低压无功补偿方案

低压无功补偿方案
低压无功补偿方案

一、安装无功补偿的必要性

1、政策要求

全国供电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和安装无功补偿设备,并做到随其负荷和电压的变动及时投入或切除,防止无功电力倒送。改善企业用电的功率因数(即进行无功功率补偿),消除企业力率电费是企业节约电能的重要环节,应给予足够重视。

2、企业需求

许多企业对无功补偿的节能意义认识不足,不知道为什么要装,仅仅是因为供电部门力调罚款,才不得不装。客观地讲,无功补偿确实对供电部门有诸多好处,但对企业自身也有许多益处:

提高功率因数、增加用电设备的出力,消除力率电费。

减少线路及变压器的电能损耗,减少相应电费。

改善电压质量和电动机运行状况,降低动力设备的使用电流。

减轻电器、开关和供电线路负荷,减少维修量延长使用寿命,提高电力系统的可靠性。

降低变压器负荷,释放变压器容量。

使变频调速系统的节能效果提高。

二、无功补偿的原理

把具有容性功率负荷的装置与感性功率负荷并联在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间相互交换而不消耗,这样感性负荷需要的无功功率可以从容性负荷得到补偿,这就是无功功率补偿的基本原理。

三、用电单位无功补偿方面一些问题的原因

用户加收力率电费(力率罚款)的原因

全国供电规则规定:100千伏安及以上高压供电的用户功率因数达到0.90以上,其他电

力用户和大、中型电力排灌站、趸购转售电企业,功率因数为0.85以上;农业用电功率因数0.80以上。凡功率因数不能达到上述规定的新用户,供电企业可拒绝供电,对在规定期限内仍未采取措施达到上述要求的用户,供电企业可中止或限制供电。如果已授电单位的授电功率因数达不到供电部门的执行标准,供电部门就会根据该单位实际的月力电费额以及基本电费之和的相应比例给予罚款。如果授电功率因数超过供电部门的标准,则会按照一定比例给予奖励。

用户变压器容量不够的原因

由于无功功率的客观存在,使得电源变压器在发出的能量中,含有有功成分和无功成分,有功成份用于电能的输出而转换成其他能量,无功成份在系统中流动而不消耗。大量的无功成分会占据电源变压器容量,使变压器无法输出应有的有功容量,是用户变压器容量不够的主要原因。无功功率虽不消耗能量,但却是不可缺少的,如果把无功功率这部分补偿平衡掉,就可以将电源变压器的大部分容量用于有功输出,使用户变压器有功输出容量曾大,余出一定的负荷空间。在企业部分设备增容的情况下,可以不用调整变压器的容量,为用户节省人力、物力、财力。

用户线路末端电压低的原因

用户电力系统的线路的末端,因线路较长导至线路压降较大,若系统中存在大量的无功电流,则使系统的线损更加严重,线路的末端电压进一步降低,尤其是在这种情况下,往往存在电压不稳,电能质量不好的现象,对用电设备本身的运行很不利,影响用电设备的出力,降低用电设备的寿命,甚至导致用电设备损坏,继而又影响正常的生产、生活。如果进行合理的无功功率补偿,就可以大大降低线路中的无功电流,减少线路损失,提高线路的末端电压,改善电能质量,避免上述现象的发生。

谐波的危害

1、谐波对供配电系统,对用电负载等都有很大影响和危害,简述如下:

一谐波对电机和电器的影响

谐波对电机,可以引起电机发热,从而产生附加损耗,其次是产生机械振动、噪声和谐波过电压;谐波使变压器的附加损耗增加,硅钢片等发热、振动、噪音等;电缆、送电线路老化;导致这些电气设备失灵和安全可靠性降低。

一谐波对通信的干扰和影响

谐波对通信线路干扰的物理机制主要是电容耦合、电磁感应、电气传导,造成通信失

真或失败。

一谐波功率损失

谐波电流在电网中流动会产生有功功率损失,它构成了电网线损的一部分;对电网的

经济运行很不利,谐波源外送的谐波有功功率是从电网吸收的基波有功功率的一部分转化而

成的。这些外送的谐波有功功率对电气系统和用户都是有害无益的。

一电容器放大谐波电流

含有高次谐波的电压加在电容器两端时,由于电容器对高次谐波阻抗很小,谐波电流加

在电容器的基波电流上,使电容器总运行电流增大,温升提高,很容易发生电容器过负荷甚

至电容器损坏,使用寿命缩短。同时,谐波对电容器参数匹配产生影响,有可能在电网中造

成高次谐波谐振,使故障扩大。

此外,谐波对常用仪表、计算机、家用电器、低压电气和继电保护自动装置影响很大、

甚至发生事故。

2、对谐波的抑制措施

在电力系统的设计中加大系统的短路容量;提高系统的电压等级;增加变流装置的脉动数;改善系统的运行方式等。但是其中许多措施都会大大增加系统和设备的投资且有些方法

的效果并不一定很理想。因此设置交流滤波器是有效抑制谐波和改善波形的有效措施,滤波

器在滤除谐波的同时还能向系统提供所需的部分或全部无功功率。

四、方案分析

1、设计依据

贵公司主要负载设备有泥浆泵、绞车、转盘。其负载功率共在3000Kw左右。现场的系

统电压为0.6Kv所测试的电能质量数据(CA8334):

根据所测试的数据:

电压畸变情况:

Date Started 2010-2-23 Time Started 13:34:45

Hz Urms Line1 Urms

Line2

Urms

Line3

Uthd Line1

Uthd

Line2

Uthd Line3

Hz V V V % % %

49.99 594.1 593.8 595.3 5.3 5.3 5 49.99 593.2 593 594.6 5.2 5.2 5 49.99 593.1 593 594.5 5.2 5.3 5 49.99 593.3 593.1 594.6 5.3 5.4 5.1 49.99 593.3 592.9 594.4 5.3 5.4 5.2 49.99 593 592.8 594.4 5.2 5.3 5.1

电流谐波情况:

Ah5 Line 1 Ah5

Line

2

Ah5

Line

3

Ah7

Line

1

Ah7

Line

2

Ah7

Line

3

Ah9

Line

1

Ah9

Line

2

Ah9

Line

3

Ah11

Line

1

Ah11

Line

2

Ah11

Line3

% % % % % % % % % % % % 21.4 21.7 21.1 5.1 5.8 5.2 0.3 0.6 0.2 3.5 3.4 3.4 21.2 21.5 20.8 5 5.7 5.1 0.3 0.6 0.3 3.5 3.4 3.4

20.8 21.1 20.5 4.8 5.6 5 0.4 0.6 0.3 3.5 3.4 3.3

21 21.1 20.6 5 5.6 5.1 0.3 0.6 0.3 3.5 3.4 3.4 20.9 21.2 20.7 4.9 5.7 5.1 0.3 0.6 0.3 3.5 3.4 3.3 20.9 21.2 20.6 4.9 5.6 5 0.3 0.6 0.3 3.5 3.4 3.3

20.9 21.1 20.6 4.9 5.5 5 0.4 0.6 0.3 3.4 3.5 3.3

21.2 21.4 20.8 5.1 5.6 5.1 0.4 0.6 0.3 3.5 3.5 3.4 21.4 21.5 20.9 5.1 5.7 5.2 0.4 0.6 0.3 3.5 3.6 3.4 21.4 21.6 20.9 5.1 5.7 5.2 0.4 0.6 0.2 3.5 3.5 3.3 21.4 21.7 21 5.1 5.8 5.2 0.3 0.6 0.3 3.5 3.5 3.4 21.4 21.8 21.1 5.1 5.8 5.2 0.3 0.6 0.3 3.5 3.5 3.4 21.3 21.8 21.1 5.1 5.8 5.2 0.3 0.6 0.2 3.5 3.4 3.3 21.2 21.7 21.1 5.1 5.8 5.3 0.3 0.6 0.3 3.4 3.4 3.3 21.3 21.7 21.1 5.1 5.8 5.3 0.3 0.6 0.3 3.4 3.4 3.3 21.2 21.7 21.1 5 5.8 5.3 0.3 0.5 0.2 3.5 3.5 3.3 21.3 21.6 21 5.1 5.7 5.2 0.3 0.6 0.2 3.4 3.5 3.3 21.1 21.6 20.8 5.1 5.8 5.2 0.4 0.5 0.1 3.4 3.6 3.4 21.1 21.6 20.8 5.1 5.7 5.1 0.3 0.6 0.1 3.4 3.5 3.4

21 21.5 20.9 5 5.7 5.2 0.3 0.5 0.2 3.4 3.5 3.4 21.1 21.7 20.9 5.1 5.7 5.2 0.4 0.5 0.2 3.4 3.5 3.4 21.1 21.6 20.9 5.1 5.8 5.3 0.3 0.5 0.2 3.5 3.5 3.3

21 21.6 20.9 5.1 5.8 5.3 0.3 0.5 0.2 3.5 3.5 3.3 21.1 21.5 21 5.1 5.8 5.3 0.4 0.5 0.2 3.4 3.5 3.3 21.3 21.8 21 5.2 5.8 5.3 0.3 0.5 0.2 3.5 3.6 3.3 21.3 21.8 21.1 5.3 5.9 5.4 0.4 0.6 0.2 3.4 3.5 3.3 21.3 21.9 21 5.2 6 5.3 0.3 0.6 0.2 3.4 3.3 3.3 21.2 21.9 21 5.1 5.9 5.2 0.3 0.6 0.2 3.4 3.3 3.4 21.4 21.6 21.1 5.1 5.7 5.1 0.3 0.6 0.2 3.4 3.5 3.3 21.1 21.8 21 5 5.9 5.2 0.3 0.5 0.2 3.5 3.3 3.3

谐波柱形图:

2、分析方案

根据所测试的数据情况:

补偿容量的确定:

现场最大电流在2000A左右,自然功率因数为0.85。现要使功率因数提高到0.95器补偿容量为:

1)×0.6×1.732

Q=(2000×0.8/1.3-2000×0.8×3

=(1230-533)×0.6×1.732

=724(Kvar)

现场五次、七次、十一次谐波比较严重,所以我们选取6%的电抗器串联电容器进行补偿,6%的电抗器对5、7、11次谐波都有抑制作用。能减少谐波20%左右,对补偿设备的器件都有保护作用。

串联电抗器后电容器端电压上升,所以为确保电容器安全选取电容器电压等级为0.69Kv。

实际选取的电容器电压等级为0.69KV所以输出容量为724 Kvar时,这时的安装容量应为:

Q=724×(0.69/0.6)2

=832(Kvar)

加上电抗器消耗掉的一部分无功器补偿容量应为:

Q=832×(1+0.06)=882(Kvar)

所以我们实际安装容量为900Kvar。分11路进行补偿,每路补偿容量为30Kvar、60Kvar、90Kvar、90Kvar、90Kvar、90Kvar、90Kvar、90Kvar、90Kvar、90Kvar、90Kvar。

主要元器件清单如下表:

现场情况分析:

贵厂家反映说现补偿情况有电容器鼓包和熔断器炸掉的现象。这说明电容器组在运行过程中,有电容器自愈失败及瞬间过电压过电流现象。

引起这种情况有:

1.并联电容器组在断开后,应经充分放电后(一般经三分钟)才能再行合闸。防止合闸瞬间电源电压极性正好和电容器上残留电荷相反,损坏电容器。

2.对方设备厂家上电后的电抗器电抗率发生改变而引起的串联谐振。

当电网存在谐波时,负投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的

存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。

在电网中有许多谐波源存在,如果在设置并联电容器的网点处谐波过大,若直接投入并联电容器,往往会使电网中的谐波更大,对并联电容器的安全造成极大的威胁。采取装设串联电抗器的方法,能够有效地抑制谐波分量及涌流的发生,对保证并联电容器的安全运行具有明显的效果。

我公司生产的ZYGHK型无功抑谐装置是专门对有产生谐波设备的系统进行无功功率补偿的,该装置自动跟综负载变化,投切电容器,在补偿无功功率的同时对谐波起到一定的滤除作用,吸收谐波电流达到20%左右,使系统的功率因数保持在最佳状态。

控制器为我公司研制生产的能抑制谐波干扰的ZYDK-12型无功补偿控制器,投切开关采用晶闸管开关,它可有效抑制投切涌流,使用寿命长,跟踪速度快;且每路加装6%电抗器与电容器组成串联谐振回路, 可抑制5次以上谐波对电容器的不利影响,可有效改善电能质量,保证设备正常运行。加配电抗器运行后在电容器的两端电压会相应升高,所以电容器的额定电压等级也要相应提升才可使电容器在额定电压下长期稳定可靠的运行。根据运算及对这样的系统以往做补偿的经验确定电容器的额定电压为0.69KV。

五、选用元器件

1、采用ZYDK-12型控制器

该控制器采用高性能的单片微处理器,全数字化设计,软、硬件模块化处理,电磁兼容设计抗干扰能力强,运行可靠,操作简单。无功补偿控制器是通过测量电压和电流计算出系统的有功功率、无功功率、功率因数等参数,根据负荷情况对电容器组进行投切控制,补偿无功,减少电能损耗,还可实现编码投切。

功能特点

具备完善的显示、控制、保护功能。可实时显示功率因数、系统电压、负载电流、无功功率、谐波数据、电容投切状态等。

具有通讯功能。可通过RS232或RS485通讯口,与就地的计算机设备通讯或组网,允许连接开放式结构的局域网络。

可实时在线设置如下参数:电压PT变比、电流CT变比、电容器组投切参数、投入门限、目标功率因数、动作延时值、过压值、欠压值、谐波百分比上限、时间等参数。

具有记忆功能,使用专用数据存储芯片,经修改后的参数在掉电时仍能保持记忆

具有过压和超高压保护功能:当电压超过电压门限时,控制器能快速切除所有的电容器组并不在投

具有超低负荷闭锁功能:小电流时闭锁输出,不投切;在无电流或CT断线时控制器退出运行,实现模糊控制

系统在运行过程中实行模糊控制策略寻找最优的投切方案控制电容投切,使功率因数在最高的范围之内,不会出现投切震荡的现象。在谐波超标的情况下电容会自动退出运行,有力的保护了电容,使系统寿命曾长

自动运行功能:停电退出、送电后自动恢复运行。

具有手动/自动测试功能

2、采用ZYWK型晶闸管开关投切电容器

电容器的投切开关采用ZYWK型晶闸管投切开关,它具有投切电容器速度快、安全、无噪音,对电容器无损害、不产生电磁干扰等优点,是快速投切电容器的理想开关。投切电容器时无涌流和过电压产生,从而使补偿设备对系统无冲击,延长了电容器的使用寿命。晶闸管过零开关在电磁兼容性、可靠性、安全性、投切速度等方面的优越性是机械式继电器无法比拟的。

功能特点

1、采用过零触发技术,投切电容器时先经过过零采样,当晶闸管两端电压为零时投入电

容器,当流过晶闸管的电流为零时,切除电容器组,无过电压产生,从而使补偿设备对系统无冲击,延长了电容器的使用寿命;

2、可三相共补或分相补偿;

3、动态响应速度快,电容器切除后无需放电可再次投入,因此可频繁投切。

3、配置 CKSG型低压干式铁心电抗器

配置6%电抗率的电抗器可避免投入电容器后引起系统谐振及系统谐波的放大,可在设计负荷下安全稳定的运行。CKSG型低压干式铁心电抗器外观精美,做工细致,电感值准确,温升低,噪声小,是低压无功补偿和谐波治理装置的首选产品。

结构特点

分为三相和单相两种

采用干式铁心结构,无电磁污染,无油污污染,阻燃性能好

电抗器整体结构简单,体积小,免维护,便于柜内安装

电感值准确,温升留有合理的余量,噪声低。

铁芯采用优质低损耗进口冷轧取向硅钢片,芯柱由多个气隙分成均匀小段,气隙采用环氧层压玻璃布板作间隔,以保证电抗器气隙在运行过程中不发生变化

线圈采用H级或C级漆包或丝包铜线绕制,排列紧密且均匀,外表不包绝缘层,具有极佳的美感且有较好的散热性能

电抗器的线圈和铁芯组装成一体后经过预烘→真空浸漆→热烘固化这一工艺流程,采用H级浸渍漆,使电抗器的线圈和铁芯牢固地结合在一起,不但大大减小了运行时的噪音,而且具有极高的耐热等级,可确保电抗器在高温下亦能安全地无噪音地运行

电抗器芯柱部分紧固件采用无磁性材料,确保电抗器具有较高的品质因数和较低的温升,确保具有较好的滤波效果

外露部件均采取了防腐蚀处理,引出端子采用镀锡铜质端子

体积小、重量轻、外形美观合理

4、采用BKMJ型干式自愈式金属化电容器

主要技术指标

1、性能特点

该系列电容器采用电性能优异的聚丙烯薄膜作介质,实际损耗率在0.1%以下。发热少、温升低

寿命长、具有良好的自愈功能。

在电容器发生故障时,能自动切断电源,防止发生爆炸起火,使运行绝对安全可靠。当电容切断电

源后,能在3分钟内使电容器的极间电压降到50V以下。

2、产品特点:

采用干式、无油化设计、适合安全性要求高的场合、及高档开关柜。

自愈性技术,过压拉断保护装置

电容器投切原则

1)电压相关原则:

控制器可设定电压上限,当电网电压高于上限电压设定值时(可根据系统实际情况进行设定)时,逐级切除电容器组,直至电压小于电压设定值。

a)控制器可设定电压下限,当电网电压低于欠压设定值时(可根据系统实际情况进行

设定)时,装置休眠。

b) 当电网电压在过压设定值和欠压设定值之间时,按系统所需感性无功不足补容性无

功功率,欠补投,过补切。 2)无功相关原则

a. 当线路中感性无功达到无功上限设定值时,开始投入电容器。

b. 当线路中容性无功达到无功下限设定值时,开始切除电容器。 3)补偿过程中不产生投切振荡,不产生涌流,不产生谐波。

六、效益分析

预计补偿后取得的效果及效益

1.安装补偿装置后线路的功率因数从0.85补偿接近0.95时,线路的有功损失降低率为:

▲P= [1-2

2

1)cos cos (

?φ]×100% = [1-2

)95

.08.0(

]]×100% = 29%

2.功率因数从0.85提高到0.95时,变压器的铜损降低率为:

▲P= [1-2

21)cos cos (

?φ]×100%

= [1-2

)95

.08.0(

]×100% = 29%

3.功率因数从0.85提高到接近于0.95时,变压器的有效容量释放率:

▲S=)cos cos 1(2

1

φφ-

×100% =(1-

95

.08

.0)×100% =16%

4.补偿后可以消除每个月的力率电费,每个月还可以拿到供电部门的相关奖励(功率因数超过0.95后就可以拿到最高的奖励----每年月动力电费的0.75%倍)。

奖励电费=电度电费×奖励比例

七、报价表:

服务承诺产品销售及服务

我们建立了分四步走的销售和服务模式,

一、售前服务:通过宣传产品和访问用户,让用户了解我们及我们的产品。

二、售中服务:派出专业技术人员到现场,协同用户进行细致的现场勘察及测量,了解用户的用电现场

和负荷情况,取得第一手数据资料,根据资料为用户设计最适合的解决方案。

三、产品生产:按照方案和用户的要求进行生产,每个合同都指定专门的负责人来组织生产、监督质量

和保障按时供货。各环节严格按照ISO9001质量体系要求进行动作,切实保证产品的质量和供货期。

售后服务:我们建立了专门的售后服务队伍,负责设备售出后的安装指导、运行调试和解决问题。产品投入使用的头三年,我们的服务人员将免费为用

四、户服务,解决运行中的所有问题,作到让用户完全放心和满意。

质量承诺:所有产品核心部件质保三年,三年内出现质量问题免费维修或更换,常规部件质保一年。

售后承诺:产品出现故障时,如电话解答不能解决的,我们的服务人员将在本省24小时、外省48小时内赶到现场,解决故障和问题。

配电网无功补偿方式

配电网无功补偿方式 合理的无功补偿点的选择以及补偿容量的确定,能够有效地维持系统的电压水平,提高系统的电压稳定性,避免大量无功的远距离传输,从而降低有功网损。而且由于我国配电网长期以来无功缺乏,造成的网损相当大,因此无功功率补偿是降损措施中投资少回收高的有效方案。配电网无功补偿方式常用的有:变电站集中补偿方式、低压集中补偿方式、杆上无功补偿方式和用户终端分散补偿方式。 配电网无功补偿方案 1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿(如图1的方式1),补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用无功补偿装置(一般是并联电容器组)结合变压器有载调压共同调节。通过两者的协调来进行电压/无功控制在国内已经积累了丰富的经验,九区图便是一种变电站电压/无功控制的有效方法。然而操作上还是较为麻烦的,因为由于限值需要随不同运行方式进行相应的调整,甚至在某些区上会产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而在九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2 低压集中补偿方式 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿(如图1的方式2),通常采用微机控制的低压并联电容器柜,容量在几十至几百千乏左右,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿。它主要目的是提高专用变用户的功率因数,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。这种补偿方式的投资及维护均由专用变用户承担。目前国内各厂家生产的自动补偿装置通常是根据功率因数来进行电容器的自动投切。就这种方案而言,虽然有助于保证用户的电能质量,但对电力系统并不可取。虽然线路电压的波动主要由无功量变化引起,但线路的电压水平往往是由系统情况决定的。当线路电压基准值偏高或偏低时,无功的投切量可能与实际需求相去甚远,易出现无功过补偿或欠补偿。 对配电系统来说,除了专用变之外,还有许多公用变。而面向广大家庭用户及其他小型用户的公用变,由于其通常安装在户外的杆架上,实现低压无功集中补偿则是不现实的:难于维护、控制和管理,且容易造成生产安全隐患。这样,配电网的无功补偿受到了很大地限制。 3 杆上补偿方式 由于配电网中大量存在的公用变压器没有进行低压补偿,使得补偿度受到限制。由此造成很大的无功缺口需要由变电站或发电厂来填,大量的无功沿线传输使得配电网网损仍然居高难下。因此可以采用10kV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿(如图1的方式3),以提高配电网功率因数,达到降损升压的目的。但由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行: (1)补偿点宜少,建议一条配电线路上宜采用单点补偿,不宜采用多点补偿; (2)控制方式从简。建议杆上补偿不设分组投切; (3)建议补偿容量不宜过大。补偿容量太大将会导致配电线路在轻载时出现过电压和过补偿现象;另外杆上空间有限,太多数电容器同杆架设,既不安全,也不利于电容器散热; (4)建议保护方式应简化。主要采用熔断器和氧化锌避雷器作简单保护。 显然,杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

国家电网公司电力系统无功补偿配置技术原则

国家电网公司电力系统无功补偿配置技术原则 为进一步加强国家电网公司无功补偿装置的技术管理工作,规范电网无功补偿的配置要求,提高电网的安全、稳定、经济运行水平,国家电网公司在广泛征求公司各有关单位意见的基础上,制定完成了《国家电网公司电力系统无功补偿配置技术原则》,并于8月24日以国家电网生[2004]435号印发,其全文如下: 国家电网公司电力系统无功补偿配置技术原则 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV 电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV 及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。

无功补偿及低压补偿装置原理简介

无功补偿及低压补偿装置原理简介 一、一次电路 一次电路的构成如下图所示,包括隔离开关QS、10组熔断器FUI~FUIO、接触器KM1~KMIO、热继电器FRl~F'R10、补偿电容器CI~CIO.另外还有电流互感器TAa、TAh和TAc.避雷器BLI、BL2和BL3。其中熔断器和热继电器用于对电容器进行短路及过电流保护;接触器是对电容器进行手动或自动投入、切除的开关器件;电流互感器获取的电流信号用于测量无功补偿柜补偿电流的大小:避雷器用子吸收电容器投入、切除操作时可能产生的过电压,是一种额定电压为AC220V的低压避雷器。 二、二次控制电路 包括一个物理结构分为7层的转换开关2SA、无功补偿自动控制器(以下简称补偿控制器)等元器件。转换开关2SA用来手动控制投入或切除1~10路补偿电容器,并完成自动控制器电压信号、电流信号的接人或退出。补偿控制器可以根据功率因数的高低或无功功率r与用蠛的大小自动投入或切除电容器,并在系统电压较高时自动切除电容嚣。具体电路见下图。 转换开关2SA有一个操作手柄,出下图可见,该手柄有自动、零位和手动l~lo共12个挡位,每旋转30°即可转换一个挡位。 在每个挡位,会有桐应的转换开关触点接通.2SA共可转换13对触点,分别是(7)、(8)、(9)、(10)等等,一直到下部的(1)、(2)触点。为了标示出转换开关2SA在不同的挡位与各组触点之问的对应关系,与12个挡位相对应的有12条纵向虚线,虚线与每一组触点(略偏下、无形相交的位置,可能标注有圆点或不标注圆点。标注有圆点的,表示转换开关旋转至该档位时,圆点(略偏上)位

置的一组触点是接通的,否则该组触点星开路状态。例如,在触点(7)、(8)略偏下位置,手动1.手动IO挡位时均标注有圆点,表示这10个挡位时触点(7)、(8)均接通。而在手动l挡位,只在触点(7)、(8)和(1)、(2)位置标注有圆点,说明在该挡位这两组触点是接通的。 无功补偿屏如欲进入自动控制投切状态,需给补偿控制器接人进线柜或待补偿电路总进线处A相电流互感器二次的电流信号I^,B桐、C相电压信号,以及接触器线圈吸合所需的工作电源。具体接线见下图中补偿控制器接线端子图。 图中US1、US2端干连接的103、104号线即是B相、C相电压信号(转换开关2SA在自动挡位时,103号线经2SA的(3)、(4)触点、熔断器FU13、X12端子、隔离开关Qs,连接至B桐电源;104号线沿类似线路连接至C相电源);ISI、IS2端子连接的即是进线柜的电流信号(经由转换开关2SA转接).COM端连接的l 号线即是接触器线圈吸合所需的丁作电源(1号线经熔断器FU11、XI1端子、隔离开关Qs,连接至A桐电源)。B相、C桐电压信号及A相电流信号在补偿控制器内部经过微处理器运算判断后,计算出功率因数的高低、无功功率的大小,一方面经过LED显示器显示功率因数值,同时发送电容器投切指令,例如补偿控制器发出投入电容器CI的指令时,其接线端子中的1号端子经内部继电器触点与COM端(1号线.A相电源)连通,该端子经3号线连接至接触器KMI线圈的左端,线圈的右端经热继电器FR1的保护触点接至2号线.即电源零线N。接触器KM1线圈得电后,主触点闭合.将电容器CI投入,实现无功补偿。此同时.KMI的辅助触点闭合,接通指示灯HL1,指示第一路电容器已经投入.如果无功功率数值较大,补偿控制器则控制各路电容器依次投入,直到功率因数补偿到接近于1。每一路电容器投入时的时间间隔是可调的,通常将其调整为几秒至儿十秒之间。补偿控制器遵

低压无功补偿技术规范

Q/…… 吉林省电力有限公司企业标准 0.4kV低压无功补偿装置 技术规范 2006-9-17发布 2006-9-17实施 吉林省电力有限公司发布

目次 前言 (Ⅱ) 1.范围 (1) 2. 规范性引用文件 (1) 3 使用条件 (1) 3.1 环境条件 (1) 3.2 运行条件 (1) 3.3 系统条件 (1) 4 技术要求 (1) 5 装置功能 (2) 6 试验 (2) 7 技术服务 (2) 8在卖方工厂的检验、监造 (3) 9包装、运输和贮存 (3)

前言 为规范吉林省电力有限公司配电网设备、材料的技术要求,保证入网产品的先进、可靠、安全,依据国家及行业有关规定、规程、标准等,结合吉林省电力有限公司设备运行经验,特制定本标准。 本标准由吉林省电力有限公司提出并归口。 本标准主要起草单位:吉林省电力有限公司生产部 本标准主要起草人:张树东、陈学宇、马卫平、陈文义、谷明远、岳建国、杨万成、郑金鹏、任有学、宋庆秋、徐晓丰、孙静

0.4kV低压无功补偿装置技术规范 1范围 本标准规定了吉林省电力有限公司0.4kV低压无功补偿装置使用条件、主要技术参数和要求、试验、运输等。 本标准适用于吉林省电力有限公司0.4kV低压无功补偿装置的招标通用订货,是相关设备通用订货合同的技术条款。 2规范性引用文件 GB/T15576-1995 低压无功功率静态补偿装置总技术条件 DL599-1996 城市中低压配电网改造技术导则 JB7113-1993 低压并联电容器装置 3使用条件 3.1环境条件 3.1.1海拔高度:≤1000m 3.1.2空气温度 最高温度:+40℃ 最低温度:-40℃ 最大日温差: 25K 3.1.3最大风速: 35m/s 3.1.4最大覆冰厚度:10mm 3.1.5月相对湿度平均值:≤90% ;日相对湿度平均值:≤95% 3.1.6日照强度:≤1.1kW/m2 3.1.7抗震能力:8度(地面水平加速度0.3g,垂直加速度0.15g,两种加速度同时作用。分析计算的安全系数不小于1.67)。 3.1.8污秽等级:级 a)Ⅲ级 b)Ⅳ级 3.2运行条件 安装方式:户内/户外 3.3系统条件 3.3.1系统额定电压:0.4kV 3.3.2系统额定频率:50Hz 4主要技术参数和要求 4.1名称:配电监测与动态无功补偿箱 4.2外形尺寸:600(宽)×400(深)×600(高) 4.2.1地角尺寸:按深度方向打长孔320-340mm,ф14孔。 4.2.2柜体颜色:灰白色 4.3主要订货参数: 4.3.1输入电压:0.4kV(安装点电压) 4.3.2负荷特性:较重

浅析低压电网中的无功补偿

浅析低压电网中的无功补偿 【摘要】无功补偿对电网系统有着重要的意义,对电网进行适当的无功补偿是提高电压质量的有效手段,通过对电网进行适当的无功补偿,可以稳定电网电压,提高功率因数和设备利用率,减小网络有功功率损耗,提高经常效益,从而达到降耗的目的。本文简要介绍了低压电网中的无功补偿含义和重要意义,论述了低压电网中的无功补偿原理、方法,并阐述了对无功补偿装置的选择及应用。 【关键词】电网配置原则低压无功补偿技术应用 1 引言 随着我国民经济的不断发展,电力已成为国民生产生活中不可或缺的重要工具,合理用电、节约用电就显得尤为重要。在我国的工业、农业和民用用电量大幅增加的用电负荷中,整流和变频设备所占的比例也在不断增加,这使得无功电流成为一大障碍,不仅增大供电系统的损耗,而且还可能引发通信系统的故障。因此减少无功电流的损失成为诸多专家和学者面临的严峻挑战。其实,无功并非无用之功,依靠它才能在电路的电感、电容元件中建立变化的电、磁场,从而建立电压,传递和转换有功功率,成为电力系统和用电设备正常运转所不可缺少的重要因素。无功功率不足,会导致系统电压及功率因数降低,因而损坏用电设备,甚至会造成电压崩溃,使系统瓦解,从而造成大面积停电。 2 低压电网中的无功补偿含义及重要意义 (1)低压电网中的无功补偿是对低压电网中的无功功率进行补偿的措施,旨在提高低压电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善低压电网的供电环境。所谓无功补偿是因为电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。低压电网中的无功补偿通过选择合适的补偿方法和补偿装置,可以最大限度的减少低压电网的损耗,使电网质量提高,减少电压波动和降低谐波,从而提高电压稳定性。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。因此,电力系统无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最优补偿,不仅可以维持电压水平和提高电力系统运行的稳定性,而且可以降低网损,使电力系统能够安全经济的运行。 (2)低压电网中的无功补偿能够提高电网的电压稳定性,从而提高电压质量,有效降低电力传输过程中的功率损耗和电能损耗,提高供配电设备的供电能力,因此,工矿企业内部供配电系统需安装无功补偿装置。通过无功补偿,不但可以提高低压电网的电压质量和配电设备的利用率,还可以为企业的节能低碳作出贡献。企业的功率因数直接关系到企业的电价,企业若想降低电力费用,不但

配电网无功补偿

配电网无功补偿 发表时间:2018-04-16T09:30:22.227Z 来源:《电力设备》2017年第31期作者:田金文展瑞磊段其岳 [导读] 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。 (国网阳谷县供电公司山东聊城 252300) 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。在这个过程中,将有各种新技术、新设备发展起来,未来的无功补偿技术将会更加合理和经济有效。 关键词:无功功率产生;无功补偿现状;发展趋势 一、配电网无功功率的产生 在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率的同时还需要无功功率,其大小和负荷的功率因数有关;由此可见,无功功率在输、配电线、变压器中的流动会增加有功功率损耗,产生电压降落。 二、低压配电网无功补偿的含义及现状 低压配电网中的无功补偿是对低压配电网中的无功功率进行补偿的措施,旨在提高低压配电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善低压配电网的供电环境。低压配电网中的无功补偿通过选择合适的补偿方法和补偿装置,可以最大限度的减少低压配电网的损耗,使电网质量提高,减少电压波动和降低谐波,从而提高电压稳定性和电能质量。 目前低压电网无功补偿普遍采取在配电房集中补偿、分散就地补偿和个别补偿三种方式。无功信号的采集使用单相信号,利用三相电容器进行三相共补:现在控制信号采集一般在单相上进行,这种方式不能满足三相负荷量在同一时间不同变化要求。三相共补偿方式适用于负荷主要是使用三相负载的地方,如工业开发区的工业用电。多采用集中补偿和就地补偿,即随机补偿。但对于当前的负载主要为居民用户,由于电源接入点不同和用电负荷不同,三相负荷很可能不平衡,各相无功需量也不同,采用这种补偿方式会在不同程度上出现过补或欠补。无功控制物理量多用电压、功率因数、无功电流,投切方式为:循环投切、编码投切。这种策略没有考虑电压的平衡关系与区域的无功优化。使用电容器容量大,且由多个电容器并列分组进行循环投切,投切开关多采用交流接触器,其缺点是响应速度较慢,在投切过程中会对电网和交流接触器的接点产生冲击涌流,影响电网质量降低交流接触器使用寿命。现价段低压配电网的无功补偿都不具备配电监测功能,依靠人为操作普遍存在时效性差的缺点,从而影响它的经济性和全安性。 三、无功补偿的作用 (一)提高用电户的功率因数,提高用电设备的利用率,降低用电成本; (二)装设静止无功补偿器还能改善电网的电压波形,减小谐波分量和解决负序电流问题。对电容器、电缆、电机、变压器等还能避免高次谐波引起的附加电能损失和局部过热。 (三)减少供电网络的有功损耗,提高线路的供电能力; (四)合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力; (五)在动态的无功补偿装置上,配置自动补偿调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性; 四、无功补偿发展方向 为适应当前社会发展,满足用电户负荷类型的要求和用电负荷的需求,提高补偿精度,减少欠补偿和过补偿情况发生,要做好低压电网的无功补偿从以下方法进行: (一)补偿方式 1、固定补偿与动态补偿相结合 随着新技术,新设备的应用和发展,负载类型越来越复杂,电网对无功要求也越来越高,用电户要求的供电可靠性不断提高,因此单纯的固定补偿已经不能满足要求,新的动态自动无功补偿技术能较好地适应负载变化。 2、稳态补偿与快速跟踪补偿相结合 稳态补偿与快速跟踪补偿相结合的补偿方式是未来发展的一个趋势。主要是针对大型的钢铁冶金等企业,工艺复杂、用电量大、负载变化快、波动大,充分有效地进行无功补偿,不仅可以提高功率因数、降损节能,而且可以充分挖掘设备的工作容量,充分发挥设备能力,提高工作效率,提高产量和质量,经济效益大。 3、三相共补与分相补偿相结合 随着人们的生产水平不断提高,大量的家用电器进入家庭,且多为单相用电设备,电网中三相不平衡的情况越来越多,导致控制开关跳闸情况频发,三相共补同投同切已无法解决三相不平衡的问题,而全部采用单相补偿则投资较大,目前还不能普及。因此根据负载情况充分考虑经济性的共分结合方式在新的经济条件下日益广泛应用。 (二)采用先进的投切开关种类 1、过零触发固态继电器 其特点是动态响应快,在投切过程中对电网无冲击、无涌流,寿命较长,但有一定的功耗和谐波污染,目前运用比较普遍。 2、无涌流电容投切器 无涌流电容投切器是无触点开关在电压过零时投入电容器,然后转接到专用接触器下运行,优点无涌流、不发热、节能、安全、寿命长。目前正在逐步推广应用,是无功补偿设备的发展趋向。 3、智能复合开关 复合开关投切装置工作原理是先由可控硅在电压过零时投入电容器,然后再由磁保持交流接触器触点并联闭合,可控硅退出,电容器在磁保持继电器触点闭合下运行,既实现了快速投切,又降低了功耗。目前主要由于成本及可靠性原因应用较少。

静止无功补偿装置

1 静止无功补偿装置(SVC)在电网中的应用 赣州供电公司黄东南 摘要:合理的无功补偿对输配电系统非常重要,SVC装置在江西电网中的首次应用表明SVC 在调相、调压、提高输电容量、改善静态和动态稳定性、抑制振荡等方面起到良好作用,在电力及工业企业中SVC装置可以改善电能质量(谐波、电压波动和闪变、三相不平衡),提高产品质量和数量,有利于节能增效。为进一步推广装置应用,提高其运行管理水平,应加快SVC装置的设计、制造、试验和检验诸方面系列的行业标准制订。 关键词:电力系统电能质量静止无功补偿装置(SVC) TCR+FC 标准 国民经济各个部门大量使用了各种电力整流、换流、交流调速、轧机、电弧炉、电力机车等非线性或具有时变特性负荷的设备,致使电力系统中的暂态和冲击特性无功负荷增加,严重影响电网电压质量,也对用电设备的安全、经济运行带来了严重危害。 为了稳定电压、改善功率因数以降低能耗,必须对具有时变冲击性的无功负荷进行动态无功补偿。采用无触点晶闸管开关的SVC装置,能自动跟踪电网无功的变化波动进行动态补偿,实现无功功率的连续调节。具有响应速度快、工作可靠的特点,是电网中提高功率因数和维持电压稳定的理想无功补偿装置。 针对赣州电网220kV金堂变电站存在的电能质量问题:①220kV电源输电线路偏长,且受丰、枯水期小水电及负荷波动影响,电源电压波动大;②供电负荷中有220kV直供的鼎龙钢厂及定南、全南县的几个电弧炉冶炼金属企业,其负荷功率因数很低,造成电能的极大损耗;而负荷的冲击极大,引起电网电压波动和闪变,加以产生的高次谐波造成电网的严重污染,致使电网电能质量下降;③考虑到2008年京九铁路将进行电气化改造,电气化铁路的供电又将增加冲击性的非线性负荷使电网中不可避免增加降低电能质量的不稳定性。为此在220kV 金堂变电站采用了SVC装置(TCR+FC型),这也是SVC装置在江西电网中的首次应用,同时也是国内第一座移动式无功补偿装置。 该装置于2007年12月30日顺利投入运行,从各项测试数据来看,SVC装置对改善母线电压总谐波畸变,以及调相、调压结果基本上能达到仿真计算水平,同时对抑制振荡,提高电网输电功率及输电能力有较大帮助。为此作以下的初步总结分析。 1 SVC装置的工作原理及构成1.1 工作原理 SVC(static var compensator)全称静止式无功补偿装置,早期又称为SVS,目前国内市场上的SVC无功功率补偿装置主要是接触器或断路器投切电容器组(如PFC、HVC)、晶闸管控制电抗器(TCR加装消谐滤波装置组成TCR+FC)和晶闸管投切电容器(TSC)装置。 TCR型SVC动态无功功率补偿装置通过控制TCR支路中串联的功率可控硅的触发相角,来改变流经电抗器支路的电流,从而得到不同的无功功率。装置由光电触发控制系统、阀控系统、主电抗器及保护元件等单元组成。晶闸管触发角α在 90°~180°范围内可调节,即导通角β<180°。当α=90°时,补偿装置吸收的无功功率最大(称为短路功率);当α=180°达到其在调节范围内的最大值时,吸收的无功功率最小(称为空载功率)。通过调节触发角α的大小,即连续改变主电抗器的电流量,动态调节补偿的无功功率。 TCR型SVC动态无功功率补偿装置并联固定电容器组FC构成晶闸管控制电抗器加固定滤波电容器组(TCR+FC)型式,装置总的输出无功功率为 TCR 与FC无功功率抵消后的净无功功率,因而可以将补偿装置的总体无功电流偏置到可吸收容性无功的范围置内。 TCR 采用相控原理,在系统中将除产生特征谐波及非特征的奇次、偶次及三的倍数次谐波,并联固定电容器组FC则兼作滤波器,吸收 TCR 产生的谐波电流和系统其它谐波电流。SVC动态补偿原理

无功补偿的合理配置原则

无功补偿的合理配置原则 电力系统运行的经济性和电能质量与无功功率有着密切的关系,无功功率是电力系统一种不可缺少的功率。大量的感性负荷和电网中的无功功率损耗,要求系统提供足够的无功功率,否则电网电压将下降,电能质量得不到保证。同时,无功功率的不合理分配,也将造成线损增加,降低电力系统运行的经济性。低压电力用户量大面广,其负荷的功率因数又大都比较低,因此在低压电网中进行无功功率的就地补偿是整个电力系统无功补偿的重要环节。根据电力网无功功率消耗的规则,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网(0.4KV)所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按分级补偿,就地平衡的原则,合理布局。 1、高压补偿与低压补偿结合,以低压为主; 2、集中补偿与分散补偿结合,以分散为主(为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿); 3、调压与降损相结合,以降损为主(对于无功补偿的主要目的是改善功率因数,减少线损,调压只是一个辅助作用)。 从以上补偿原则看出,补偿装置愈接近电动机或其他电力设备,无功电流通过的变配电设备愈少,通过的线路愈短,补偿愈彻底,节能效果愈显著。电动机无功就地补偿技术在国外如英、美、日、法和

瑞典等一些发达国家推广使用已有几十年的历史。日本为便于推广使用就地补偿装置于1997年就将串联电容器、电抗器、放电电阻联合在一起,为防止高次谐波对电容器的危害,还规定了使用范围。日本东京电力公司规定,每台大容量的电动机都要装设低压进相电容器,当负荷为100%时,功率因数应补偿到0.95,凡是低压三相异步电动机,必须全部进行就地补偿。我国在上世纪八十年代初,对配电网变压器低压侧实行强制性电容器补偿装置以来,直到八十年代末,所使用的无功补偿设备,不外乎采用下述两种方法:一是人工投切电容器组,二是用电磁开关自动投切电容器组,前者不仅劳动强度大,而且无法准确地按运行要求投切,造成欠补或过补,不能真正地改善用电质量;后者由于很难控制投切瞬间造成较大的合闸涌流和分闸过电压,对电容器和用电设备造成危害。随着电力电子器件、大功率可控硅器件的问世和计算机技术的飞速发展,近年来,采用数字微处理器为核心的智能化无功功率动态补偿控制器和智能复合开关已成为当前低压无功补偿装置的必然趋势,它能自动跟踪无功功率需求的变化,实现电容器组的平滑投切,因而无合闸涌流,无分闸过电压,且不受投切次数的限制,这是无功补偿技术的质的飞跃,实现了全自动、长寿命、免维护、安全可靠的无功动态补偿,使供电系统可以始终处于理想的工况下运行。

低压无功补偿柜操作规程

低压无功补偿柜操作规程 1.在成套装置接线正确无误、供电电源正常的情况下,将电容补偿柜的智能无功功率控制器的电源开关(微型断路器)暂时置断开位置(OFF位置),成套装置各柜体里面的其他电源开关(微型断路器)均置接通位置(ON位置)。 2.将成套装置1#进线柜里面的主电路开关(塑壳断路器)均置接通位置(ON位置)。进线开关柜(1#柜)内的主断路器(QF1)为电动预储能合闸方式,其合闸过程请按下面的3操作。 3.首先按下“储能”按钮,主断路器储能电动机动作并带动弹簧开始储能,储能结束后(此时储能指示灯亮),按下“合闸”按钮,弹簧储能释放,使主断路器(QF1)完成合闸动作。主断路器合闸后,合闸指示灯亮,分闸指示灯灭,储能指示灯也灭。 4.在1至3操作完成之后,且各种指示均正常的情况下,转换开关切换到手动状态(非自动状态)后,旋转转换开关,投切相应电容,对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中。此时可检测整个系统中各个电容的回路是否正确。 5.在各种指示均正常的情况下,接通电容柜智能无功功率控制器的电源开关(置ON位置),控制器接通电之后显示“CAL”,5秒后进入自动工作状态,如输入电流符合最小要求(大于150mA),将显示所测电网功率因数cos?。此时可设置控制器的参数,可将控制器的“功率因数值”cos?设置为0.95或者0.96(要比所测电网功率因数cos?大),同时设定模式设置为人工设定模式。将转换开关切换至自动状态,将“投切允许”打至右位即(ON位置),无功补偿成套装置将投入正常工作。此时可以手动按下无功补偿控制器上的”增加”按钮来投切相应电容,对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中,直到补偿后的功率因数达到预定的设置为止,而相反按“减少”可切除相应电容。当设定参数时,将控制器的“功率因数值”cos?设置为0.95或者0.96(要比所测电网功率因数cos?大),可将设定模式设置为全自动设定模式。此时将“投切允许”打至右位即(ON位置),将转换开关切

高低压无功补偿装置设计选型结构

高低压无功补偿装置设计选型结构 1、装置主要由并联电容器、电容器专用熔断器、串联电抗器、放电线圈、氧化锌避雷器、隔离接地开关、支柱绝缘子、连接母线和电容器构架等设备组成。若采用双星形接线中性点不平衡电流保护或单星形接线桥差保护,应有电流互感器。 2、串联电抗器串接在电容器组的回路中,用于抵制高次谐波和限制合闸涌流。 用于抵制5次用以上谐波时,电抗器可按Xl/Xc=4.5%-6%配置。 用于抵制3次用以上谐波时,电抗器可按Xl/ Xc=12%-13%配置。 仅用于限制涌流时,电抗器可按Xl/ Xc=0.5%-1%配置。 3、氧化锌避雷器并接在电容器组线路上,以限制投切电容器所引起的操作过电压。 4、放电线圈并接于电容器组的两端,当电容器组继开电源时,能将电容器两端剩余电压在5秒~20秒内自电压峰值降至0.1倍额定电压或50V以下。 5、根据装置所装置设备(电容器、电抗器等)的布置可分为片架式、柜式、围栏式、模块式、集合式和户外箱式等形式。 片架式 结构即以片架(包括直梁、横梁和横档等)为计量单位的零部件,通过螺栓等系列标准件连接而成电容器组构架,其四周为网门。装置具有价格低、运输方便等特点。6kV和10kV等电压等级的装置适宜采用该结构形式。 柜式 结构即将所配置的元器件均装在类似高压开关柜的构架上,柜门用钢板网或镀锌钢板网制成。装置由电抗器柜、放电柜和电容器柜等三部分组成。装置具有外观整齐,方便安装等特点。6kV和10kV等电压等级容量在300kvar~3000kvar 的装置适宜采用该结构形式。 模块式 结构即将设备安装在用型材制成的单元模块上,安装时只需层层或行行拼接即可。该结构又分立式电容器安装和卧式电容器安装两种形式,且单元电容器宜采用内熔丝电容器,具有外形整齐、安装方便等特点。6kV和10kV等电压等级的装置适宜采用该结构形式。 集合式 结构即由密集型电容器等设备组成的电容器组。具有占地面积小、安装维护方便等特点。6kV、10kV和35kV等电压等级的装置适宜采用该结构形式。 围栏式 结构即将可拆式网门护栏在电容器组和电抗器等设备的四周,围栏和设备间留有检修通道。35kV等电压等级的装置适且采用该结构形式。 户外箱式

低压无功补偿柜操作规程

1.在成套装置接线正确无误、供电电源正常的情况下,将电容补偿柜的智能无功功率控制器的电源开关(微型断路器)暂时置断开位置(OFF位置),成套装置各柜体里面的其他电源开关(微型断路器)均置接通位置(ON位置)。 2.将成套装置1#进线柜里面的主电路开关(塑壳断路器)均置接通位置(ON位置)。进线开关柜(1#柜)内的主断路器(QF1)为电动预储能合闸方式,其合闸过程请按下面的3操作。 3.首先按下“储能”按钮,主断路器储能电动机动作并带动弹簧开始储能,储能结束后(此时储能指示灯亮),按下“合闸”按钮,弹簧储能释放,使主断路器(QF1)完成合闸动作。主断路器合闸后,合闸指示灯亮,分闸指示灯灭,储能指示灯也灭。 4.在1至3操作完成之后,且各种指示均正常的情况下,转换开关切换到手动状态(非自动状态)后,旋转转换开关,投切相应电容,对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中。此时可检测整个系统中各个电容的回路是否正确。 5.在各种指示均正常的情况下,接通电容柜智能无功功率控制器的电源开关(置ON位置),控制器接通电之后显示”CAL”,5秒后进入自动工作状态,如输入电流符合最小要求(大于150mA),将显示所测电网功率因数cosφ。此时可设置控制器的参数,可将控制器的“功率因数值”cosφ设置为0.95或者0.96(要比所测电网功率因数cosφ大),同时设定模式设置为人工设定模式。将转换开关切换至自动状态,将“投切允许”打至右位即(ON位置),无功补偿成套装置将投入正常工作。此时可以手动按下无功补偿控制器上的”增加”按钮来投切相应电容,对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中,直到补偿后的功率因数达到预定的设置为止,而相反按“减少”可切除相应电容。当设定参数时,将控制器的“功率因数值”cosφ设置为0.95或者0.96(要比所测电网功率因数cosφ大),可将设定模式设置为全自动设定模式。此时将“投切允许”打至右位即(ON位置),将转换开关切换至自动状态,无功补偿成套装置将投入正常工作。此时控制器将进行“自学过程”,在数据初始化过程中,控制器按既定“功率因数值”与现配电系统作比较,并系统地启动电容器,改善功率因数,同时记录所接入电容器组的值,寻找到最小电容器组作为无功投入门限。此时对应的回路指示灯亮,接触器线圈吸合,主回路中接触器接通后其下接电容投入到电网中,直到投入电容器组达到投入门限为止。此时按下“增加”键可调出动态参数显示代码:I(电流),U(电压),Q(无功功率),P(有功功率),再按“减少”键可调出动态参数对应显示值,按”菜单设置”键可返回主显示值:功率因数cosφ。

高低压无功补偿装置的选择

高低压无功补偿装置的选择 KYLB低压滤波补偿装置 由于现代半导体器件应用愈来愈普遍,功率也更大,但它的负面影响就是产生很大的非正弦电流。使电网的谐波电压升高,畸变率增大,电网供电质量变坏。如果供电线路上有较大的谐波电压,尤其5次以上,这些谐波将被补偿装置放大。电容器组与线路串联谐振,使线路上的电压、电流畸变率增大,还有可能造成设备损坏,再这种情况下无功功率补偿装置是不可使用的。最好的解决方法就是在电容器组串接电抗器来组成谐波滤波器。滤波器的设计要使在工频情况下呈容性,以对线路进行无功补偿,对于谐波则为感性负载,以吸收部分谐波电流,改善线路的畸变率。增加电抗器后,要考虑电容端电压升高的问题。 KYLB低压滤波补偿装置即补偿了无功损耗又改善了线路质量,虽然成本提高较多,但对于谐波成分较大的线路还是应尽量考虑采用,不能认为装置一时不出问题就认为没有问题存在。很多情况下,采用五次、七次、十一次或高通滤波器可以在补偿无功功率的同时,对系统中的谐波进行消除。 KYYLB动态无功补偿装置工作原理与结构特点: KYYLB动态无功补偿装置由控制器、晶闸管、并联电容器、电抗器、过零触发模块、放电保护器件等组成。KYYLB动态无功补偿装置实时跟踪测量负荷的电压、电流、无功功率和功率因数,通过微机进行分析,计算出无功功率并与预先设定的数值进行比较,自动选择能达到最佳补偿效果的补偿容量并发出指令,由过零触发模块判断双向可控硅的导通时刻,实现快速、无冲击地投入并联电容器组。无功补偿装置举例: (一)、KYYLB低压动态无功补偿装置: KYYLB低压动态无功补偿装置适用于交流50HZ、额定电压在660V以下,负载功率变化较大,对电压波动和功率因数有较高要求的电力、汽车、石油、化工、冶金、铁路、港口、煤矿、油田等行业。 基本技术参数及工作环境: 环境温度:-25OC~+40OC(户外型);-5OC~+40OC(户内型),最大日平均温度30OC 海拔高度:1000M 相对湿度:《85%(+25OC) 最大降雨:50MM/10MIN 安装环境:周围介质无爆炸及易燃危险、无足以损坏绝缘及腐蚀金属的气体、无导电尘埃。无剧烈震动和颠簸,安装倾斜度《5%。 技术指标:额定电压:220V、380V(50HZ) 判断依据:无功功率、电压 响应时间:《20MS 补偿容量:90KVAR~900KVAR 允许误差:0~10% (二)、KYTBB高压无功自动补偿装置: KYTBB高压无功自动补偿装置适用于6KV~10KV变电站,可在I段和II段母线上任意配置1~4组电容器,适应变电站的各种运行方式。 基本技术参数及工作环境:

低压无功补偿技术规格书

低压无功补偿技术规格书. 低压自动无功补偿装置技术要求 1、总则 1.1、本技术规范书适用于变电所内配置的RNT低压动态无功功率补偿装置,它提出了该动态无功功率补偿装置本体及附属设备的功能设计、结构、性能、调试和试验等方面的技术要求。 1.2本技术规格书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,供方须提供一套满足本技术规格书和相关标准规范要求的高质量产品及其相应

服务,以保证的安全可靠运行。 1.3、供方须执行现行国家标准和电力行业标准。有矛盾时,按技术要求较高的标准执行。主要的标准如下: GB/T 15576-2008 《低压成套无功功率补偿装置》 GB50227-95 《并联电容器成套装置设计规范》 JB5346-1998 《串联电抗器》 GB191 《包装贮运标准》 GB11032-2000 《交流无间隙金属氧化锌避雷器》 GB/T 2681-1981 《电工成套装置中的导体颜色》 GB/T 2682-1981 《电工成套装置中的指示灯和按钮的颜色》 GB1028 《电流互感器》 GB10229 《电抗器》 DL/T620-1997 《装置过电压保护和绝缘配合》 GB 4208-93 《外壳防护等级》(IP代码) GB/T14549-93 《电能质量-公用电网谐波》 另外,尚应符合本技术规格书规定的技术要求和买方的要求。 1.4、未尽事宜,供需双方协商确定。 2、设备环境条件 2.1、周围空气温度 ℃38.4最高气温: 低压无功补偿设备 技术协议 29.3℃最低气温: - 6.8~10.6℃年平均气温: 1500米2.2、海拔高度:不大于0.05g 6度区,动峰值加速度:2.3、地震烈度:户内2.4、安装地点:、电容补偿柜技术参数3400V 额定电压:1) AC 660V 额定绝缘电压: 2500V 额定工频耐受电压:1min 8kV 冲击耐压: TMY 主母线:)2TMY 母线:PE 系统容量与无功补偿设备等应达到设计要求;3) 外形尺寸:具体见附图4)电压等级下的动态电容无功380V采用)无功功率补偿全部采用动态补偿方式:5 补偿柜,补偿容量具体见附表。%的电抗器,从根本7 对控制器、电抗器、驱动器进行特殊设计,要求选用6)上解决与系统发生串联、并联谐振,避免使谐波放大,实现无功补偿和谐波抑制并举的功能;控制应具有高可靠性,而且操作简单,与系统联结时,不需要考虑交流系统)7 相序,不会因为相序接错而带来烧坏可控硅或其他器件的现象;实现电流过零投切,电容投切过程中无涌流冲击、无操作过电压、无电弧重8)燃现象,使用寿命长;控制器实现全数字化,液晶显示,具有联网通讯功能;9)根据负载无功和负荷波动情况,在规定的动态响应时间内,多级补偿一次到)10位;

高低压电容补偿装置无功补偿技术协议

高低压电容补偿装置 技 术 协 议 供方: 需方: 2018年7月

一、高压无功自动补偿装置 1、产品遵循的主要标准 GB50227-95 《并联电容器装置设计规范》 SD205-87 《高压并联电容器技术条件》 DL492.9-91 《电力系统油质试验方法绝缘油介电强度测定法》DL462-92 《高压并联电容器用串联电抗器订货技术条件》 DL/T653-1998 《高压并联电容器用放电线圈订货技术条件》 JB7111-93 《高压并联电容器装置》 GB11032-89 《交流无间隙金属氧化锌避雷器》 GB10229-88 《电抗器》 GB50150 《电气装置安装工程电气设备交接试验标准》 GB/T5882 《高压电力设备外绝缘污秽等级》 GB3983.2 《高压并联电容器》 GB311.1-97 《高压输变电设备的绝缘配合》 GB/T16927 《高电压试验技术》 GB763 《交流高压电器在长期工作时的发热》 GB11025 《并联电容器用内熔丝和内部压力隔离器》 DL442 《高压并联电容器单台保护用熔断器定货技术条件》DL/T604 《高压并联电容器成套装置定货技术条件》 JB/T8970 《高压并联电容器用放电线圈》 GB/T11024.1-2001《高压并联电容器耐久性试验》 GB50062-92 《电力装置的继电保护和自动装置设计规范》 2、设备主要技术性能参数 2.1 环境条件 2.1.1 安装地点:户内 2.1.2 安装形式:柜式 2.1.3 海拔:≤1000米

2.1.4 环境温度:-25℃/+55℃最大日温差:25K 2.1.5 环境湿度:月平均相对湿度(25℃)不大于95% 日平均相对湿度(25℃)不大于95% 2.1.6 耐受地震能力:地震烈度:≤8度 地面水平加速度:2.5m/s2 地面垂直加速度:1.25m/s2 2.1.7 污秽等级:Ⅲ级泄露比距不小于25mm /Kv(相对与系统最高电压)2.1.8 安装环境无有害气体和蒸汽,无导电或爆炸性尘埃,无剧烈震动。 2.2 系统运行条件 2.2.1 额定电压: 10KV 2.2.2 最高运行电压: 12KV 2.2.3 额定频率: 50HZ 2.2.4 谐波情况:电抗率6%,能抑制五次及以上谐波 2.2.5 电容器组接线方式:单星形开口三角形电压保护 2.2.6 进线方式:电缆下进线 2.3 设备名称及型号: 2.3.1设备名称:高压无功自动补偿装置 2.3.2设备型号:GGZB10-1800(300+600+900)AK 2.3.3设备数量:1套 3、设备要求: 装置补偿总容量为1800kvar,分三组自动投切,每组投切容量分别为300Kvar、600Kvar、900Kvar。投切开关采用真空接触器。装置采用柜式,整体结构紧凑,美观大方,占地面积小且安装和维修方便。 此装置为户内柜式高压无功自动补偿装置,每套装置采用真空接触器分组投切,投切可靠。装置可根据工频系统负荷的无功功率和电网电压的变化投切电容器。装置采用先进的自动控制器,根据电压优先原则,以所需无功大小自动投切电容器组。自动投切由装置内的控制器控制,控制原则:电压优先,电容器组逐级投切。装置有高可靠性的控制器按照模糊控制策略进行电压无功综合控制。具有手动、自动控制功能,自动与手动互锁,且自动与手动采用分体结构,自动控制部分能实现在线检修。

相关文档
最新文档