向低温处。如果在物体内部取两个垂直于热传导方向,彼此相距为h 的两个平面,其面积元为D,温度分别为21T T 和,则有 dt dQ =–dS dx dT λ 式中dt dQ 为导热速率,dx dT 为与面积元dS 相垂直方向的温度梯度,“—”表示热量由高温区域传向低温区域,λ即为导热系数,就是一种物性参数,表征的就是材料导热性能的优劣,其单位为W/(m ·K ),对于各项异性材料,各个方向的导热系数就是不同的,常要用张量来表示。 如图所示,A 、C 就是传热盘与散热盘,B 为样品盘,设样品盘的厚度为B h ,上下表面的面积 各为B S =2 B R π,维持上下表面有稳定的温度21T T 和,这时通过样品的导热速率为 dt dQ =–B B S h T T 21 -λ 在稳定导热条件下(21T T 和值恒定不变) 可以认为:通过待测样品B 的导热速率与散热盘的周围环境散热的速率相等,则可 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置图

材料导热系数的测量

材料导热系数的测量 导热系数是反映材料的导热性能的重要参数之一,在工程技术方面是必不可少的。所以对导热系数的研究和测量就显得很有必要。金属材料的导热起主要作用的是自由电子的运动,无机非金属材料的导热则是通过晶格结构的振动(声子)来实现。目前测量导热系数的方法都是建立在傅立叶导热定律的基础上的,分为稳态法和动态法。本实验介绍用稳态法,稳态法是通过热源在样品内部形成稳定的温度分布后,再进行测量的方法。 一、实验目的 1. 了解稳态法测无机非金属材料的导热系数的方法; 2. 掌握KY-DRX-RW 型导热系数测试仪的硬件和软件操作规程; 3. 利用测试仪测量石英、陶瓷两种材料的导热系数。 二、实验仪器 上海实博实业有限公司生产的KY-DRX-RW 型导热系数测试仪,主要由测试头、电器测控系统、冷却恒温水槽、计算机系统组成。各部件接线如图所示。 测试头由加热器、连接样品的上下热极、冷却器、测量热电偶、加压系统组成。加热器采用不锈钢材料加工而成,内装内热式加热器,由高精度数显温控表控温,提供稳定的热极温度。上下热极由不锈钢制成,表面安装有热电偶,热极的作用是传递热量和测量热量。冷却器也是不锈钢材料加工而成,内有水槽,通过管导与外恒温水槽相连,利用外恒温水槽与冷却器的水循环,在冷却器中形成第二恒温场,提供上热极冷端稳定温度。测量热电偶由4支组成,分别测量上下热极表面的4个温度点,利用温度梯度计算热流量。加压系统用于消除试样与热 升降手柄 电脑 显示器 水管 通讯线缆 电源220V 恒温槽 测试主机背面 电器测控系统

极的热阻。 三、实验原理 当物体内部各处的温度不均匀时,就会有热量从温度较高处传递到温度较低处,这种现象叫热传导现象。对于各向同性的物质,在稳定传热状态下有傅立叶定律: t S dx dT Q ??-=?λ 比例系数称导热系数,其值等于相距单位长度的两平面的温度相差为一个单位时,在单位时间内通过单位面积所传递的热量,单位是瓦·米-1·开-1(W·m -1·K -1)。 本实验采用的是稳态法测量导热系数。试样被夹在两金属块之间,加压系统是经由一个升降压板和弹簧加压。加热单元是由铜或是其他高导热性的材料构成的,且包含有套筒或是相似的加热线圈。它用热绝缘材料(环氧FR -4)与周围的保温加热器相隔离。绝缘材料为5mm 厚度。保温加热器不受压力,以确保所有的测量能量都传到高测量棒上。测量棒是由高热导性材料构成,并且具有平行的工作表面。冷却单元是一个金属盒,由恒温池对其冷却。实验时,一方面加热单元直接将热量通过样品下平面传入样品,另一方面冷却单元使传入样品的热量不断由样品的上平面散出,当传入的热量等于散出的热量时样品处于稳定导热状态,这时样品的上下平面的温度分别为一定的数值。此时,通过样品厚度、半径、温度梯度与通过样品的热流便可计算导热系数。 具体计算过程如下: 1、流过待测样品的热流 )(*2112 12 T T Q d A -*= λ )(*4334 34 T T Q d A -*= λ Q 12 :流过下热极的热流,W Q 34 :流过上热极的热流,W λ 12 :下热极材料的热导,W/m·K λ34:上热极材料的热导,W/m·K T T 2 1 -:下热极两个热电偶的温差 T T 4 3 -:上热极两个热电偶的温差 A :垂直于热流方向的热极截面积,m 2 d :热极两温差电偶的距离,m 公式中 λ12 = λ34 = 18.5 W/m·K;d = 0.05 m ;热极直径为30mm

导热系数的测量实验报告

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。 h T T S t Q ) (21-??=??λ 单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为: B B h T T R t Q )(212-???=??πλ 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。 这样,只要测量低温侧铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热

非金属固体材料导热系数的测量

山 东 大 学 学生物理实验报告 实验项目:不良导体导热系数测量方法及仪器 完成人:韩益洪 学号:201300181051 学院:电气工程学院

前言 本文介绍了导热系数测量的基本理论与定义,热线法、激光法、动态测量法等几类测量方法的原理与应用,以及德国耐驰公司(NETZSCH)的相关仪器。 在某些应用场合,了解材料的导热系数,是测量其热物理性质的关键。例如,耐火材料常被用作炉子的衬套,因为它们既能耐高温,又具有良好的绝热特性,可以减少生产中的能量损耗。航天飞机常使用陶瓷瓦作挡热板。陶瓷瓦能承受航天飞机回到地球大气层时产生的高温,有效防止航天器内部关键部件的损坏。在现代化的燃气涡轮电站,涡轮的叶片上的陶瓷涂层(如稳定氧化锆)能保护金属基材不受腐蚀,降低基材上的热应力。有效的散热器能保护集成电路板与其它电子设备不受高温损坏,散热材料已经成为微电子工业领域关键材料。 在过去的几十年里,已经发展了大量的导热测试方法与系统。然而,没有任何一种方法能够适合于所有的应用领域,反之对于特定的应用场合,并非所有方法都能适用。要得到准确的测量值,必须基于材料的导热系数范围与样品特征,选择正确的测试方法。 1.热线法测量不良导体导热系数 用热线法测量不良导体导热系数是一种广泛使用的方法,国家对此制定了标准——“非金属固体材料导热系数的测定——热线法”(GB/T 10297-1998)。基本原理如图1所示,在匀质均温的物体内部放置一电阻丝,即热线,对其以恒定功率加热时,热线及其附近试样的温度将随时间变化。根据时间与温度的变化关系,可以确定该试样的导热系数。[1] [原理简述] 由热传导理论[2]可知,恒定功率的热线对匀质物体进行热传导时,可以用一维柱坐标系的 热传导方程对物体的温度场进行描述:(1)边界条件为: 根据热传导方程和边界条件得到:其中各物理量含义为,t:热线的加热时间,单位为s;r:距热线的距离,单位为m;q:热线单位 长度的加热功率,单位为W/m;:加热时间t,距离热线距离r处的温升,单位为K;α:试样的热扩散率,单位为m2/s;λ:试样的导热系数,单位为W/(m·K),对于非金属固体材料,该系数一般小于2 W/(m·K)。 假设,即r→0或αt→∞,利用Euler公式,忽略展开后二次项以后

导热系数测量实验报告

导热系数测量实验报告 篇一:导热系数实验报告 实验用稳态平板法测定不良导体的导热系数实验报告 一、实验目的. (1)用稳态平板法测定不良导体的导热系数. (2)利用物体的散热速率求传热速率. 二、实验器材. 实验装置、红外灯、调压器、杜瓦瓶、数字式电压表. 三、实验原理. 导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设z方向)进行时,热传导的基本公式可写为 dT dQ=?λ ????????? ---------------------------------------------() 它表示在dt时间内通过dS面积的

热量dQλ为导热系数,它的大小由物体????dT 本身的物理性质决定,单位为W????1????1,它是表征物质导热性能大小的物理量,式中符号表示热量传递向着温度降低的方向进行. 在图中,B为待测物,它的上下表面分别和上下铜、铝盘接触,热量由高温铝盘通过待测物B向低温铜盘传递.若B很薄,则通过B侧面向周围环境的散热量可以忽略不计,视热量只沿着垂直待测板B的方向传递.那么在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在?t时间内,通过面积为S、厚度为L的匀质圆板的热量为??? ?????? ---------------------------------------------()式中,???为匀质圆板两板面的恒定温差,若把()式写成 ?Q=?λ ??????

=?λ?? ---------------------------------------------()的形式,那么???便为待测物的导热速率,只要知道了导热速率,由()式即可求出λ. 实验中,使上铝盘A和下铜盘P分别达到恒定温度??1、??2,并设??1>??2,即热量由上而下传递,通过下铜盘P向周围散热.因为??1和??2不变,所以,通过B的热量就等于C向周围散发的热量,即B的导热速率等于C 的散热速率.因此,只要求出了C在温度??2时的散热速率,就求出了B的导热速率???. 因为P的上表面和B的下表面接触,所以C的散热面积只有下表面面积和侧面积之和,设为????,而实验中冷却曲线是C全部裸露于空气中测出来的,即在P的上下表面和侧面积都散热的情况下记录的.设其全部表面积为??全,根据散热速率与散热面积成正比的关系可得??? ?????? ???

常见材料导热系数版汇总

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于(m·K)的材料称为保温材料),而把导热系数在瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等 填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d,

金属材料热传导

金属材料成分比(%) 热传导率 银100 1.000 无氧铜 100 0.952 金 100 0.690 铝合金 100 0.531 73黄铜 70Cu-30Zn 0.289 镍 100 0.198 5%磷青铜95Cu-5Sn 0.194 锡 100 0.160 8%磷青铜 92Cu-8Sn 0.149 铅 100 0.083

最佳答案 - 由提问者1年前选出 热传导(导热) 依靠分子、原子、离子、自由电子等微观粒子的热运动而实现的热量传递称为热传导,简称导热。导热可发生在固体中,也可发生在液体和气体中,但它们的导热机理各不相同。气体热传导是由作不规则热运动的气体分子相互碰撞的结果。物理学指出,温度代表着分子的动能,高温区的分子运动速度比低温区的大,能量高的分子与能量低的分子相互碰撞的结果,热量就由高温处传到低温处;液体热传导的机理与气体类似,但由于液体分子间距较小,分子力场对分子碰撞过程中的能量交换影响很大,故变得更加复杂些;固体以两种方式传导热能:自由电子的迁移和晶格振动。对于良好的导电体,由于有较高浓度的自由电子在其晶格结构间运动,则当存在温度差时,自由电子的流动可将热量由高温区快速移向低温区,这就是良好的导电体往往是良好的导热体的原因,当金属中含有杂质时,例如合金,由于自由电子浓度降低,则其导热性能也将大大下降;而在非导电的固体中,热传导是通过晶格结构的振动来实现的,通常通过晶格振动传递能量的速率要比通过自由电子传递能量的速率小。 描述热传导现象的物理定律为傅立叶定律(Fourier’s Law),其数学表达式为 (5-1) 式中q——热传导速率,W; S——与热传导方向垂直的传热面(等温面)面积,m2; k——物质的导热系数,W/( m .oC); ——温度梯度,℃/m。 式(5-1)中的负号表示热传导服从热力学第二定律,即热通量的方向与温度梯度的方向相反,也即热量朝着温度下降的方向传递。 2.导热系数 式(5-1)可改写为 (5-2) 上式即为导热系数的定义式,该式表明,导热系数在数值上等于单位温度梯度下的热通量。导热系数k表征了物质导热能力的大小,是物质的基本物理性质之一。导热系数的大小和物质的形态、组成、密度、温度及压力等有关。

热线法测量导热系数

热线法测量导热系数 1.导热系数测定原理 热物性是物质在受热过程中表现出来的属性一般都用宏观的方法研究与测热物性测定的一个共同特点是人为地安排一个热过程,然后对热过程进行测所直接测量的物理量有温度、时间、长度、质量、电流、电压等,再根据一关系式计算出热物性,因而热物性测定属于间接测定。导热系数是物质重要物性参数,其测定方法的研究是通过建立适当的物理模型,根据热量传递理行数学分析,导出直接测量的物理量与导热系数之间的关系,并借助于误差, 指导改进试验方案的设计和提高导热系数测定值的精度[1]。 对所有材料而言,凡是能为下式(傅立叶导热方程式)的特解提供所需边界条件的任何仪器,都可测定导热系数。 式中,ρ为密度,c 为比热容,z y x λλλ、、分别对应x 、y 、z 方向上的导热系数。 对于各向同性的介质,方程简化为 由推测的温度分布随时间的变化函数关系计算出热扩散率,然后再根据热容确定导热系数λ。对于各种导热系数的测定方法,概括起来就是确定一个导热过程的物理模型,并导出描述这一过程规律的微分方程,求在一定单值条件下微分方程的解,在实验中要满足这些条件,最后将测量结果带入微分方程的解中,进而求得微分方程中的物性参数λ的值。 2 导热系数测定方法 在实际工程中,各种固体材料的导热系数相差很大,其变化范围从与已知气体一样低的数值到比气体的导热系数高几个数量级。对于高电导率余属,可以观测到其导热系数是相当之高。因而在实际导热系数λ的测试研究中,必须应用各种极为不同的方法来测量各种不同固体材料的导热系数。 由于物理模型、实验方案及实验装置的不同,有许多导热系数的测定方法,如果按照热流状态分,可分为稳态法和非稳态两大类,也有两者结合的综合法,详述如下。 稳态法是在待测试样上温度分布达到稳定后进行实验测量,其分析的出发点是稳态导热微分方程。这种方法的特点是实验公式简单,实验时间长,需要测量热流量和若干点的温度。在稳态法中将直接测量热流量的方法称为绝对法,通过测量参比试样的温度梯度,间接测定热流量的方法称为比较法。比较通用的导热系数测定方法有如下几种

材料导热系数测试实验

材料导热系数测试实验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

东南大学材料科学与工程 实验报告 学生姓名 张沐天 班级学号 实验日期 批改教师 课程名称 材料性能测试实验 批改日期 实验名称 材料导热系数测试实验 报告成绩 一、实验目的 1.掌握稳态法测定材料导热系数的方法 2.了解材料导热系数与温度的关系 二、实验原理 不同温度的物体具有不同的内能,同一个物体不同区域如果温度不等,则他 们热运动的激烈程度不同,含有的内能也不相同。这些不同温度的物体或区域, 在相互靠近或接触时,会以传热的形式交换能量。由于材料相邻部分之间的温差 而发生的能量迁移称为热传导。在热能工程、制冷技术、工业炉设计等一系列技 术领域中,材料的导热性都是一个重要的问题。 1.材料的导热性及电导率 材料的导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为 1K ,在1s 钟内,通过1m2面积传递的热量,单位为 W/(m ·K),也叫热导率。热导率λ由简化的傅里叶导热定律 dx dT -q λ 决定。 2.热传导的物理机制 热传导过程就是材料的能量传输过程。在固体中能量的载体可以有自由电子、声 子和光子,因此固体的导热包括电子导热、声子导热和光子导热。

1)电子和声子导热 纯金属中主要为电子导热,在合金、半金属或半导体、绝缘体的变化过程中,声子导热所占比例逐渐增大。 2)光子导热 固体中分子、原子和电子的振动、转动等运动状态的改变会辐射出频率较高的电磁波,其中具有较强热效应的是波长在间的可见光与部分近红外光的区域,这部分辐射线称为热射线。热射线的传递过程称为热辐射。 3.影响导热系数的因素 1)温度 金属以电子导热为主,电子在运动过程中将受到热运动的原子和各种晶格缺陷的阻挡,从而形成对热量传输的阻力。 一般来说,纯金属的导热系数一般随温度的升高而降低;而今导热系数一般随温度的升高而升高;玻璃体的导热系数则一般随温度的降低而减小。 2)原子结构 物质的电子结构对热传导有较大影响。具有一个价电子的,导电性能良好的、德拜温度较高的单质都具有较高的导热系数。 3)成分和晶体结构 合金中加入杂质元素将提高热阻,使导热系数降低。杂志原子与基体金属的结构差异较大的元素,对基体导热系数的影响也较大。 4)压强,密度,气孔率等 压强,密度,气孔率等因素也会对材料的导热系数产生影响,影响材料导热系数的因素是复杂的。 4.导热系数的测试方法

常用材料的导热系数表

常用材料的导热系数表 SANY GROUP system office room 【SANYUA16H-

材料的导热 傅力叶方程式: Q=KA△T/d, R=A△T/Q??????Q:热量,W;K:导热率,W/mk;A:接触面积;d:热量传递距离;△T:温度差;R:热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTMD5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊”是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。 总之: a.同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b.同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越

固体导热系数的测定

固体导热系数的测定 实验仪器: YBF-5型导热系数测定仪(含加热盘A、散热盘P、数字电压表、计时秒表等)、测试材料(硅橡胶、胶木板)测温PT100、测试连接线、游标卡尺等。 实验原理: 热传导定律: 通过上部加热盘加热、下部散热盘散热达到稳态在材料内部维持均匀度温度梯度分布; 系统平衡时加热速率=传热速率=散热速率=冷却速率,故通过测量散热盘冷却时温度随时间的变化得到其T-t曲线,则 由此得 ①实验步骤: (1)测量测试材料及散热盘的厚度及直径; (2)在加热盘和散热盘间夹入胶木板; (3)设置加热温度为90度,加热至上下两盘温度稳定,记录此时上下两盘温度T1、T2; (4)迅速将胶木板换成硅橡胶,重复步骤(3); (5)将散热盘加热至较高温度再使其自然冷却,测定其温度随时间的变化。 实验数据:

数据处理: 查阅铜密度ρ=8930kg·m-3,比热容c=0.385kJ·K-1·kg-1。根据铜盘直径及厚度,计算出散热盘质量m=537.6g。 由T-t表绘得T-t曲线如下: 由图得到T2处的斜率: k(胶木板)=-0.0425 K/s k(硅橡胶)=-0.0426 K/s 带入①得 (胶木板)==0.427 W/(m·K) (硅橡胶)==0.279 W/(m·K) 总结与讨论: 思考题: 1.测导热系数要满足:维持材料内部均匀的温度梯度以及测得传热速率。通过上部加

热盘加热、下部散热盘散热达到稳态在材料内部维持均匀度温度梯度分布;系统平衡时加热速率=传热速率=散热速率=冷却速率,故通过测量散热盘冷却时温度随时间的变化得到其T-t曲线,求其在稳态温度处的斜率即为传热速率。 2.因为只有处于稳态温度时冷却速率与传热速率相等;通过在稳态温度附近使铜板自然然冷却绘制T-t曲线,取其在稳态温度处的斜率作为冷却速度。 3.测试材料具有一定侧面积,因而达到稳态时有少量热量从侧面散失,则上下铜盘的温度差略小于材料实际散失的热量,即(T1-T2)偏小,故计算所得导热系数可能偏小。

相关文档
最新文档