12半角模型

12半角模型

第十二章 《全等三角形》 12.2.10 半角模型 条件:∠MAN=12

∠BAD ,∠ABC+∠ADC=180°

模型1:延长其中一个补角的线段(延长CD 到E ,使ED=BM ,

连AE 或延长CB 到F ,使FB=DN ,连AF ) 结论:①MN=BM+DN ,②C △CMN =2AB ,③AM 、AN 分别平分

∠BMN 和∠DNM

模型2:对称(翻折)

分别将△ABM 和△ADN 以AM 和AN 为对称轴翻折,但一定要证

明 M 、P 、N 三点共线.(∠B+∠D =180°且AB=AD )

1、如图1,在正方形ABCD 中,已知∠MAN=,若M 、N 分别在边CB 、DC 的延长线上移动,①试探究线段MN 、BM 、DN 之间的数量关系. ②求证:AB=AH.

2、如图2,在四边形ABCD 中,∠B+∠D=,AB=AD ,若E 、F 分别在边BC 、CD 上且满足EF=BE +DF.求证:∠EAF=12∠BAD 。

3、如图3,在四边形ABCD 中,∠B=∠D=,AB=AD ,若E 、F 分别在边BC 、CD 上的点,且∠EAF=12∠BAD. 求证:EF=BE+DF.

45 180 90

中考数学 几何专题——半角模型

几何模型之半角模型 一、旋转性质 1.图形对应边相等(易得等腰,且等腰均相似) 2.对应角相等 3.对应点与旋转中心连线构成旋转角,旋转角处处相等 二、半角模型 半角模型(90°含45°) 条件模型结论 ①等腰直角△ABC; ②∠DAE=45° DE2=BD2+CE2 ①等腰直角△ABC; ②∠DAE=45° DE2=BD2+CE2 ①正方形ABCD; ②∠EAF=45°①EF=BE+DF; ②△CEF的周长是正方形周长的一半; ③点A到EF的距离等于正方形的边长. ①正方形ABCD; ②∠EAF=45°EF=DF-BE 三、模型演练 1.如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF 于点H.若EF=BF+DF.那么下列结论:①AE平分∠BEF;②FH=FD; ③∠EAF=45°;④S△E A F=S△A B E+S△A D F;⑤△CEF的周长为2.其中正确结论的 是.

2.在Rt△ABC中,AB=AC,D?E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论①△AEF≌△AED;②∠AED=45°; ③BE+DC=DE;④BE2+DC2=DE2,其中正确的是() A.②④ B.①④ C.②③ D.①③ 3如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长. 4.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=25.若∠EOF=45°,则F点的坐标是. 5.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交

数学,半角公式

第4讲 倍角、半角公式 北京四中 苗金利 考纲导读 1. 会用两角和与差的正弦、余弦公式推导倍角、半角公式,了解它们的 内在联系。 2. 解决比较简单的应用问题,体会换元思想、方程思想的运用。 知识要点 复习和差角的三角函数公式 sin()sin cos cos sin αβαβαβ+=+ sin()sin cos cos sin αβαβαβ-=- cos()cos cos sin sin αβαβαβ+=- cos()cos cos sin sin αβαβαβ-=+ 典型例题分析 例1、求证下列等式成立: (1)sin 22sin cos ααα=?; (2)2222cos2cos sin 2cos 112sin ααααα=-=-=-. (3)22tan tan 21tan ααα = -; (4)21cos sin 22 αα-=; (5)21cos cos 22 αα+=; (6)21cos tan 21cos ααα -=+; (7)sin 1cos tan 21cos sin ααααα-==+; (8)sin sin )a A b A A ?++, 其中 cos ?=sin ?. 例2、求值: (2)已知3sin()1225π θ-=,求cos()6πθ-. (3)已知sin()4 m π α+=,求sin 2α. 例3、 已知22()sin 2sin cos 3cos f x x x x x =++,求: (1)f (x )的最大值以及取得最大值的自变量的集合; (2)f (x )的单调区间. 例4、当3[,]44 x ππ∈时,求下列函数的值域 (1)cos2sin y x x =+; (2)sin cos sin cos y x x x x =+-; (3)3sin 4cos y x x =+.

半角模型收集专练

半角模型例题 已知,正方形ABCD 中,∠EAF 两边分别交线段BC 、DC 于点E 、F ,且∠EAF ﹦45° 结论1:BE ﹢DF ﹦EF 结论2:S △ABE ﹢S △ADF ﹦S △AEF 结论3:AH ﹦AD 结论4:△CEF 的周长﹦2倍的正方形边长﹦2AB 结论5:当BE ﹦DF 时,△CEF 的面积最小 结论6:BM 2﹢DN 2﹦MN 2 结论7:三角形相似,可由三角形相似的传递性得到 结论8:EA 、FA 是△CEF 的外角平分线 结论9:四点共圆 结论10:△ANE 和△AMF 是等腰直角三角形(可通过共圆得到) 结论11:MN ﹦√2 2EF (可由相似得到) 结论12:S △AEF ﹦2S △AMN (可由相似的性质得到) 结论5的证明: 设正方形ABCD 的边长为1 则S △AEF ﹦1﹣S 1﹣S 2﹣S 3 ﹦1﹣1 2x ﹣1 2y ﹣1 2(1﹣x)(1﹣y) ﹦1 2﹣12xy 所以当x ﹦y 时,△AEF 的面积最小 结论6的证明:

将△ADN 顺时针旋转90°使AD 与AB 重合 ∴DN ﹦BN ′ 易证△AMN ≌△AMN ′ ∴MN ﹦MN ′ 在Rt △BMN ′中,由勾股定理可得: BM 2﹢BN ′2﹦MN ′2 即BM 2﹢DN 2﹦MN 2 结论7的所有相似三角形: △AMN ∽△DFN △AMN ∽△BME △AMN ∽△BAN △AMN ∽△DMA △AMN ∽△AFE 结论8的证明: 因为△AMN ∽△AFE ∴∠3=∠2 因为△AMN ∽△BAN ∴∠3=∠4 ∴∠2=∠4 因为AB ∥CD ∴∠1=∠4 ∴∠1=∠2 结论9的证明:

中考数学压轴题专项汇编专题15角含半角模型

专题15 角含半角模型 破题策略 1.等腰直角三角形角含半角 如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上且∠DAE=45° (1)△BAE∽△ADE∽△CDA (2)BD2+CE2=DE2. B C 证明(1)易得∠ADC=∠B+∠BAD=∠EAB, 所以△BAE∽△ADE∽△CD A. (2)方法一(旋转法):如图1,将△ABD绕点A逆时针旋转90°得到△ACF,连结EF. B C 则∠EAF=∠EAD=45°,AF=AD, 所以△ADE∽△FAE (SAS). 所以DE=EF. 而CF=BD,∠FCE=∠FCA+∠ACE=90°, 所以BD2+CE2=CF2+CE2=EF2=DE2. 方法二(翻折法):如图2,作点B 关于AD 的对称点F,连结AF,DF,EF. B C 因为∠BAD+∠EAC=∠DAF+∠EAF, 又因为∠BAD=∠DAF, 则∠FAE=∠CAE,AF=AB=AC, 所以△FAE∽△CAE(SAS). 所以EF=E C.

而DF=BD,∠DFE=∠AFD+∠AFE=90°, 所以BD2+EC2=FD2+EF2=DE2. 【拓展】①如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC 上,点E在BC的延长线上,且∠DAE=45°,则BD2+CE2=DE2. D 可以通过旋转、翻折的方法来证明,如图: D D ②将等腰直角三角形变成任意的等腰三角形:如图,在△ABC中,AB=AC,点D,E在 BC上,且∠DAE=1 2 ∠BAC,则以BD,DE,EC为三边长的三角形有一个内角度数为180° -∠BA C. B 可以通过旋转、翻折的方法将BD,DE,EC转移到一个三角形中,如图: B B

专题20 半角模型(解析版)

中考常考几何模型 专题20 半角模型 倍长中线或类中线(与中点有关的线段)构造全等三角形 如图①: (1)∠2=2 1 ∠AOB ;(2)OA=OB 。 如图②: 连接 FB ,将△FOB 绕点 O 旋转至△FOA 的位置,连接 F ′E 、FE ,可得△OEF ′≌△OEF 。 模型精练 1.(2019秋?九龙坡区校级月考)如图.在四边形ABCD 中,∠B +∠ADC =180°,AB =AD ,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =1 2 ∠BAD ,求证:EF =BE ﹣FD . 【点睛】在BE 上截取BG ,使BG =DF ,连接AG .根据SAA 证明△ABG ≌△ADF 得到AG =AF ,∠BAG =∠DAF ,根据∠EAF =1 2∠BAD ,可知∠GAE =∠EAF ,可证明△AEG ≌△AEF ,EG =EF ,那么EF =

GE =BE ﹣BG =BE ﹣DF . 【解析】证明:在BE 上截取BG ,使BG =DF ,连接AG . ∵∠B +∠ADC =180°,∠ADF +∠ADC =180°, ∴∠B =∠ADF . 在△ABG 和△ADF 中, {AB =AD ∠B =∠ADF BG =DF , ∴△ABG ≌△ADF (SAS ), ∴∠BAG =∠DAF ,AG =AF . ∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =1 2∠BAD . ∴∠GAE =∠EAF . 在△AEG 和△AEF 中, {AG =AF ∠GAE =∠EAF AE =AE , ∴△AEG ≌△AEF (SAS ). ∴EG =EF ,

倍角公式与半角公式习题

两角和与差的三角函数 1.若cos 4,且 5 2 .(本小题满分12 分)(1)求的表达式;(2)设,,,求的值.3.在非等腰△ ABC中, 0, ,则tg 2 已知函数的最 小正周期为,且. a,b,c 分别是三个内角A,B,C的对边,且a=3,c=4 , C=2A. (Ⅰ)求cosA 及 b 的 值; Ⅱ)求cos( 3 2A)的值. 4.已知sin( 6 A .1 ,则cos2()的值是()33 .1 .3 5.若cos 是第三象限的 角 1 ,则 1 tan 2= ( tan 2 A . D .-2 6.己知R,sin 3cosa 5 ,则tan 2a= 7.已知cos( ) 4 8.已知cos( ) 4 4 ,则sin2 5 4 ,则sin2 5 9.在ABC 中,内角A,B,C 的对边分别为a,b,c且a b,已知cosC 2B 2 A sin Acos sin Bcos 22 (Ⅰ)求 a 和b的值;(Ⅱ)求cos(B C) 的值.2 1sin C .2 10.已知函数f (x)2sin( 6)(0,x R)的最小正周期为 1)求的值; 2 2)若f ()2 3 (0, ),求cos2 的值. 8 11.已知函数f (x) 2 2sin xcosx 2sin x 1(x R) . 1)求函数f (x)的最小正周期和单调递增区 间; 2)若在ABC中,角A,B ,C的对边分别为a,b,c, A 为锐角, 且f (A 2,求ABC面积S的最大值.3

12.已知函数 y log a (x 1) 3,(a 0且 a 1)的图象恒过点 P ,若角 的终边经 过点 P ,则 sin 2 sin2 的值等于 ________ 又是偶函数; 23. y 2sin 2 x 的值域是( 13.已知 (0, ) ,且 sin cos 1 ,则 cos2 的值为( ) 2 A . 14.已知函数 f x Asin( x )(x R, A 0, 0,| | ) 的部分图象如图所 示. 1)试确定函数 f x 的解析式; (2) 若 f ( 2 15 . 已知 sin( 16 . 已知 sin( 17 . 已知 18 . 已知 19 . 设 sin2 20 . 设 f ( ) 21 . ①存在 sin 0; 1 ,求 3 cos(2 3 )的值. 45 ) 45 ) 2 10 2 10 2 ,0),cos( 2 ,0),cos( sin 2cos 3 sin 2(2 且0 且0 4 5 4 5 90 , 90 , ,则 tan2 ,则 tan2 则 cos2 则 cos2 ),则 tan2 的值是 ) sin(2 2 2 2cos 2 ( ) (0, ) 使 sina cosa 2 的值为 的值为 cos( ) 3 ,求 f (3)的值。 1 ;②存在区间 (a,b )使 y cos x 为减函数而 3 ③ y tanx 在其定义域内为增函数;④ y cos2x sin ( x ) 既有最大、最小值, 2 ⑤ y sin |2x | 最小正周期为 6 22 .在△ ABC 中,若 sin ( A )等腰三角形 ( C )等腰或直角三角形 以上命题错误的为 A+B-C ) =sin (B ) (D ) A-B+C ),则△ ABC 必是( ) 直角三角形 等腰直角三角形 A .[ -2,2] B .[0,2] .[ - 2,0] D . R 24 . 已 知 sin 是 方 程 5x 2 7x 6 0 的 根 , 且 是 第 三 象 限 角 , 求 ) ( (

中考数学必会几何模型:半角模型

半角模型 已知如图:①∠2=1 2 ∠AOB;②OA=OB. O A B E F 1 23 连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′ 43 2 1 F' F E B A O 模型分析 ∵△OBF≌△OAF′, ∴∠3=∠4,OF=OF′. ∴∠2=1 2 ∠AOB, ∴∠1+∠3=∠2 ∴∠1+∠4=∠2 又∵OE是公共边, ∴△OEF≌△OEF′. (1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点; (2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系; (3)常见的半角模型是90°含45°,120°含60°. 模型实例 例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N.(1)求证:BM+DN=MN. (2)作AH⊥MN于点H,求证:AH=AB.

证明:(1)延长ND 到E ,使DE=BM , ∵四边形ABCD 是正方形,∴AD=AB . 在△ADE 和△ABM 中, ?? ? ??=∠=∠=BM DE B ADE AB AD ∴△ADE ≌△ABM . ∴AE=AM ,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN 和△AEN 中, ?? ? ??=∠=∠=AN AN EAN M AN EA M A ∴△AMN ≌△AEN . ∴MN=EN . ∴BM+DN=DE+DN=EN=MN . (2)由(1)知,△AMN ≌△AEN . ∴S △AMN =S △AEN . 即EN AD 2 1 MN AH 21?=?. 又∵MN=EN , ∴AH=AD . 即AH=AB .

半角模型专题专练复习进程

半角模型专题专练

半角模型例题 已知,正方形ABCD 中,∠EAF 两边分别交线段BC 、DC 于点E 、F ,且∠EAF ﹦45° 结论1:BE ﹢DF ﹦EF 结论2:S △ABE ﹢S △ADF ﹦S △AEF 结论3:AH ﹦AD 结论4:△CEF 的周长﹦2倍的正方形边长﹦2AB 结论5:当BE ﹦DF 时,△CEF 的面积最小 结论6:BM 2﹢DN 2﹦MN 2 结论7:三角形相似,可由三角形相似的传递性得到 结论8:EA 、FA 是△CEF 的外角平分线 结论9:四点共圆 结论10:△ANE 和△AMF 是等腰直角三角形(可通过共圆得到) 结论11:MN ﹦√2 2EF (可由相似得到) 结论12:S △AEF ﹦2S △AMN (可由相似的性质得到) 结论5的证明: 设正方形ABCD 的边长为1 则S △AEF ﹦1﹣S 1﹣S 2﹣S 3 ﹦1﹣12x ﹣12y ﹣1 2(1﹣x)(1﹣y) ﹦1 2﹣1 2xy 所以当x ﹦y 时,△AEF 的面积最小 结论6的证明: 将△ADN 顺时针旋转90°使AD 与AB 重合 ∴DN ﹦BN ′ 易证△AMN ≌△AMN ′ ∴MN ﹦MN ′ 在Rt △BMN ′中,由勾股定理可得: BM 2﹢BN ′2﹦MN ′2 即BM 2﹢DN 2﹦MN 2 结论7的所有相似三角形:

△AMN ∽△DFN △AMN ∽△BME △AMN ∽△BAN △AMN ∽△DMA △AMN ∽△AFE 结论8的证明: 因为△AMN ∽△AFE ∴∠3=∠2 因为△AMN ∽△BAN ∴∠3=∠4 ∴∠2=∠4 因为AB ∥CD ∴∠1=∠4 ∴∠1=∠2 结论9的证明: 因为∠EAN ﹦∠EBN =45° ∴A 、B 、E 、N 四点共圆(辅圆定理:共边同侧等顶角) 同理可证C 、E 、N 、F 四点共圆 A 、M 、F 、D 四点共圆 C 、E 、M 、F 四点共圆 **必会结论-------- 图形研究正方形半角模型 已知:正方形ABCD ,E 、F 分别在边BC 、CD 上,且?=∠45EAF ,AE 、AF 分别交BD 于H 、G ,连EF . 一、全等关系 (1)求证:①EF BE DF =+;②DG 2﹢BH 2﹦HG 2;③AE 平分BEF ∠,AF 平分DFE ∠. 二、相似关系 (2)求证:①DG CE 2=;②BH CF 2=;③HG EF 2=. (3)求证:④DH BG AB ?=2;⑤HG BG AG ?=2;⑥21=?CF DF CE BE . 三、垂直关系 (4)求证:①EG AG ⊥;②FH AH ⊥;③BE AB HCF =∠tan . (5)、和差关系 求证:①BE DG BG 2=-;②DH DF AD 2=+; ③||2||DG BH DF BE -=-.

第五讲:倍角半角公式汇总

倍角半角公式 题型一:化简与求值 例 1求值:0 01000 1cos 20sin10(tan5tan 5 2sin 20 -+-- 2 = 3. 化简 tan 70cos10201 - 4.化简下列各式: (1 ???? ???????∈+-ππαα2232cos 21212121 , (2 ?? ? ??-?????--απαπα α4cos 4tan 2sin cos 222。 5 .求值:(1 0

00078sin 66sin 42sin 6sin ; (2 0 0020250cos 20sin 50cos 20sin ++ (3 log 92cos log 9 cos log 222ππ ++ 6. 已知函数 2 sin( 2cos(21 (π + - += x x x f . (1求 (x f 的定义域; (2若角α在第一象限且 5 3 cos =α,求(αf 的值 . 1已知 (,0 2

x π ∈- , 4 cos 5 x = ,则 =x 2tan ( A 247 B247-7 24 D724- 2 已知 cos 23 θ= ,则 44 sin cos θθ+的值为( A 1813 B18 11 C97 D 1- 3. 函数 221tan 21tan 2x y x -=+的最小正周期是 (

A 4π B 2 π Cπ D2π 4已知 3 sin( , 45x π -=则 sin 2x 的值为( A 1925 B1625 C1425725 5 函数 x x y 2 4cos sin +=的最小正周期为( A 4π B2π C π D2π 6. 函数 1cos sin x y x -=的周期是( A. 2 π B. π C . 2π D. 4π 7. 若 2 2 4

专题05倍半角模型巩固练习(提优)含答案及解析-冲刺中考数学几何专项复习

倍半角模型巩固练习(提优) 1.如图,在正方形ABCD中,点E、F分别在BC、AB上,且∠FDE=45o,连接DE、DF、EF,试探究EF、AF、CE之间的数量关系. 2.如图,在△ABC中,AB=AC,∠BAC=90o,点D在CB的延长线上,连接AD,EA ⊥AD,∠ACE=∠ABD. (1)求证:AD=AE; (2)点F为CD的中点,AF的延长线交BE于点G,求∠AGE的度数. 3.如图,在平行四边形ABCD中,AE⊥BC于点E,CE=CD,点F为CE的中点,点G

为CD上的一点,连接DF、EG、AG,∠1=∠2. (1)若CF=2,AE=3,求BE的长; (2)求证:∠CEG=∠AGE. 4.如图,在正方形ABCD中,E为AD边上的中点,过点A作AF⊥BE交CD边于点F,M是AD边上一点,且BM=DM+CD. (1)求证:点F是CD边上的中点; (2)求证:∠MBC=2∠ABE. 5. 如图,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF, 垂足为点M,BE=3,,求MF的长.

6. 如图,在△ABC中,∠ACB=90o,D是AB边上的一点,M是CD的中点,若∠AMD =∠BMD.求证:∠CDA=2∠ACD. 倍半角模型巩固练习(提优) 1.如图,在正方形ABCD中,点E、F分别在BC、AB上,且∠FDE=45o,连接DE、DF、EF,试探究EF、AF、CE之间的数量关系. 【解答】EF=AF+CE,证明见解析 【解析】如图,将△DCE绕着点D顺时针旋转90o得到△DGA.

∵∠EDC+∠ADF+∠FDE=90o,∠FDE=45o,∴∠EDC+∠ADF=45o, 又∵旋转,∴DE=DG,∠GDA=∠EDC,∴∠GDA+∠ADF=∠GDF=∠FDE=45o, 在△DGF与△DEF中,DF=DF,∠GDF=∠EDF,DG=DE,∴△DGF≌△DEF,∴EF=GF=GA+AF, ∵旋转,∴GA=CE,∴EF=AF+CE. 2.如图,在△ABC中,AB=AC,∠BAC=90o,点D在CB的延长线上,连接AD,EA ⊥AD,∠ACE=∠ABD. (1)求证:AD=AE; (2)点F为CD的中点,AF的延长线交BE于点G,求∠AGE的度数. 【解答】(1)见解析;(2)∠AGE=90o 【解析】(1)证明:∵EA⊥AD,∴∠DAE=∠90o,∴∠DAB+∠BAE=90o, ∵∠BAC=90o,∴∠CAE+∠BAE=90o,∴∠DAB=∠CAE, ∵∠ACE=∠ABD,AB=AC,∴△ADB≌△ACE,∴AD=AE; (2)如图,延长AG至点H,使得FH=FA.

半角模型专题--优选专练.doc

半角模型例题 已知,正方形 ABCD中,∠ EAF两边分别交线段 BC、 DC于点 E、F,且∠ EAF﹦ 45°结论 1:BE﹢ DF﹦EF 结论 2:S△ABE﹢ S△ADF﹦S△AEF 结论 3:AH﹦ AD 结论 4:△ CEF的周长﹦ 2 倍的正方形边长﹦ 2AB 结论 5:当 BE﹦DF时,△ CEF的面积最小 22 2 结论 6:BM﹢DN﹦MN 结论 7:三角形相似,可由三角形相似的传递性得到 结论 8:EA、 FA是△ CEF的外角平分线 结论 9:四点共圆 结论 10:△ ANE和△ AMF是等腰直角三角形(可通过共圆得到) 结论 11: MN﹦EF(可由相似得到) 结论 12: S△ AEF﹦2S△ AMN(可由相似的性质得到) 结论 5 的证明: 设正方形 ABCD的边长为 1 则S△AEF﹦1﹣S1﹣S2﹣ S3 ﹦1﹣ x﹣ y﹣ (1 ﹣x)(1 ﹣y) ﹦﹣ xy 所以当 x﹦y 时,△ AEF的面积最小 结论 6 的证明: 将△ ADN顺时针旋转 90°使 AD与 AB重合 ′ ∴DN﹦ BN ′ 易证△ AMN≌△ AMN ′ ∴MN﹦ MN ′ 在 Rt△BMN中,由勾股定理可得: 2′ 2′2 BM﹢BN ﹦MN 22 2 即 BM﹢DN﹦MN 结论 7 的所有相似三角形: △ AMN∽△ DFN△AMN∽△ BME△AMN∽△ BAN△ AMN∽△ DMA△AMN∽△ AFE

结论 8 的证明: 因为△ AMN∽△ AFE ∴∠ 3=∠ 2 因为△ AMN∽△ BAN ∴∠ 3=∠ 4 ∴∠ 2=∠ 4 因为 AB∥CD ∴∠ 1=∠ 4 ∴∠ 1=∠ 2 结论 9 的证明: 因为∠ EAN﹦∠ EBN= 45° ∴A、B、E、N 四点共圆(辅圆定 理:共边同侧等顶角) 同理可证 C、E、N、F 四点共圆 A、M、 F、 D 四点共圆 C、E、 M、 F 四点共圆 **必会结论 --------图形研究正方形半角模型 已知:正方形 ABCD ,E、F分别在边 BC 、 CD 上,且 EAF 45 ,AE、AF分别交BD于H、 G ,连EF. 一、全等关系 ()求证:① 2 2 2 平分,平分 DF BE EF ;②DG﹢ BH﹦ HG;③AE BEF AF DFE . 1 二、相似关系 (2)求证:①CE 2DG ;② CF 2 BH ;③ EF 2HG . (3)求证:④AB2 BG DH ;⑤ AG 2 BG HG ;⑥BE DF 1 . CE CF 2 三、垂直关系 (4)求证:①AG EG ;②AH FH ;③tan HCF AB . (5) 、和差关系 BE 求证:① BG DG 2BE ;② AD DF 2DH ; ③ | BE DF | 2 | BH DG | .

九年级数学半角公式

普通高中课程标准实验教科书—数学第四册[人教版B] 第三章 三角恒等变换 3.2.2半角公式 教学目标: 要求学生能较熟练地运用倍角公式推导半角公式,增强学生灵活运用数学知识和逻辑推理能力 教学重点:半角公式的应用 教学过程 一、复习引入 二倍角公式:αααcos sin 22sin =;)(2αS ααα22sin cos 2cos -=;)(2αC 1cos 22-=αα2sin 21-= α αα2tan 1tan 22tan -= ;)(2αT 二、讲解新课 1、半角公式 α+α-±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin α α-=α+α=αsin cos 1cos 1sin 2tan 证:1?在 α-=α2sin 212cos 中,以α代2α, 2 α代α 即得: 2sin 21cos 2α-=α ∴2 cos 12sin 2α-=α 2?在 1cos 22cos 2-α=α 中,以α代2α,2 α代α 即得: 12 cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3?以上结果相除得:α+α-=αcos 1cos 12tan 2

4? 2tan 2cos 2sin 2cos 2sin 2)2sin 21(1sin cos 12αααα α==--=- 2tan 2cos 2sin 12cos 212cos 2sin 2cos 1sin 2ααα ααα α α==-+=+ 2、例子 1如果|cos θ|= 51,25π<θ<3π,则sin 2 θ的值等于 2设5π<θ<6π且cos 2θ=a ,则sin 4 θ等于 3.tan 12π-cot 12π的值等于 4.设25sin 2x+sin x-24=0且x是第二象限角,求tan 2 x 小结:运用倍角公式推导半角公式,增强学生灵活运用数学知识和逻辑推理能力 课堂练习:第154页练习A 、B 课后作业:第155页习题B 3

2.角含半角模型

角含半角模型 破题策略 1. 等腰直角三角形角含半角 如图,在△ABC 中,AB =AC ,∠BAC =90°,点D ,E 在BC 上且∠DAE =45° (1) △BAE ∽△ADE ∽△CDA (2)BD 2+CE 2=DE 2 . 45° E A B C D 证明(1)易得∠ADC =∠B +∠BAD =∠EAB , 所以△BAE ∽△ADE ∽△CD A . (2)方法一(旋转法):如图1,将△ABD 绕点A 逆时针旋转90°得到△ACF ,连结EF . 45° F E A B C D 则∠EAF =∠EAD =45°,AF =AD , 所以△ADE ∽△FAE ( SAS ). 所以DE = EF . 而CF =BD ,∠FCE =∠FCA +∠ACE =90°, 所以BD 2+ CE 2=CF 2+CE 2=EF 2=DE 2 . 方法二(翻折法):如图2,作点B 关于AD 的对称点F ,连结AF ,DF ,EF . 45° E A B C D 因为∠BAD +∠EAC =∠DAF +∠EAF , 又因为∠BAD =∠DAF , 则∠FAE =∠CAE ,AF =AB =AC , 所以△FAE ∽△CAE (SAS ). 所以EF = E C .

而DF =BD , ∠DFE =∠AFD + ∠AFE =90°, 所以BD 2+ EC 2= FD 2+ EF 2= DE 2 . 【拓展】①如图,在△ ABC 中,AB =AC ,∠BAC =90°,点D 在BC 上,点E 在BC 的 延长线上,且∠DAE =45°,则BD 2+CE 2=DE 2 . E D 可以通过旋转、翻折的方法来证明,如图: E A D F E A D ②将等腰直角三角形变成任意的等腰三角形:如图,在△ABC 中,AB =AC ,点D ,E 在 BC 上,且∠DAE =1 2 ∠BAC ,则以BD ,DE ,EC 为三边长的三角形有一个内角度数为180° -∠BA C . B 可以通过旋转、翻折的方法将BD ,DE ,EC 转移到一个三角形中,如图: B C E B D

人教版八年级下册第18章平行四边形——弦图模型和半角模型专题(Word版,无答案)

一 ) 弦图模型 基本图形】已知正方形 ABCD,过 B,D 两点分别向过点 C 的直线作垂线 , 垂足分别为点 E,F, 则△ BCE ≌△ CDF h, 正方形 ABCD 的四 个顶点分 (1) 当 a=45 °时, 求△EAD 的面积 (2) 当 a=30 °时, 求△EAD 的面积 (3) 当0°

变式训练 】如图,分别以 ABC 的AC 和BC 为一边,在ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 4.如图,直角梯形ABCD 中,AD/BC,∠ADC=90°,是AD 的垂直平分线,交AD 于点M,以腰AB 为边作正方形ABFE,EP⊥l 于点P. 求证:2EP+AD=2CD 二)半角模型 半角模型【用旋转和对称(翻折)的方法解决问题】基本结论:在正方形ABCD中,若M、N 分别在边BC、CD上移动,且满足MN=BM+ DN,则有以下基本结论(需记忆):① . ∠MAN4=5°;② . C CMN 2AB;③ . AM、AN分别平分 ∠BMN和∠DNM. 同样,在正方形ABCD中,若已知∠MAN4=5°,则会有:① . MN=B+MD N; ②C CMN 2AB;③.AM、AN分别平分∠BMN 和∠DNM④; 若继续作AH⊥MN于点H, 则有AH=AB. F

和差公式二倍角公式及半角公式

三 角 函 数 1.两角和与差的三角函数 βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβαβαβ ±±=。 2.二倍角公式 αααcos sin 22sin =; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 22tan tan 21tan ααα =-。 3.半角公式: 22cos 1sin 2αα-=,22cos 1cos 2αα+=,2sin 2cos 12αα=-,2cos 2cos 12αα=+ sin 2α =cos 2α= sin 1cos tan 21cos sin α αααα-===+ 4.辅助角公式 | ()sin cos sin a x b x x ?+=+, sin cos ??==其中 5.积化和差公式: ()()[]βαβαβ-++=sin sin 21cos sin a , ()()[]βαβαβ--+=sin sin 2 1sin cos a ()()[]βαβαβ-++= cos cos 21cos cos a , ()()[]βαβαβ--+-=cos cos 21sin sin a 6. 和差化积公式: sin sin 2sin cos 22αβ αβ αβ+-+=, sin sin 2cos sin 22αβ αβ αβ+--=

cos cos 2cos cos 22αβαβαβ+-+=, cos cos 2sin sin 22αβαβαβ+--=- 例题: 例1. 已知α∈( 2π,π),sin α=53,则tan(4 πα+)的值. , 例2.sin163°sin223°+sin253°sin313°的值. 例2. 已知0cos cos 1 sin sin =+=+βαβα,,求cos )的值(βα+。 ¥ 例3. 若的值求,x x x x x tan 1cos 22sin ,471217534cos 2-+<<=??? ??+πππ。 ' 例5.已知正实数a,b 满足的值,求a b b a b a 158tan 5sin 5cos 5cos 5sin ππππ π=-+。

倍半角模型知识精讲

倍半角模型知识精讲 一、二倍角模型处理方法 1. 作二倍角的平分线,构成等腰三角形. 例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形. 2. 延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形. 例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形. 例题:如图,在△ABC中,∠C=2∠A,AC=2BC,求证:∠B=90o. 【解答】见解析 【证法一】如图1,作∠C的平分线CE交AB于点E,过点E作ED⊥AC于点D. 则∠ACE=∠A,AE=CE, ∵AE=EC,ED⊥AC,∴CD=AC,

又∵AC=2BC,∴CD=CB,∴△CDE≌△CBE,∴∠B=∠CDE=90o; 【证法二】如图2,延长AC到点D,使得CD=CB,连接BD,取AC的中点E,连接BE. 由题意可得EC=CD=BC,∠DBE=90o, ∵CD=CB,∠D=∠CBD,∴∠ACB=2∠D, ∵∠ACB=2∠A,∠A=∠D,∴AB=BD, 又∵AE=DC,∴△ABE≌△DBC,∴∠ABE=∠DBC,∴∠ABC=∠EBD=90o. 【证法三】如图3,作∠C的平分线CD,延长CB到点E,使得CE=AC,∴AC=BC+BE. ∵AC=2BC,∴BC=BE,在△ACD与△ECD中,AC=EC,∠ACD=∠ECD,CD=CD, ∴△ACD≌△ECD,∴∠A=∠E, 又∵∠DCB=∠DCA=∠A,∴∠E=∠DCB,∴DC=DE,∴∠ABC=90o. 二、倍半角综合 1. 由“倍”造“半” 已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可. 如图,若,则() 2. 由“半”造“倍”

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案

正方形角含半角模型提升 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为M ,AM AB =,则有EF BE DF =+,为什么 例4. 如图,在正方形ABCD 的BC 、CD 边上取E 、F 两点,使45EAF ∠=o ,AG EF ⊥于G . 求证:AG AB = 例5.(1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点 O ,90AOF ?∠=. 求证:BE CF =. (2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点 O ,90FOH ?∠=,4EF =.求GH 的长. 【双基训练】 1. 如图6,点A 在线段BG 上,四边形ABCD 与DEFG 都是正方形,?其边长分别为3cm 和5cm ,则CDE ?的面积为________2cm . (6) (7) 2.你可以依次剪6张正方形纸片,拼成如图7所示图形.?如果你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,?那么正方形⑤的面积为________. 3.如图9,已知正方形ABCD 的面积为35平方厘米,E 、F 分别为边AB 、BC 上的点.AF 、CE 相交于G ,并且ABF ?的面积为14平方厘米,BCE ?的面积为5平方厘米,?那么四边形BEGF 的面积是________. 4. 如图,A 、B 、C 三点在同一条直线上,2AB BC =。分别以 AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN , EC 。 求证:FN EC =。 5.如图 ,ABCD 是正方形.G 是BC 上的一点,DE AG ⊥于 E ,BF AG ⊥于 F . (1)求证:ABF DAE △≌△; (2)求证:DE EF FB =+. 【纵向应用】 6. 在正方形ABCD 中,12∠=∠.求证:BE OF 2 1 = 7. 在正方形ABCD 中,12∠=∠.AE DF ⊥,求证:CE OG 2 1= 8. 如图13,点E 为正方形ABCD 对角线BD 上一点, EF BC ⊥, EG CD ⊥ 求证:AE FG ⊥ 9.已知:点E 、F 分别正方形ABCD 中AB 和BC 的中点,连接AF 和DE 相交于点G , 图2 D G A E B C F 13 A D E F C G B

倍角公式和半角公式一

倍角公式和半角公式一-CAL-FENGHAI.-(YICAI)-Company One1

倍角公式和半角公式一 目标认知: 学习目标: 1.能从两角和差公式导出二倍角的正弦,余弦,正切公式; 2.能运用倍角公式进行简单的恒等变换(包括导出半角公式,积化和差,和差化积公式); 3.体会换元思想,化归思想,方程思想等在三角恒等变换中的作用. 学习重点: 倍角公式及其变形. 学习难点: 倍半角公式变形及应用. 内容解析: 1.倍角公式 在和角公式中令=,即得二倍角公式: ; ; . 注意: (1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三 角函数之间的互化问题. (2)“倍角”的意义是相对的,不局限于与的形式.例如与, 与等,也为 引出半角作准备. (3)二倍角公式的记忆可联想相应的和角公式. (4)二倍角的正切公式成立的条件:. (5)熟悉“倍角”与“二次”的关系(升角—降次,降角—升次). (6)公式的逆用及变形:.

2.半角公式 由倍角公式变形得到: ;;; 前两个公式在化简中多用于降次,而开方即得到半角公式: ;;; 其中正负号由的象限确定. 借助倍角公式还可得到另一个半角公式:,好处在 于可以不必考虑正负. 3.积化和差与和差化积(整理的方向,适当换元) (1)积化和差: (2)和差化积: 本周典型例题: 1.已知,求sin2a,cos2a,tan2a的值.解析:∵∴

∴sin2a = 2sinacosa = cos2a = tan2a = 2.已知,求. 解析:注意公式的选择,避开不必要的计算和讨论. =. 3.求值: (1);(2); (3);(4);(5)cos20°cos40°cos80°; 解析:(1)=; (2)=; (3)=; (4)=; (5)cos20°cos40°cos80° = 注意:关注(5)的结构特点.

(完整版)两倍角与半角公式与万能公式.doc

两倍角公式、半角公式、万能公式 ① sin( ) sin cos cos sin ; ② cos( ) cos cos sin sin ; ③ tan( ) tan tan 令1 tan tan 二倍角公式: ① sin 2 2sin cos ; ② cos2 cos2 sin 2 2 cos2 1 1 2sin 2 ; ③ tan 2 2 tan 1 tan 2 两倍角公式中 sin 2 2 sin cos 是两个函数之积,可在(sincos ) 2 中产生。两倍角是“相对的” ,应该广义地理解。 如 cos4 cos2 2 sin 2 2 2 cos2 2 1 1 2 sin 2 2 tan( ) 2tan 2 等等tan 2 1 2 升次公式: sin2 1 cos2 、 cos2 1 cos2 ; 2 2 见到平方就降次,降次角加倍 降次公式: 1 cos 2 cos2 2 1 cos 2 sin 2 2 见到 1 cos 、 1 cos 就升次,升次角减半并项公式 : 1 sin 2 = (sin cos ) 2 半角公式: sin =±1 cos , 2 2 cos =±1 cos , 2 2 1

tg =± 1 cos = sin = 1 cos . 2 1 cos 1 cos sin 半角公式中的正负号如何选取?依照左边的函数值而定。 2 如果给你象限角,如I ,的终边在第几象限?公式前的号如何选取? 2 如果给你区间角,如 3 ,4 ,的终边在第几象限?公式前的号如何选取? 2 如果给你三角比值,如sin cos 0 的终边在第几象限?公式前的号如何选取?tan cos , 0 2 半角的正切公式中的后两个tg = sin =1 cos 前面没有正负号, 2 1 cos sin 万能公式:(并非万能,仅是用tan 可将 sin 、 cos 、 tan 都表示出来的含义) 2 sin α = 2 tan 2 , 1 tan2 2 1 tan 2 cos α = 2 , 1 tan2 2 2 tan tan α = 2 1 tan2 2 题型一、求值问题 补充问题 已知 cos( ) 1 , sin( ) 2 ,且 4 2 , 4 2 9 2 3 4 求 cos( ) 的值 解:考虑目标角和已知角的关系:()—()= 22 2 再运用两倍角公式求值 题型二、化简问题 2

相关文档
最新文档