对数习题

对数习题
对数习题

对数函数

1.比较下列各组数的大小:

(1)log 0.990.97 与log 0.990.98 (2)log 1.01 π与 log 1.01?

(3)log 10.3 与 log 20.8 (4)log 23 与 log 32

2.确定a 的取值范围:

(1)log a 3.1>log a 3.5 (2)log a 2 <1 3.若x>y>1,且0

A.a x >a y

B.log a x >log a y

C.a a >1

D.x a >y a 4.若a,b 是任意实数,且a>b,则( )

A. a 2 >b 2

B. b a >1

C. lg(a-b)>0

D.(12)a <(12)b 5.求函数的定义域

(1)y=log 2(2x ?1); (2)y= log 2(x ?1)+2

6.若log 2

(4x ?1)>log 2(2x+3),求x 的取值范围。

7.求函数y=log 13(3?2x ?x 2)的单调区间。

8.设a=20.3,b=log 0.3

2,c=0.32,则a,b,按从大到小的顺序排列为___________ 9.函数y= log 0.2(2?x)的定义域是_________

10.已知(2

3)y=(3

2

)x2+1,则y的最大值是__________

A.-2

B.-1

C.0

D.1

11.已知对数函数y=f(x)满足f(3+1)+f(3?1)=1

2

,求f(16)的值。

12.已知:lga和lgb(a>0,b>0)是方程x2?2x?4=0的两个不相等的实根,则a?b=___________

13.是否存在实数a,使得函数f(x)= log

2

(x+x2+2)-a是奇函数。

14.解下列方程:

(1)9x-2?3x+1-27=0; (2)lg(x2?2x?3)-lg(x+1)=1

15.在区间(0,+∞)上为增函数的是()

A.f(x)=(1

2

)x B. f(x)=log0.3x C.f(x)=x2?2 D.f(x)=-x

16.指数函数f(x)=a x(a>1)在区间【1,2】上最大值比最小值大a

2

,求a.

17.若log0.2x>1,则x的取值范围是__________

18.函数y=log a(x+5)(0

19.函数y=log1

2

(x2?2x+3)满足()

A.在定义域上是减函数

B.在(-∞,1)上是减函数

C.在【1,+∞)上是减函数

D.以上答案都不正确

20.若函数f(x)=a x+m(a>0且a≠1)的图像经过第一、第三和第四象限,则()

A.a>1且m<0

B. a>1且m<-1

C. a>1且m>1

D.0

21.函数f(x)=log a (x ?1)(a>0且a ≠1)的图像恒过点( )

A.(2,0)

B.(1,0)

C.(0,0)

D.(0,2)

22.函数f(x)=log 1|x|

,(x ∈R 且x ≠0)满足( )

A.为奇函数,且在(-∞,0)是减函数

B. 为奇函数,且在(-∞,0)是增函数

C. 为偶函数,且在(-∞,0)是减函数

D. 为偶函数,且在(-∞,0)是增函数

23.解不等式

(1)a 5x >a x ?8(a>0且a ≠1)

(2)log a 23

<1(a>0且a ≠1)

24.已知函数f(x)=log 2( x 2+1?x), (1)求函数f(x)的定义域;

(2)判断函数f(x)的奇偶性并予以证明

25.设a=log 0.56.7,b=log 24.3,c=log 25.6,则a,b,c 的大小关系为( )

A.a

B.a

C. b

D.c

26.已知函数f(x)=log 21+x ;

(1)求函数f(x)的定义域;

(2)判断函数f(x)的奇偶性并予以证明

27.解下列对数方程

(1)log (x+2)

(2x 2+3x ?2)=1 (2)lg(x 2-3)=lg(3x+1) (3)log a x 2?x ?2x+1=0(a>0且a ≠1)

一、选择题

1.设a=log 10.2,b=log 20.5,c=log 20.2,则a,b,c 之间的大小关系是( C )

A. a>c>b

B. c>a>b

C. a>b>c

D.c>b>a

2.若1

A. lgx > lg x 2> lg(lgx)

B. lg x 2 > lgx > lg(lgx)

C. lgx > lg(lgx)> lg x 2

D. lg x 2>lg (lgx )> lgx

3.已知f(e x )=x,则f(5)等于( C )

A. e 5

B. 5e

C. ln5

D.log 5e

4.若函数f(x)=log a x (o

A. 24

B. 22

C. 14

D.12

5.函数y=log 12

(x 2?2x+3)满足( C )

A.在定义域上是减函数

B. 在(-∞,1】 上是减函数

C. 在【1,+∞ )上是减函数

D.在R 上是增函数

6.若函数y=log a (x+b)(a>0且a ≠1)的图像过两点(-1,0),(0,1),则( A

A. a=2,b=2

B. a= 2 ,b=2

C. a=2,b=1

D. a = 2,b = 2

7.函数f(x)=lg 1?x 1+x 是( A )

A. 奇函数

B. 偶函数

C. 既是奇函数也是偶函数

D.非奇非偶函数

8.若log a 3<1,则a 的取值范围是( D )

A. 0

B. a>34 且a ≠1

C.a>1

D. 01

10.已知f(x)=log a(x+1)(a>0,且a≠1)在区间(-1,0)内有f(x)>0,则f(x)是( B )

A. 增函数

B. 减函数

C. 奇函数

D.偶函数

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

对数函数及其性质练习题及答案解析

1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 解析:选A.????? x -1>04-x ≥0 ,解得10时,y =x x log 2x =log 2x ;当x <0时,y =x -x log 2(-x )=-log 2(-x ),分别作图象可知选D. 3.(2010年高考大纲全国卷Ⅰ)已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( ) A .1 B .2 C.1 2 D.14 解析:选A.如图由f (a )=f (b ), 得|lg a |=|lg b |. 设0<a <b ,则lg a +lg b =0. ∴ab =1. 4.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________. 解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3) 1.下列各组函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,且a ≠1) B .y =x 与y =x C .y =lg x 与y =lg x D .y =x 2与y =lg x 2 解析:选C.A.定义域分别为R 和(0,+∞),B.定义域分别为R 和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R 和x ≠0. 2.函数y =log 2x 与y =log 12x 的图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线y =x 对称 解析:选A.y =log 12x =-log 2x . 3.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

对数知识点整理

1对数的概念 如果a(a>0,且a ≠1)的b 次幂等于N ,即N a b =,那么数b 叫做以a 为底N 的对数,记作:b N a =log ,其中a 叫做对数的底数,N 叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a ≠1,N>0; ③01log =a , 1log =a a , b a b a =log ,b a b a =log 特别地,以10为底的对数叫常用对数,记作N 10log ,简记为lgN ;以无理数e(e=2.718 28…) 为底的对数叫做自然对数,记作N e log ,简记为N ln 2对数式与指数式的互化 式子名称指数式N a b =(底数)(指数)(幂值)对数式b N a =log (底数)(对数)(真数) 3对数的运算性质 如果a>0,a ≠1,M>0,N>0,那么 (1)N M MN a a a log log )(log +=(2N M a a log log N)(M log a -=÷(3)M b M a b a log log = 问:①公式中为什么要加条件a>0,a ≠1,M>0,N>0? ②=n a a log ______ (n ∈R) ③对数式与指数式的比较.(学生填表) 运算性质 n m n m a a a +=?,n m n m a a a -=÷ mn n m a a =)((a>0且a ≠1,n ∈R) N M MN a a a log log )(log +=, N M a a log log N)(M log a -=÷(a>0,a ≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a >0,,且a ≠1? 理由如下: ①若a <0,则N 的某些值不存在,例如log-28 ②若a=0,则N ≠0时b 不存在;N=0时b 不惟一,可以为任何正数 ③若a=1时,则N ≠1时b 不存在;N=1时b 也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

对数与对数函数知识点及例题讲解

对数与对数函数 1.对数 (1)对数的定义: 如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a N M =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =b N a a log log (a >0,a ≠1, b >0,b ≠1,N >0). 2.对数函数 (1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢? 在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实

数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象 x y > O x y

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 |

一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域 (1)0.2log (4);y x =-; (2 )log a y =(0,1).a a >≠; (3)2 (21)log (23)x y x x -=-++ (4 )y = ? (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数 的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ { 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为

对数函数图象及其性质知识点及例题解析

对数函数的图象及性质例题解析 题型一 判断对数函数 【例1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2-a +1=1,解得a =0,1. 又a +1>0,且a +1≠1,∴a =1. 【例1-1】下列函数中是对数函数的为__________. (1)y =log a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1); (4)y =log x 6(x >0,且x ≠1);(5)y =log 6x . 解析: 题型二 【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a , 43,35,110 中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为( ) A 43,35,110 B ,43,110,35 C .43,35,110 D .43110,35 解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1 的底数.故相应于曲线C 1,C 2,C 3,C 443,35,110 .答案:A 点技巧 作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小. 题型三 对数型函数的定义域的求解 (1)对数函数的定义域为(0,+∞). (2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1. 若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义. (3)求函数的定义域应满足以下原则: ①分式中分母不等于零; ②偶次根式中被开方数大于或等于零; ③指数为零的幂的底数不等于零; ④对数的底数大于零且不等于1;

对数与对数知识点

对数与对数知识点-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底 数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数:常用对数:lg N ,即10 log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④ log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 对数函数及其性质 (5)对数函数

值域 R 过定点 图象过定点(1,0),即当1x =时, 0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 函数值的 变化情况 log 0(1) log 0(1)log 0(01) a a a x x x x x x >>==<<< log 0(1) log 0(1)log 0(01) a a a x x x x x x <>==><< a 变化对 图象的影响 在第一象限内,a 越大图象越靠低,越靠近x 轴 在第四象限内,a 越大图象越靠高,越靠近y 轴 在第一象限内,a 越小图象越靠低,越靠近x 轴 在第四象限内,a 越小图象越靠高,越靠近y 轴 基础练习: 1.将下列指数式与对数式互化: (1)2- 2=14; (2)102=100; (3)e a =16; (4)64-13=14; 2. 若log 3x =3,则x =_________ 3.计算:2lg 25lg 2lg 50(lg 2)++= 。 4.(1) log 29 log 23 =________. 5. 设a =log 310,b =log 37,则3a - b =_________. 6.若某对数函数的图象过点(4,2),则该对数函数的解析式为______________. 7.(1)如图2-2-1是对数函数y =log a x 的图象,已知a 值取3,43,35,1 10,则图象 C 1,C 2,C 3,C 4相应的a 值依次是______________ (2)函数y =lg(x +1)的图象大致是( ) 4. 求下列各式中的x 的值: (1)log 8x =-23;(2)log x 27=3 4 ; 8.已知函数f (x )=1+log 2x ,则f (1 2 )的值为__________. 9. 在同一坐标系中,函数y =log 3x 与y =lg 错误!x 的图象之间的关系是_______________

对数函数-典型例题

对数函数 例1求下列函数的定义域 (1)y=log2(x2-4x-5); (2)y=log x+1(16-4x) (3)y= . 解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为{x|x<-1,或x>5}. (2)令得 故所求定义域为{x|-1<x<0,或0<x<2}. (3)令,得 故所求定义域为 {x|x<-1- ,或-1- <x<-3,或x≥2}. 说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零. 例2求下列函数的单调区间. (1)y=log2(x-4);(2)y=log0.5x2. 解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大, ∴(4,+∞)是y=log2(x-4)的递增区间. (2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t 当x>0时,t随x的增大而增大,y随t的增大而减小, ∴(0,+∞)是y=log0.5x2的递减区间. 当x<0时,t随x的增大而减小,y随t的增大而减小, ∴(-∞,0)是y=log0.5x2的递增区间.

例3比较大小: (1)log0.71.3和log0.71.8. (2)(lg n)1.7和(lgn)2(n>1). (3)log23和log53. (4)log35和log64. 解:(1)对数函数y=log0.7x在(0,+∞)是减函数.因为1.3<1.8,所以 log0.71.3>log0.71.8. (2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论. 若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2; 若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里x=3,所以log23>log53. (4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解. 因为log35>log33=1=log66>log64,所以log35>log64. 评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论. 例4已知函数f(x)=log a(a-a x)(a>1), (1)求f(x)的定义域、值域. (2)判断并证明其单调性. (3)解不等式f-1(x2-2)>f(x). 解:(1)要使函数有意义,必须满足a-a x>0,即a x

对数及对数函数知识点总结及题型分析

对数及对数函数 1、对数的基本概念 (1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对 数, 记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式 (2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln . (3)指数式与对数式的关系:log x a a N x N =?=(0>a ,且1≠a ,0N >) (4)对数恒等式: 2、对数的性质 (1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a 3、对数的运算性质 (1)如果a >0,a ≠1,M >0,N >0,那么 ①N M MN a a a log log )(log +=; ②N M N M a a a log log log -=; ③M n M a n a log log = (2)换底公式: 推论:① b N N b log 1log = ; ② ; ③ 1log log =?a b b a 4、对数函数的定义: 函数 叫做对数函数,其中x 是自变量 (1)研究对数函数的图象与性质: 由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。 (2)复习)10(≠>=a a a y x 且的图象和性质 ()010log >≠>=N a a N a N a ,且b N N a a b log log log = b m n b a n a m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x =x y a =y x =

对数及对数函数典型例题精讲

对数与对数函数 一、选择题(本大题共6小题,每小题6分,共36分) 1.方程lg x +lg(x +3)=1的解x 为 ( ) A .1 B .2 C .10 D .5 解析 B ∵lg x +lg(x +3)=lg 10,∴x (x +3)=10.∴x 2+3x -10=0. 解得x =2或-5(舍去). 2.“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的 ( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 解析 C 显然函数f (x )=lg(x +1),g (x )=lg(2x +1)在(0,+∞)上均单调递增,所以“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的充分不必要条件. 则a ,b ,c 的大小关系是 ( ) A .a 1)的值域是 ( ) A .(-∞,-2] B .[-2,+∞) C .(-∞,2] D .[2,+∞) 解析 A ∵x + 1x -1+1=x -1+1 x -1 +2≥2(x -1)·1 x -1 +2=4,∴y ≤-2. 5.函数f (x )=2|log2x |的图象大致是 ( )

解析 C f (x )=2|log2x |=???? ? x ,x ≥1,1 x ,0≤-1,01 ,88x x x ,g(x)=x 2log , 则f(x)与g(x)两函数的 图象的交点个数为 ( ) A 1 B 2 C 3 D 4 答案:B 8.函数f(x)=x a log (a>0,a ≠1),若)()(21x f x f -=1,则)()(2 221x f x f -等于 ( ) A 2 B 1 C 2 1 D 2log a 答案A 二、填空题(本大题共3小题,每小题8分,共24分) 9.lg 25+lg 2×lg 50+(lg 2)2=________. 解析 lg 25+lg 2×lg 50+(lg 2)2=2lg 5+lg 2×(2-lg 2)+(lg 2)2=2lg 5+2lg 2=2(lg 5+lg 2)=2. 【答案】 2 10.已知0n) 11.已知f(x)=x 2log ,则)2 3 ()83(f f += 2 12.已知)2(log ax y a -=在[]1,0上是x 的减函数,则a 的取值范围是 ()2,1 13.设m 为常数,如果)34lg(2-+-=m x mx y 的定义域为R ,则m 的取值范围是(]4,0 14.函数f (x )=log 1 2(2x 2 -3x +1)的增区间是____________. 解析 ∵2x 2 -3x +1>0,∴x <1 2或x >1.∵二次函数y =2x 2-3x +1的减区间是 ? ????-∞,34, ∴f (x )的增区间是? ????-∞,12. 【答案】 ? ? ? ??-∞,12

对数与对数函数知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27

注意: 知识点一对数及对数的运算性质 1.对数的概念 一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a>0且a≠1,M>0,N>0,那么 ①log a(MN)=log a M+log a N; ②log a M N=log a M-log a N; ③log a M n=nlog a M(n∈R); ④log a m M n=n m log a M. (2)对数的性质

①a logaN =N ;②log a a N =N (a>0,且a≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b·log b c·log c d =log a d. 注意:(补充)特殊结论:log 10, log 1a a a == 知识点二 对数函数的图象与性质 1.对数函数的图象与性质(注意定义域!) 指数函数y =a x 与对数函数y =log a x 互为反函数, 它们的图象关于直线y =x 对称. (补充) 设y =f(x)存在反函数,并记作y =f -1(x), 1) 函数y =f(x)与其反函数y =f -1(x)的图象 关于直线y x =对称.

高一数学上册对数知识点

2019 高一数学上册对数知识点 如果a的x次方等于N (a>0,且a不等于1),那么数x 叫做以 a 为底N 的对数(logarithm ),记作x=logaN 。其中,a叫做对数的底数,N叫做真数。接下来我们一起来看看高一数学上册对数知识点。 2019 高一数学上册对数知识点 1、对数的概念 (1)对数的定义: 如果ax=N(a>0且a z 1),那么数x叫做以a为底N的对数,记作x=logaN ,其中a叫做对数的底数,N叫做真数.当a=10 时叫常用对数. 记作x=lg_N ,当a=e 时叫自然对数,记作x=ln_N.(2)对数的常用关系式(a ,b,c,d 均大于0 且不等于1): ① loga1=0. ② logaa=1. ③对数恒等式:alogaN=N. 二、解题方法 1. 在运用性质logaMn=nlogaM 时,要特别注意条件,在无M>0 的条件下应为logaMn=nloga|M|(n € N*,且n为偶数). 2. 对数值取正、负值的规律: 当a>1 且b>1 ,或00; 3. 对数函数的定义域及单调性:

在对数式中,真数必须大于0,所以对数函数y=logax 的定义域应为{x|x>0}. 对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按01 进行分类讨论. 4. 对数式的化简与求值的常用思路 (1) 先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并. (2) 先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算. 小编为大家提供的高一数学上册对数知识点,大家仔细阅读了吗?最后祝同学们学习进步。

带答案对数与对数函数经典例题.

经典例题透析 类型一、指数式与对数式互化及其应用 1.将下列指数式与对数式互化: (1);(2);(3);(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5); (6). 总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段. 举一反三: 【变式1】求下列各式中x的值: (1)(2)(3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1); (2); (3)10x=100=102,于是x=2; (4)由. 类型二、利用对数恒等式化简求值 2.求值:解:. 总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三: 【变式1】求的值(a,b,c∈R+,且不等于1,N>0) 思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算. 解:. 类型三、积、商、幂的对数 3.已知lg2=a,lg3=b,用a、b表示下列各式. (1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15 解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a (3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b (5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三: 【变式1】求值 (1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 解: (1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1 (3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 【变式2】已知3a=5b=c,,求c的值. 解:由3a=c得: 同理可得 . 【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:. 证明: . 【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:. 证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即. 类型四、换底公式的运用 4.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x.

对数与对数知识点教学内容

对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数, N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…) . (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④ log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 对数函数及其性质 (5)对数函数

值域 R 过定点 图象过定点(1,0),即当1x =时, 0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 函数值的 变化情况 log 0(1) log 0(1)log 0(01) a a a x x x x x x >>==<<< log 0(1) log 0(1)log 0(01) a a a x x x x x x <>==><< a 变化对 图 象的影响 在第一象限内,a 越大图象越靠低,越靠近x 轴 在第四象限内,a 越大图象越靠高,越靠近y 轴 在第一象限内,a 越小图象越靠低,越靠近x 轴 在第四象限内,a 越小图象越靠高,越靠近y 轴 基础练习: 1.将下列指数式与对数式互化: (1)2- 2=14; (2)102=100; (3)e a =16; (4)64-13=14; 2. 若log 3x =3,则x =_________ 3.计算:2 lg 25lg 2lg 50(lg 2)++= 。 4.(1) log 29 log 23 =________. 5. 设a =log 310,b =log 37,则3a - b =_________. 6.若某对数函数的图象过点(4,2),则该对数函数的解析式为______________. 7.(1)如图2-2-1是对数函数y =log a x 的图象,已知a 值取3,43,35,1 10,则图象C 1, C 2,C 3,C 4相应的a 值依次是______________ (2)函数y =lg(x +1)的图象大致是( ) 4. 求下列各式中的x 的值: (1)log 8x =-23;(2)log x 27=3 4; 8.已知函数f (x )=1+log 2x ,则f (1 2)的值为__________. 9. 在同一坐标系中,函数y =log 3x 与y =lg 13 x 的图象之间的关系是_______________