Scalar meson in dynamical and partially quenched two-flavor QCD lattice results and chiral

Scalar meson in dynamical and partially quenched two-flavor QCD lattice results and chiral
Scalar meson in dynamical and partially quenched two-flavor QCD lattice results and chiral

a r X i v :h e p -l a t /0407037v 1 29 J u l 2004IJS-TP-11/04

RBRC-424

BNL-HET-04/8

KANAZAWA-04-11

MIT-CTP-3517

Scalar meson in dynamical and partially quenched

two-?avor QCD:lattice results and chiral loops S.Prelovsek a,b ,C.Dawson c ,T.Izubuchi c,d ,https://www.360docs.net/doc/772523220.html,inos e and A.Soni f a Department of Physics,University of Ljubljana,Jadranska 19,1000Ljubljana,Slovenia b Institute Jozef Stefan,Jamova 39,1000Ljubljana,Slovenia c RIKEN-BNL Research Center,Brookhaven National Laboratory,Upton,NY 11973,USA d Institute of Theoretical Physics,Kanazawa University,Ishikawa 920-1192,Japan e Center for Theoretical Physics,Laboratory for Nuclear Science and Department of Physics,MIT,Cambridge,MA 02139-4307,USA f Physics Department,Brookhaven National Laboratory,Upton,NY 11973,USA ABSTRACT This is an exploratory study of the lightest non-singlet scalar q ˉq state on the lattice with two dynamical quarks.Domain wall fermions are used for both sea and valence quarks on a 163×32lattice with an inverse lattice spacing of 1.7GeV.We extract the scalar meson mass 1.58±0.34GeV from the exponential time-dependence of the dynamical correlators with

m val =m sea and N f =2.Since this statistical error-bar from dynamical correlators is rather large,we analyze also the partially quenched lattice correlators with m val =m sea .They are positive for m val ≥m sea and negative for m val

1Introduction

The interest in the light scalar mesons has been renewed recently[1].The existence of the

scalar mesons above1GeV is well established experimentally and there are enough scalar

states between1GeV and2GeV to represent the scalar qˉq nonet[2].The excess of one observed state in this region has been suggested as an indication for the glueball[3].The

lightest iso-triplet state above1GeV is a0(1450).The only scalar states below1GeV,which are experimentally well established,are iso-triplet a0(980)and iso-singlet f0(980)[2].The

existence of the complete scalar qˉq nonet roughly below1GeV would require another iso-

singlet and two strange iso-doublets.The experimental evidence for the existence of a broad iso-singletσmeson around600MeV is growing[2,4],while the existence of the strange

iso-doubletκreported in[5]is even more controversial at present.This raises a question

whether the lightest scalar qˉq states lie below1GeV or above1GeV.In the latter case,the observed scalar states below1GeV have to be interpreted as exotic states like qqˉqˉq[6],ππ

or KˉK molecules,etc.

In this paper we address the determination of the mass of the lightest scalar qˉq state

with non-singlet?avor structure(referred to as the a0meson[2]),the long-term goal being

to relate this state to the observed resonance a0(1450)or a0(980).We determine the mass of the a0meson using a lattice simulation of dynamical QCD(m val=m sea)and partially

quenched QCD(m val=m sea)with N f=2degenerate sea quarks in both cases.Since our aim is qˉq state composed of the light u and d quarks,we employ Domain Wall Fermion

(DWF)formalism,which has good chiral properties[7].We comment also on the mass of

the sˉu and sˉd scalar mesons.

While DWF formulation ought to be helpful in the long run,at present our numerical

work has serious limitations.We are working with two dynamical?avors,which is not full

QCD.Furthermore we have results only at one lattice spacing on a lattice box that is not very large and also quarks are relatively heavy.For these reasons this is an exploratory work. These issues can of course be improved with more computing resources.

Before we introduce our work,we brie?y review the recent lattice simulations of the light non-singlet scalar states.We quote only the statistical error-bars on masses since the continuum and in?nite-volume extrapolations have not been performed in these simulations:?Fully quenched simulations of qˉq:

The quenched qˉq correlator in the chiral limit was simulated by Bardeen et al.[8, 9]with Wilson fermions.The correlators were found to be negative at small quark masses,which was attributed to the similar mechanism as observed in the present partially quenched study.The e?ects of quenching were modelled using the Quenched Chiral Perturbation Theory and subtracted in order to extract the scalar meson mass m a0=1.326(86)GeV[9].

The RBC Collaboration simulated non-singlet and singlet scalar qˉq states with Domain Wall Fermions[10].The quenching e?ect,which leads to negative correlators at small quark masses,was subtracted as in[8,9].The result is m a0=1.43(10)GeV if only

2

the leading chiral loop(one bubble)is taken into account,and m a0=1.04(7)GeV if next-to leading chiral corrections are included by resummation1.

Mixing of the glueball and qˉq was studied in[3].The quark mass was around m s and no attempt was made to go to the chiral limit.

?Dynamical simulations of qˉq:

The SCALAR Collaboration made an extensive simulation of the singletˉq q state[11] and extracted also the mass of the non-singlet state to be m a0~1.8GeV at mπ/mρ~

0.7.They consider this estimate as an upper bound on the mass since they?tted the

correlators at relatively low times,where contribution of the excited state might be sizable.

UKQCD extracted m a0~1.0(2)GeV from the dynamical and the partially quenched simulation of qˉq[12].Since they simulated only m val≥m sea,they did not observe the striking e?ect of partial quenching discussed below.For this reason they were able to extract the scalar mass from the exponential time-dependence.

MILC[13]simulated qˉq state with three dynamical?avors and saw an indication for the intermediate stateπη,since this state is lighter than a0state at the lightest quark masses.

?Alford and Ja?e reported an indication for the bound singlet and octet qqˉqˉq states below1GeV[6].

All simulations above employed Wilson fermions,except for RBC and MILC simulations, which employed Domain Wall and staggered fermions,respectively.

The only simulation which employed chiral fermions to study light scalar mesons is the quenched simulation of RBC[10].Chiral symmetry is expected to be particularly important for the singlet scalar mesonσ,which is intimately connected with the chiral symmetry breaking.Good understanding of the non-singlet correlator in the chiral limit is the?rst step toward the controlled study of theσmeson.As already mentioned,the present paper presents the dynamical simulation(m sea=m val)of the non-singlet qˉq correlator with Domain Wall fermions.We also simulate partially quenched QCD with m val=m sea.Two degenerate sea quarks have the range of masses corresponding to Mπ~500?700MeV[14].The scalar correlators for m sea=0.02and m sea=0.03at various m val are shown in Fig. 1.The correlators for m val≥m sea are positive and have more or less exponential time-dependence. On the other hand,the correlators for m val

in Fig.3b and has no unknown parameters.We show that the bubble diagram gives a positive contribution for m val ≥m sea and a negative contribution for m val

t ?0.0015?0.001

?0.0005

0.0005

0.001

0.0015

0.002

scalar correlator, m sea =0.02

t

?0.0002?0.0001

00.00010.00020.0003scalar correlator, m sea =0.03Figure 1:The scalar correlators from lattice at (a)m sea =0.02and (b)m sea =0.03for various m val .

The remainder of this paper is organized as follows.The details about the lattice simu-lation are presented in section 2.The dynamical correlators are analyzed in section 3.The resulting error on the scalar mass is rather large,which motivates us to analyze also the partially quenched correlators.The partially quenched artifacts on the scalar correlator are derived within PQChPT in section 4and used to analyze the partially quenched correlators in section 5.Section 6summarizes the conclusions on the mass of a 0meson and brie?y comments on mass of the κresonance,while section 7summarizes the general conclusions.2Numerical simulation

The RBC Collaboration has undertaken a large-scale simulation with N f =2?avors of dynamical Domain Wall quarks with degenerate masses [14].This is an improvement over the quenched simulations and represents an important step toward the simulation of QCD with three dynamical quarks of physical masses.The scalar correlators were calculated on

the dynamical con?gurations with the volume N 3L N T =16332and a single lattice spacing,

so we will not be able to extrapolate the scalar mass to the continuum and to the in?nite volume in the present work.The con?gurations were generated using DBW2gauge action

4

[16]2withβ=0.80and Domain Wall fermion action[7]with M5=1.8and L s=12 (L s is the extent in5th dimension)[14].The separate evolutions were performed for three di?erent bare sea-quark masses m sea=0.02,0.03,0.04,which correspond approximately to

Mπ~500?700MeV.The measurements of the correlators were performed on con?gurations separated by50HMC trajectories.Dynamical Domain Wall fermions have good chiral

properties even at?nite L s with the additive shift in the mass due to the residual chiral symmetry breaking,m res,being approximately0.0014[14],much smaller than either the input sea or valence quark masses.The inverse lattice spacing was determined from the ρ-meson mass and the preliminary result is a?1≈1.7GeV[14].The current uncertainty of the lattice spacing has a small e?ect on the scalar mass;the uncertainty of the scalar meson mass in the present work is dominated by the statistical errors of the scalar correlators. The scalar correlators were measured for the degenerate valence quark masses m1=m2≡m val in the range m val=0.01?0.05.These valence quark masses correspond approximately to Mπ~380?770MeV(Fig.4).We simulated the correlators with p=0,point source and point sink via

1

N3

L x, y 0|ˉq( x,t)Γq( x,t)ˉq( y,0)Γq( y,0)|0 .(1) This method enabled us to calculate also the singlet scalar and singlet pseudoscalar correla-tors and to determine the hairpin insertion m0.

The summary of the scalar and pseudoscalar correlators analyzed in the present paper is

given in the Table1.

3Analysis of dynamical correlators with m val=m sea

The mass m a0and the unrenormalized decay constant f a0can be extracted from the dy-namical scalar correlators using the exponential?t in the conventional way.Indeed,we will verify that the additional contribution from the exchange of two pseudoscalar?elds in PQChPT(Fig.3b)exactly vanishes for m val=m sea,N f=2and m0→∞(12),so the simple exponential?t is well justi?ed.The extracted masses and decay constants are shown

?0.0100.010.020.030.040.05m val =m sea 0.60.70.80.9

1

1.11.2m a 0 = a m a 0p h y ?0.0100.010.020.030.040.05

m val =m sea 0.020.030.040.050.06

0.07

0.08

f a 0 = a f a 0

p h y

Figure 2:The asterisks represent the mass m a 0and decay constant f a 0in the lattice units at the dynamical point m val =m sea ,which are obtained from the exponential ?t of the scalar correlators.The dashed line and the value at m q =0are obtained with the linear ?t.

in Fig.2,while Table 2presents also the time ranges t =t min ?t max and χ2of the ?t 3.The uncorrelated ?ts are used throughout this work and the error-bars are obtained using the jack-knife method.The linear extrapolation to the chiral limit m val =m sea →0gives results in lattice units 4

m a 0=0.93(20),f a 0=0.049(20),(2)

where the jack-knife error-bars are calculated as described in Appendix B of [18].

The resulting errors are rather large,which motivates us to extract the mass also from the partially quenched data with m val =m sea .This forces us to understand the e?ect of partial quenching in the following sections.The use of the Partially Quenched ChPT is crucial for this purpose since it enables us to subtract the signi?cant partially quenched artifacts from the negative lattice correlators in case of m val

4Scalar correlator in partially quenched ChPT

In this section we derive the non-singlet scalar correlator in the Partially Quenched ChPT (PQChPT)within the so-called p -expansion regime.We consider the theory with N val valence quarks q i (which can have di?erent masses m i )and N f degenerate sea quarks q S of mass m sea .The theory incorporates also N val valence ghost-quarks ?q i of mass m i ,which cancel the closed valence-quark loops.PQChPT enables us to study of the partially quenched artifacts,which arise if the valence and the sea quark masses are not equal and if N f =N val .

Our few lowest quark masses are low enough that M 2π/(4πf )2?1,while they are still large enough that M πL ?1and we do not enter ?-regime on our

lattice.

qq qq qq

qq o 128 μ o f ao 128 μ f ao o 2o

??(a)(b)

Figure 3:The contributions to the non-singlet scalar correlator in PQChPT:(a)The exchange of the scalar meson a 0;(b)The bubble diagram is responsible for the unphysical e?ect of partial quenching and represents the exchange of two pseudoscalar ?elds ΦΦ′.The intermediate pseu-doscalar ?elds Φand Φ′can have the ?avor structure Φ,Φ′~ˉq i q j ,ˉq i ?q j ,ˉ?q i q j ,ˉq i q S ,ˉq S q i ,where q i,j are the valence quarks and q S the sea quark.

Non-physical contributions to the scalar correlator in PQChPT arise from the exchange of pseudoscalar ?elds between ˉq q source and ˉq q sink.The leading contribution in the chiral expansion comes from the exchange of two pseudoscalar ?elds and is represented by the so-called bubble diagram in Fig.3b.The two pseudoscalar ?elds Φand Φ′can be mesons Φij ~ˉq i q j and ΦiS ~ˉq i q S with Boson statistics,or mesons Φi ?j ~ˉq i ?q j with fermionic statistics.We do not consider the next-to-leading chiral corrections in PQChPT,which are

suppressed by O (M 2π/(4πf )2)in comparison to the bubble diagram 5.The lattice correlators

can be interpreted as a sum of the a 0-exchange at the tree level in Fig.3a and the bubble diagram in Fig.3b.

For our purpose,we need the strong interactions of pseudoscalar ?elds in PQChPT [15]as well as the kinetic and the mass term for the a 0?eld 6

L =f 2

6(str Φ)2+?μa 0?μa ?0?m 2a 0a 0a ?0(3)

with the physical values f ~95MeV and three-?avor m 0~600MeV ?1000MeV [20].The ?eld U =exp[

5

The NLO chiral corrections were taken into account for fully quenched scalar correlator by resummation

[8–10].They are more complicated in partially quenched theory because partially quenched theory implies several intermediate states ΦΦ′in Fig.3b,while quenched theory implies a single intermediate state πη′.6Similar Lagrangian was used for the case of fully quenched ChPT in [8–10].There μ0is denoted by 1

As is standard,we neglect the α(?str Φ)2term in the Lagrangian since αseems to be small

[9,20].We also need the coupling of a 0?eld and the pseudoscalar ?elds to the non-singlet scalar current 7ˉq 2q 1~?μ0f 2(U +U ?)12?

√128μ0f a 0.

The point-point scalar correlator with external momentum p =( 0,E )

C lat (t )≡ x 0|ˉq 2( x ,t )q 1( x ,t )ˉq 1( 0,0)q 2( 0,0)|0

(6)

is computed on the lattice and can be related to the prediction of PQChPT

C P QChP T (t )=F.T.

128μ20f 2a 02m a 0

(e ?m a 0t +e ?m a 0(N T ?t ))The ?rst term is the conventional a 0-exchange,while the second term B (t )=F.T.[B (p )]represents the contribution of the bubble diagram in Fig.3b.The lattice Euclidean momenta p =2sin(p E /2)and the discrete Fourier Transform F.T.on p E are used when we compare PQChPT predictions (7)with the lattice correlators 8.The bubble diagram is calculated from the Lagrangian (3)and the current (5)in the Appendix A,giving

B (p )=4μ20 k N f 1k 2+M 22S (8)?1(k +p )2+M 212k 2+M 2SS N f m 20/3

1(k 2+M 222)2+27Similar current was used for the case of fully quenched ChPT in [8].There μ0is denoted by 1

the pseudoscalar meson masses M andμ0=M2/(4m q)from pion correlators on the same lattices.The hairpin insertion m0~600MeV?1000MeV(normalized for3-?avors)has been determined from theη′correlator in a number of references[20],but the exact value of m0 is not essential for the present work since the extracted scalar mass is almost independent of m0in the wide range m0=[600MeV,∞]as will be demonstrated below.

In order to understand the e?ect of the bubble contribution on the lattice correlators,we derive the asymptotic form of B(t)at large t for a correlator with p=0on a lattice with a→0,aN T→∞and?nite aN L.The asymptotic form for degenerate valence quarks with mass m val is

B(t)t→∞

?→2μ20M2

V S N f

M V V Mη′

2N f m40

M2

V V m20

3

N f m20(M2V V+M2SS)

M2

η′

?M2V V

M V V t ,

where M2η′≡M2SS+1

9These?ndings apply as long as the condition Mη′>M V V is satis?ed,which was assumed in the derivation of(9).

9

B QChP T(p)=?16μ20 k1(k2+M2)2,(10)

B QChP T(t)t→∞

?→?2μ203M2(1+Mt)e?2Mt

N f k1k2+M2N f=2?→0for m0→∞,(12) B ChP T(t)t→∞

?→μ20MM

η′

+(N2f?4)e?2Mt

2(M2aa+M2bb),where M aa is determined

from the pseudoscalar correlator with m val=m a and the sea quark mass of interest. The Mπfrom our lattice correlators are listed in Table3and shown in Fig.4.?We?xμ0=M2val,val/(4m val)for given m val and m sea,where m res is neglected since

it is much smaller than either m val or m sea.Here m val is the input bare mass of the valence quark.M val,val is the mass of the pion with two valence quarks of mass m val at m sea of interest.

2

r0in[8–10].

10

m val 00.05

0.1

0.15

0.2

0.25

M π

2m sea =0.02

Figure 4:M 2π(m val )at m sea =0.02in lattice units.

The bubble diagram vanishes in the case of the dynamical theory (m val =m sea )with N f =2and m 0→∞(12).In this case,the lattice correlator is interpreted solely by the a 0-exchange (7),it has exponential time-dependence and the corresponding m a 0was extracted in Section 3.The bubble diagram is non-zero in general,so it has to be taken into account when the lattice correlators are ?tted by equation (7)in order to extract m a 0and f a 0.The bubble contribution incorporates the physical contributions from the exchange of two pseudoscalars and also the unphysical e?ects of partial quenching when m val =m sea .

We note that our scalar correlators and the quark masses,used to determine μ0=M 2/(4m q ),are not renormalized.We would like to emphasize that this does not prevent us from extracting the physical mass m a 0.This can be seen by rearranging Eqs.(6)and (7):

m 2q x

0|ˉq 2q 1( x ,t )ˉq 1q 2( 0,0)|0 =coef. e ?m a 0t +e ?m a 0(N T ?t ) +F.T M 4πμ20 .(14)The product of quark mass and the scalar current m q ˉq q is invariant under renormalization.The second term on the RHS of (14)depends only on the hadron masses M πand m 0,which are also invariant under renormalization.The scalar mass m a 0can be therefore extracted from the ?rst term on RHS without ambiguity from the renormalization.

5.1Analysis of dynamical correlators taking into account πη′in-

termediate state

The two-?avor dynamical scalar correlator receives a contribution from the exchange of a 0and from the exchange of πη′.The contribution from πη′state vanishes in the limit m 0→∞and the ?t reduces to the standard exponential ?t used in section 3.The contribution of πη′intermediate state at ?nite m 0is given by the bubble contribution (8)with m val =m sea and N f =2.The ?t of the dynamical correlators to PQChPT prediction (7)at various m 0gives m a 0and f a 0in Fig.5.The results are almost independent of m 0and agree with the result

11

of the conventional exponential ?t in section 3.For this reason we will refer to section 3for our dynamical results in the Conclusions.

m val =m sea 0.60.70.80.9

1

1.11.2m a 0 = a m a 0p h y

m val =m sea

0.010.020.03

0.040.05

0.06

0.07

f a 0 = a f a 0p h y Figure 5:The m a 0and f a 0in lattice units obtained from the ?t of the dynamical scalar correlators with the PQChPT prediction (7)for various m 0.The PQChPT prediction for two-?avor dynamical correlators incorporates a 0and πη′exchange.The asterisks represent the ?t for m 0→∞,when the contribution from πη′state vanishes and the ?t reduces to the standard exponential ?t (asterisks are the same as asterisks in Fig.2).The di?erent data points are slightly shifted from m q =0.02,0.03,0.04in horizontal direction for clarity.

The extracted m a 0and f a 0are almost insensitive to the presence of the πη′state since the contribution of this state is at least an order of magnitude smaller than the dynamical lattice correlators in the ?tted time-range for m 0≥600MeV.Our dynamical correlators are dominated by the a 0exchange although the mass M π+M η′=M π+(M 2π

+2

024********t ?0.002?0.00100.0010.002s c a l a r c o r r e l a t o r , m s e a =0.02lattice data

024********t PQChPT bubble B(t) for m 0=inf.024********

t

PQChPT bubble B(t) for m 0=800 MeV

Figure 6:The scalar correlator for m sea =0.02and various m val :the lattice data (a)and the bubble contribution B (t )as predicted by PQChPT for m 0→∞(b)and m 0→800MeV (c).The PQChPT prediction (7)in this ?gure represents just B (t )and does not contain the contribution from the a 0-exchange.

?The dynamical lattice correlator with m val =m sea is positive.The bubble contribution describes the exchange of physical πη′and vanishes in the limit m 0→∞(12).?The lattice correlator at m val >m sea is positive and receives a positive and rather small contribution from the bubble,which is less and less important for larger m val .The bubble contribution is positive and relatively small since it falls as a linear combination of +e ?2M V S t and +t ·e ?2M V V t at large t (9),where the pseudoscalar masses M V S and M V V are relatively large for m val ≥0.03and m sea =0.02.

While we do not include it in the extraction of our ?nal results,we have a limited set of partially quenched data for the m sea =0.03evolution,and we have checked that the lattice correlators change sign at m val =m sea also in this case.This can be seen in Fig.1b.

Let us have a closer look at the case of m val =0.01and m sea =0.02in Fig.7,where the e?ect of partial quenching is most striking.The bubble contribution (dot-dashed)is in good quantitative agreement with the data for t ≥8,where the a 0-exchange fades exponentially.The exchange of the a 0scalar meson is dominant at smaller t .The ?t of the data to the PQChPT prediction (7)gives m a 0=0.87(17)and f a 0=0.040(15)at m 0→∞.The PQCHPT prediction with this choice of m a 0and f a 0is given by the solid line in Fig.7and describes the lattice correlator well.Our one-loop analytical formula therefore correctly determines the sign and approximate size of the e?ects when the valence quark mass is lower than the sea quark mass.This gives us con?dence in the veracity of applying this formula to the larger valence quark masses,where the loop e?ects are smaller.

13

t ?0.0015?0.001

?0.0005

0.0005

0.001

0.0015

0.002

scalar correlator (m sea =0.02 , m val =0.01)

Figure 7:The data and PQChPT predictions for the scalar correlator at m sea =0.02,m val =0.01and m 0=∞.

All scalar correlators for m sea =0.02and various m val are ?tted by the PQChPT pre-diction (7),and the resulting m a 0and f a 0are given in Fig.8and Table 4.Figures on the left represent the ?t,which incorporates both the bubble and the a 0-exchange contributions.We ?nd that m a 0and f a 0at m val ≥0.02depend very slightly on the hairpin insertion m 0in the range m 0=[600MeV ,∞].In the case of m val =0.01,the central values of m a 0and f a 0depend signi?cantly on m 0,but they are all consistent for m 0in the range [600MeV ,∞]within the large error-bars 11.The result of the linear extrapolation from m val =0.01?0.05to the chiral limit m val →0is practically independent of whether the m val =0.01data is taken into account due to the large error-bars at m val =0.01with current statistics.The linear extrapolation from m val =0.01?0.05gives

m a 0=0.90(11),f a 0=0.048(11)for m 0→∞m a 0=0.89(9),f a 0=0.044(9)for m 0=800MeV

(15)

m a 0=0.88(9),f a 0=0.043(9)for m 0=600MeV ,which are consistent for m 0=[600MeV ,∞].So the chiral extrapolation m val →0at ?xed m sea =0.02leads to the mass in the lattice units

m a 0=0.89(11),(16)

where the error re?ects the statistical error of the data and the variation of the bubble contribution for m 0in the range m 0=[600MeV ,∞].

00.010.020.030.040.05m val

0.50.6

0.7

0.80.91

1.1

m a 0 = a m a 0p h y fit with a 0?exchange and bubble

00.010.020.030.040.05

m val 0.50.60.70.8

0.9

11.1exponential fit 00.010.020.030.040.05

m val 00.01

0.02

0.030.040.05

0.06

0.07

f a 0 = a f a 0p h y fit with a 0?exchange and bubble

00.010.020.030.040.05m val

00.010.020.03

0.04

0.050.060.07exponential fit Figure 8:The m a 0and f a 0in lattice units obtained from the ?t of the scalar correlators at m sea =0.02with the PQChPT prediction (7).The left ?gures represent the ?t results,when the bubble contribution is taken into account and m 0is varied.The right ?gures represent the conventional exponential ?t e ?m a 0t +e ?m a 0(N T ?t ),which is obtained under the assumption that the bubble contribution vanishes;the correlator with m val =0.01and m sea =0.02is negative and can not be described by e ?m a 0t +e ?m a 0(N T ?t ).The di?erent data points are slightly shifted in horizontal direction for clarity.

The conventional exponential ?t of the scalar correlators for m val ≥m sea =0.02gives m a 0and f a 0in Fig.8on the right.The bubble contribution in Eq.(7)is taken to be zero

15

in this case.The exponential?t obviously does not work for the correlator at m val=0.01,

where the intriguing partially quenched artifact has to be incorporated through the bubble

contribution.However,it gives reasonable m a0and f a0for m val≥m sea:the results from the exponential?t are consistent with the results from the?t to Eq.(7)since the bubble

contribution is zero or relatively small for m val≥m sea.

6Non-singlet scalar meson mass

In this section we collect our main results on the scalar meson mass.

The chiral extrapolation m q→0of the two-?avor dynamical data points m val=m sea=m q gives(Eq.2)

=1.58±0.34GeV,(17) m a0=0.93±0.20or m phy

a0

where only the statistical error is given.The number in GeV is obtained using the preliminary result for the scale a?1≈1.7GeV[14].

We extracted also the scalar meson masses from the partially quenched correlators with m val=m sea.The chiral extrapolation m val→0at?xed m sea=0.02leads to

=1.51±0.19GeV(18) m a0=0.89±0.11or m phy

a0

and we expect that the dependence on the sea quark mass is small.Here the error re?ects

the statistical error of the data and the variation of the bubble contribution for m0in the

range m0=[600MeV,∞](see Eq.16and Fig.8).

The chiral limits of m a0in the dynamical case and in the partially quenched case are

consistent.Note that the error is smaller in the partially quenched case,where the application of the Partially Quenched ChPT was crucial.The mass of the simulated qˉq state is somewhat larger than the mass of a0(980)and it is closer to the mass of a0(1450).We note that our result is consistent with the fully quenched results of Refs.[8–10]within the present accuracy12.

Finally we comment on the scalar iso-doublet mesons sˉu and sˉd,since their relation to the controversial resonanceκis still an open question.We are not able to make a reliable estimate for the mass of the sˉu and sˉd scalar mesons,since we did not simulate non-degenerate valence quarks.We get a rough estimate by extrapolating the mass obtained from the dynamical correlators to1

12The fully quenched results of[8–10]are presented in the Introduction and are consistent with(17,18) if the e?ect of quenching is incorporated at the leading order in the chiral expansion(one bubble).The quenched m a0is somewhat lower if quenching e?ect is incorporated at the next-to-leading order[10].

16

7Conclusions

We presented a lattice study of the lightest scalar qˉq state with non-singlet?avor structure

(a0meson).Good chiral properties of the Domain Wall Fermions are important for the

connected scalar correlator since this is the?rst step toward a controlled investigation of the scalar spectrum,in particular,theσparticle,which is intimately related to the chiral

symmetry breaking.Two degenerate sea-quarks were simulated with masses corresponding to Mπ~500?700MeV.The simulations were done at?xed lattice spacing and one size of the volume.

The value of scalar mass m a0=0.93±0.20in the lattice units was extracted in the conventional way from the dynamical correlators(m val=m sea)and the resulting error is

rather large.The corresponding physical mass m phy

a0=1.58±0.34GeV was obtained using

the preliminary result for the scale a?1≈1.7GeV.

We analyzed also the partially quenched correlators with m val=m sea.They exhibit striking e?ect of partial quenching since they are positive for m val≥m sea and negative for m val

m phy

a0=1.51±0.19GeV from partially quenched correlators,which is consistent with the

mass extracted from our dynamical correlators.

Our current simulation of the qˉq state on the lattice seems to indicate that this state is somewhat heavier than the observed resonance a0(980),and it is closer to the observed resonance a0(1450);however,given the size of our errors this is not conclusive.We must also emphasize that we have only two dynamical?avors,our lattice volume is not very large and also our quark masses are quite heavy.Besides,continuum limit has not been taken as we have data at only one lattice spacing,so the exploratory nature of our study needs to be kept in mind.

We also note that the N f=2theory is likely to have interesting di?erences from QCD (N f=2+1).Recall that the observed resonances a0(980)and a0(1450)decay toηπand KˉK.Bose statistics and isospin conservation restrict a N f=2

o→π+πfor N f=2,though a N f=2

0→η′N f=2+πwould be possible if kinematics allows it.Additional intricacy could be also caused by the presence of a large4-quark component in these channels.Thus the approach to the chiral limit may well exhibit a more involved dependence of the scalar mass on the quark mass than our data(see Fig.2)indicates with relatively heavy quarks.These issues will need to be addressed in future works with more computing resources.

17

Acknowledgments

The dynamical Domain Wall Fermion con?gurations were generated by the RBC Col-laboration and were essential for the lattice results in the present paper.It is a pleasure to thank all the members of the RBC Collaboration,in particular Tom Blum,Yasumichi Aoki, Norman Christ,Bob Mawhinney,Shigemi Ohta and June Noaki.We also thank RIKEN, Brookhaven National Laboratory and U.S.Department of Energy for providing the facilities essential for the completion of this work.All computations were carried out on the QCDSP supercomputers at the RIKEN BNL Research Center and at Columbia University.The re-search of A.S.was supported in part by the USDOE contract number DE-AC02-98CH10886. K.O.was supported in part by D.O.E.grant DFFC02-94ER40818.

18

Appendix A:Calculation of the bubble diagram

In this appendix we derive the result B(p)(Eq.8)for the bubble diagram in Fig.3b.The coupling of the non-singlet scalar current and two pseudoscalar?eldsΦis given by Eq.(5)

ˉq2q1=2μ0(Φ2)12.(19) The scalar correlator receives the following contribution from the exchange of the two pseu-doscalar?elds shown in Fig.3b

B= 0|ˉq2q1ˉq1q2|0 F ig.3b=4μ20 0|Φ1aΦa2Φ2bΦb1|0 ,(20) where indices a and b are summed over all quarks and ghost-quarks of the partially quenched theory:a,b=i,?i,S with i=1,..,N val and S=1,..,N f.The non-zero Wick contractions relevant to the diagram on the Fig.3b are

B=4μ20 Φ1S|ΦS1 ΦS2|Φ2S + Φ1i|Φi1 Φi2|Φ2i + Φ1?i|Φ?i1 Φ?i2|Φ2?i

+ Φ11|Φ22 Φ12|Φ21 + Φ22|Φ11 Φ12|Φ21 .(21)

The propagators for the pseudoscalar?elds follow from the Lagrangian(3).The propagator for the?avor non-diagonal mesons(a=b)in Minkowski space is

Φab|Φba =iδab?a

p2?M2aa?1

(p2?M2aa)(p2?M2bb)

1

N f m20/3 .(23)

The analytical expression(Eq.8)for the bubble diagram in Fig.3is obtained by inserting the propagators(23)and(22)to the expression(21)and by performing the Wick rotation to the Euclidean space.

19

Appendix B:PQChPT correlator for a?nite lattice

The PQChPT prediction for the scalar correlator C P QChP T(t)(7)relevant for a?nite lattice of the volume N3L N T is

C P QChP T(t)=1

N T

t 128μ20f2a022πm4

N3

L N T

N L/2?1

n1,2,3=?N L/2N T/2?1 n4=?N T/2 N f1k2+M22S

?1(k+p)2+M2

12k2+M2SS

N f m20/3

1

(k2+M222)2

+

2

2

2πn i

2

2πn4

2

2πn i

2{2πn4N T})]2.

The notation is given in section4.This correlator is compared with the lattice correlators C lat(t)(6)in section5.

20

流热仿真课后作业

第一章 1、计算流体动力学的基本任务是什么? 答:计算流体动力学,简称CFD,是通过计算机数值计算和图像显示,对包含流体流动和热传导等相关物理现象的系统所做的分析。CFD可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种模拟我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度)的分布,以及这些物理量随时间的变化,确定漩涡分布的特性、空化特性及脱流区等。 2、什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 答:(1)流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含了不同组分的混合成相互作用系统,还要遵守组分守恒定律,而控制方程是这些守恒组分守恒定律,而控制方程是这些守恒定律的数学描述。 (2)①质量守恒方程:任何流动问题都必须满足;②动量守恒方程:任何流动系统都必须满足;③能量守恒方程:包含有热交换的流动系统必须满足。 3、试写出变径圆管内液体流动的控制方程及其边界条件(假定没有热交换),并写出用CFD来分析时的求解过程。注意说明控制方程如何使用。 第二章 1、什么叫离散化?意义是什么? 2、常用的离散化方法有哪些?各有何特点? 3、简述有限体积法的基本思想,说明其使用的网格有何特点? 4、简述瞬态问题与稳态问题之控制方程的区别,说明在时间域上离散控制方程的基本思想及方法?

5、分析比较中心差分格式、一阶迎风格式、混合格式、指数格式、二阶迎风格式、QUICK格式各自的特点及使用场合? 第四章 1、湍流流动的特征是什么? 答:Reynolds数值大于临界值,流动呈现无序的混乱状态。这时,即使边界条件保持不变,流动也是不稳定的,速度等流动特性都随机变化。 2、三维湍流数值模拟的方法分类? 答:直接数值模拟方法、非直接数值模拟方法。 3、标准k—ε模型方程的解法及适用性? 4、Realizable K—ε模型的适用模型? 答:Realizable K—ε模型已被有效地用于各种不同类型的流动模拟,包括旋转均匀剪切流、包含有射流、混合流的自由流动、管道内流动、边界层流动、以及带有分离的流动等。 5、LES方法的基本思想如何?它与DNS方法有怎样的联系和区别?它的控制方程组与时均化方法的控制方程有什么异同? 答:(1)LES方法的主要思想是:用瞬时的N-S方程直接模拟湍流中的大尺度涡,不直接模拟小尺度涡,而小涡对大涡的影响通过近似的模型来考虑。 (2)LES和DNS是湍流数值模拟常用的方法,DNS是直接用瞬时的N-S方程对湍流进行计算,最大好处是无需对湍流流动作任何简化或近似,理论上可以得到相对精确的计算结果,是直接数值模拟方法,而LES是非直接数值模拟方法,同时,DNS对内存空间及计算速度的要求高于LES。 (3)LES方法的控制方程组不考虑脉动对湍流运用的影响,将湍流运动看作是时间上的平均流动而DNS考察脉动的影响,把湍流运动看作是时间平均流动和

脐带干细胞综述

脐带间充质干细胞的研究进展 间充质干细胞(mesenchymal stem cells,MSC S )是来源于发育早期中胚层 的一类多能干细胞[1-5],MSC S 由于它的自我更新和多项分化潜能,而具有巨大的 治疗价值 ,日益受到关注。MSC S 有以下特点:(1)多向分化潜能,在适当的诱导条件下可分化为肌细胞[2]、成骨细胞[3、4]、脂肪细胞、神经细胞[9]、肝细胞[6]、心肌细胞[10]和表皮细胞[11, 12];(2)通过分泌可溶性因子和转分化促进创面愈合;(3) 免疫调控功能,骨髓源(bone marrow )MSC S 表达MHC-I类分子,不表达MHC-II 类分子,不表达CD80、CD86、CD40等协同刺激分子,体外抑制混合淋巴细胞反应,体内诱导免疫耐受[11, 15],在预防和治疗移植物抗宿主病、诱导器官移植免疫耐受等领域有较好的应用前景;(4)连续传代培养和冷冻保存后仍具有多向分化潜能,可作为理想的种子细胞用于组织工程和细胞替代治疗。1974年Friedenstein [16] 首先证明了骨髓中存在MSC S ,以后的研究证明MSC S 不仅存在于骨髓中,也存在 于其他一些组织与器官的间质中:如外周血[17],脐血[5],松质骨[1, 18],脂肪组织[1],滑膜[18]和脐带。在所有这些来源中,脐血(umbilical cord blood)和脐带(umbilical cord)是MSC S 最理想的来源,因为它们可以通过非侵入性手段容易获 得,并且病毒污染的风险低,还可冷冻保存后行自体移植。然而,脐血MSC的培养成功率不高[19, 23-24],Shetty 的研究认为只有6%,而脐带MSC的培养成功率可 达100%[25]。另外从脐血中分离MSC S ,就浪费了其中的造血干/祖细胞(hematopoietic stem cells/hematopoietic progenitor cells,HSCs/HPCs) [26, 27],因此,脐带MSC S (umbilical cord mesenchymal stem cells, UC-MSC S )就成 为重要来源。 一.概述 人脐带约40 g, 它的长度约60–65 cm, 足月脐带的平均直径约1.5 cm[28, 29]。脐带被覆着鳞状上皮,叫脐带上皮,是单层或复层结构,这层上皮由羊膜延续过来[30, 31]。脐带的内部是两根动脉和一根静脉,血管之间是粘液样的结缔组织,叫做沃顿胶质,充当血管外膜的功能。脐带中无毛细血管和淋巴系统。沃顿胶质的网状系统是糖蛋白微纤维和胶原纤维。沃顿胶质中最多的葡萄糖胺聚糖是透明质酸,它是包绕在成纤维样细胞和胶原纤维周围的并维持脐带形状的水合凝胶,使脐带免受挤压。沃顿胶质的基质细胞是成纤维样细胞[32],这种中间丝蛋白表达于间充质来源的细胞如成纤维细胞的,而不表达于平滑肌细胞。共表达波形蛋白和索蛋白提示这些细胞本质上肌纤维母细胞。 脐带基质细胞也是一种具有多能干细胞特点的细胞,具有多项分化潜能,其 形态和生物学特点与骨髓源性MSC S 相似[5, 20, 21, 38, 46],但脐带MSC S 更原始,是介 于成体干细胞和胚胎干细胞之间的一种干细胞,表达Oct-4, Sox-2和Nanog等多

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

脐带血造血干细胞库管理办法(试行)

脐带血造血干细胞库管理办法(试行) 第一章总则 第一条为合理利用我国脐带血造血干细胞资源,促进脐带血造血干细胞移植高新技术的发展,确保脐带血 造血干细胞应用的安全性和有效性,特制定本管理办法。 第二条脐带血造血干细胞库是指以人体造血干细胞移植为目的,具有采集、处理、保存和提供造血干细胞 的能力,并具有相当研究实力的特殊血站。 任何单位和个人不得以营利为目的进行脐带血采供活动。 第三条本办法所指脐带血为与孕妇和新生儿血容量和血循环无关的,由新生儿脐带扎断后的远端所采集的 胎盘血。 第四条对脐带血造血干细胞库实行全国统一规划,统一布局,统一标准,统一规范和统一管理制度。 第二章设置审批 第五条国务院卫生行政部门根据我国人口分布、卫生资源、临床造血干细胞移植需要等实际情况,制订我 国脐带血造血干细胞库设置的总体布局和发展规划。 第六条脐带血造血干细胞库的设置必须经国务院卫生行政部门批准。 第七条国务院卫生行政部门成立由有关方面专家组成的脐带血造血干细胞库专家委员会(以下简称专家委

员会),负责对脐带血造血干细胞库设置的申请、验收和考评提出论证意见。专家委员会负责制订脐带血 造血干细胞库建设、操作、运行等技术标准。 第八条脐带血造血干细胞库设置的申请者除符合国家规划和布局要求,具备设置一般血站基本条件之外, 还需具备下列条件: (一)具有基本的血液学研究基础和造血干细胞研究能力; (二)具有符合储存不低于1 万份脐带血的高清洁度的空间和冷冻设备的设计规划; (三)具有血细胞生物学、HLA 配型、相关病原体检测、遗传学和冷冻生物学、专供脐带血处理等符合GMP、 GLP 标准的实验室、资料保存室; (四)具有流式细胞仪、程控冷冻仪、PCR 仪和细胞冷冻及相关检测及计算机网络管理等仪器设备; (五)具有独立开展实验血液学、免疫学、造血细胞培养、检测、HLA 配型、病原体检测、冷冻生物学、 管理、质量控制和监测、仪器操作、资料保管和共享等方面的技术、管理和服务人员; (六)具有安全可靠的脐带血来源保证; (七)具备多渠道筹集建设资金运转经费的能力。 第九条设置脐带血造血干细胞库应向所在地省级卫生行政部门提交设置可行性研究报告,内容包括:

湍流流动的近壁处理详解

壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。 实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。 图4-1,边界层结构 第一节,壁面函数与近壁模型 近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。 对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。 如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。

4.1.1壁面函数 FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。 4.1.1.1 标准壁面函数 根据平均速度壁面法则,有: **1 ln()U Ey k = 4-1 其中,1/41/2 * /p p w U C k U μτρ ≡ ,1/41/2 * p p C k y y μρμ≡,并且 k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。 通常,在*30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*11.225y >。 当网格出来*11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。 根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。 温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。 1/41/2 * ()w p p P T T c C k T q μρ-≡ '' 4-2 =()1/41/2 *2*1/41/222 1Pr Pr 21Pr ln()1Pr Pr Pr 2p p t p t p t c C k y U q Ey P k C k U U q μμρρ?+?''? ????++???? ??????+-??''?? ** **()()T T y y y y <> 4-3

粘性流体力学一些概念

无量纲参数 2 02 00Re L V L V L V μρμρ= = ) (/)(00003 000020T T C L V L V T T C V Ec w p w p - =-= ρρ 热传递中流体压缩性的影响,也就是推进功与对流热之比。00 0Pr K C p μ= 表示流体的物性的影响,表征温度场和速度场的相似程度。边界层特征厚度dy u u h e e ?- =0 * )1(ρρδ 边界层的存在而使自由流流线向外推移的距离。 θ δ* =H 能够反映速度剖面的形状,H 值越小, 剖面越饱满。动量积分方程:不可压流二维 f e w e e C u dx du u H dt d ==++2)2(ρτθθ /2 普朗特方程的导出,相似解的概念,布拉休斯解的主要结论 ?????????????+??+??-=??+??+????+??+??-=??+??+??=??+ ??)(1)(1022222222y v x v y p y v v x v u t v y u x u x p y u v x u u t u y v x u νρνρ 将方程无量纲化: ./,/,/,/*2***L tU t u p p U u u L x x ====ρ ν/Re UL =,Re /1*≈δ ,/,/,,**L L y U u v L y u v δδ=?==?= 分析:当Re 趋于很大时,**y p ??是大量,则**y p ??=0,根据量纲分析,去掉小量化为有量纲形式则可得到普朗特边界层方程: ???? ?? ??? =????+??-=??+??+??=??+??01022y p y u x p y u v x u u t u y v x u υρ 相似解的概念:对不同x 截面上的速度剖面u(x,y)都可以通过调整速度u 和坐标y 的尺度因子,使他们重合在一起。外部势流速度Ue(x)作为u 的尺度因子,g(x)作为坐标y 的尺度因子。则无量纲坐标)(x g y ,无量纲速度)(x u u e ,则 对所有不同的x 截面其速度剖面的形状将会相 同。即= )(])(,[111x u x g y x u e ) (] ) (,[222x u x g y x u e 布拉修斯解(零攻角沿平板流动的解)的主要结论: x x Re 721.1* =δx x Re 664.0=θ 591.2/*==θδH 壁面切应力为: x y w U y u Re 1332.0)(2 0∞ ==??=ρμτ 壁面摩擦系数为:x w f u C Re 1664.022 ==∞ρτ 平均为:l l f Df dx C l C Re 1328.110? == 湍流的基本概念及主要特征,湍流脉动与分子随机运动之间的差别湍流是随机的,非定常的,三维的有旋流动,随机背后还存在拟序结构。特征:随机脉动耗散性,有涡性(大涡套小涡)。 湍流脉动:不断成长、分裂和消失的湍流微团;漩涡的裂变造成能量的传递;漩涡运动与边界条件有密切关系,漩涡的最小尺度必大于分子的自由程。分子随机运动:是稳定的个体;碰撞时发生能量交换;平均自由程λ与平均速度 和边界条件无关。层流稳定性的基本思想:在临界雷诺数以下时,流动本身使得流体质点在外力的作用下具有一定的稳定性,能抵抗微弱的扰动并使之消失,因而能保持层流;当雷诺数超过临界值后,流动无法保持稳定,只要存在微弱的扰动便会迅速发展,并逐渐过渡到湍流。平板边界层稳定性研究得到的主要结果:1.雷诺数达到临界雷诺数时流动开始不稳定,成为不稳定点,而转捩点则对应与更高的雷诺数。2.导致不稳定扰动最小波长 δ δλ65.17min ≈=*,可见不稳定波是一种 波长很长的扰动波,约为边界层厚度的6倍。3. 不稳定扰动波传播速度远小于边界层外部势流速度,其最大的扰动波传播速度 4.0/=∞U c r 。当雷诺数相当大时,中性稳定线的上下两股趋于水平轴。判别转捩的试验方法: 升华法(主要依据:湍流的剪切应力大小)热膜法(主要依据:层流和湍流边界层内 气流脉动和换热能力的差别)液晶法(主要依 据:湍流传热和层流传热能力之间的差异)湍流的两种统计理论:1. 湍流平均量的半经验分 析(做法:主要研究各个参数的平均量以及它们之间的相互关系,如平均速度,压力,附面层厚度等。2. 湍流相关函数的统计理论分析(做法;将流体视为连续介质,将各物理量如:流速,压力,温度等脉动值视为连续的随机函数, 并通过各脉动值的相关函数和谱函数来描述湍流结构。)耗散涡、含能涡的尺度耗散涡为小尺 度涡,它的尺度受粘性限制,但必大于分子自由行程。控制小尺度运动的参数包括单位质量的能量消耗量ε和运动粘性系数ν。因此,由 量纲分析,小涡各项尺度为:长度尺度 4/13)(ενη=时间尺度2/1)(εντ=速度尺度4/1)(νε=v 耗散雷诺数 1Re →=νη v d 可知:小尺度涡体的湍流 脉动是粘性主宰的耗散流动,因此这一尺度的 涡叫耗散涡。含能涡为大尺度涡,在各向同性湍流中,可以认为大尺度涡体由它所包含的湍动总能量k ,以及向小尺度传递的能量ε决定。 长度尺度ε2/3k l =时间尺度εk t =速度尺度k u =积分尺度雷诺数1Re →>>=ν ul d 可知在含能尺度范围 内,惯性主宰湍流运动,因此含能尺度范围又 称惯性区。均匀湍流:统计上任何湍流的性质与空间位置无关,或者说,任何湍动量的平均 值及它们的空间导数,在坐标做任何位移下不 变。特征:不论哪个区域,湍流的随机特性是相同的,理论上说,这种湍流在无界的流场中 才可能存在。各向同性湍流:任何统计平均量与方向无关,或者说,任何湍动量在各个方向 都一样,不存在任何特殊地位的方向。任何统计平均湍动量与参考坐标轴的位移、旋转和反 射无关。特征:各向同性湍流,必然是均匀湍 流,因为湍流的任何不均匀性都会带来特殊的方向性。在实际中,只存在局部各向同性湍流 和近似各向同性湍流。各向同性下,雷诺应力 由9个量减为3个量。 了解时均动能方程、湍动能方程中各项的物理意义和特点,及能量平衡时均动能方程: 流体微团内平均动能变化率;外力的作功;平均压 力梯度所作的功; 雷诺应力所作功的扩散;雷诺应力所作的变形功;时均流粘性应力所作功 的扩散;时均流动粘性的耗散,即粘性应力的 变形功。 湍动能方程:

壁面函数法的应用问题【转载】

壁面函数法的应用问题【转载】 转载声明:来自互联网,原地址已经不详,向原著者表示感谢 壁面函数法在湍流计算中经常使用,许多书和文章也写到了壁面函数法,但如何实现壁面 函数法?详细过程没有交待,需要编程者自己体会! 陶文铨老师的《数值传热学>>只介绍到Y+>11.6左右时如何计算,对于Y+<11.6时如何计 算只提到“在粘性支层中与壁面平行的速度与离开壁面的距离成线性关系”。另外。对于 采用了贴体坐标转换的壁面函数法处理起来更复杂,故请教! 壁面函数只在等雷诺应力层适用,即y+>11时,所以在划分网格时应当让第一个内节点满 足y+>11关系。 如果想计算粘性底层,可以采用两层模型,或低雷诺两方程模型! 程序中直接用层流计算即可,但由于在此区域湍流模型有问题,所以网格太密不见得结果好。还是尽量取在旺盛湍流区。 要准确求解壁面处的流动,需要很细的网格,用壁面函数就是为了避开这一点 采用的近似处理。壁面函数在很多书和PAPER里都提到过,但不同模型和不同的人相差 很远,而且没有完整的步骤。 我在编程中用到高雷诺数两方程模型,碰到了壁面函数的问题: 1)由初始的速度U,按对数律计算U+; 2)由U+计算出Y+; 3)判断Y+>11.5,第一内点P位于旺盛湍流区,符合对数律,求P点U,K,E以及壁面W 点的U,K,E 4)若Y+<11.5,第一内点P位于粘性支层,按U+=Y+计算。 以上谈到的是规则域的壁面函数法处理,对于贴体坐标转换的壁面函数法处理起来更复杂,因为与壁面平行的速度才满足对数律。

最简单的办法是用对第一个节点的K,E直接赋值。 5)由U+,Y+计算ut(摩擦速度) 6)K=ut*ut/sqrt(0.09) 7)E=ut**3/y/0.42 Y+<11.5时是应该层流处理,一般来说,层流底层Y+<5同对数领域Y+>30时数学模型同实验吻合较好,但是过渡区5

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规 范(试行)》的通知 【法规类别】采供血机构和血液管理 【发文字号】卫办医政发[2009]189号 【失效依据】国家卫生计生委办公厅关于印发造血干细胞移植技术管理规范(2017年版)等15个“限制临床应用”医疗技术管理规范和质量控制指标的通知 【发布部门】卫生部(已撤销) 【发布日期】2009.11.13 【实施日期】2009.11.13 【时效性】失效 【效力级别】部门规范性文件 卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)》的通知 (卫办医政发〔2009〕189号) 各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局: 为贯彻落实《医疗技术临床应用管理办法》,做好脐带血造血干细胞治疗技术审核和临床应用管理,保障医疗质量和医疗安全,我部组织制定了《脐带血造血干细胞治疗技术管理规范(试行)》。现印发给你们,请遵照执行。 二〇〇九年十一月十三日

脐带血造血干细胞 治疗技术管理规范(试行) 为规范脐带血造血干细胞治疗技术的临床应用,保证医疗质量和医疗安全,制定本规范。本规范为技术审核机构对医疗机构申请临床应用脐带血造血干细胞治疗技术进行技术审核的依据,是医疗机构及其医师开展脐带血造血干细胞治疗技术的最低要求。 本治疗技术管理规范适用于脐带血造血干细胞移植技术。 一、医疗机构基本要求 (一)开展脐带血造血干细胞治疗技术的医疗机构应当与其功能、任务相适应,有合法脐带血造血干细胞来源。 (二)三级综合医院、血液病医院或儿童医院,具有卫生行政部门核准登记的血液内科或儿科专业诊疗科目。 1.三级综合医院血液内科开展成人脐带血造血干细胞治疗技术的,还应当具备以下条件: (1)近3年内独立开展脐带血造血干细胞和(或)同种异基因造血干细胞移植15例以上。 (2)有4张床位以上的百级层流病房,配备病人呼叫系统、心电监护仪、电动吸引器、供氧设施。 (3)开展儿童脐带血造血干细胞治疗技术的,还应至少有1名具有副主任医师以上专业技术职务任职资格的儿科医师。 2.三级综合医院儿科开展儿童脐带血造血干细胞治疗技术的,还应当具备以下条件:

壁面函数的研究

Current Practice and Recent Developments in Wall Functions II (Advanced Approaches) Dr Hector Iacovides Department of Mechanical Aerospace and Manufacturing Engineering UMIST CONTENTS 1.Limitations of Conventional Wall Functions. 2.Refinements of the Conventional Wall Function. 3.Advanced wall functions. 3.1The Analytical Wall Function. 3.2The Numerical Wall Function. 4.Concluding Remarks. 1

1.Limitations of Conventional Wall Functions. The conventional wall functions introduced in the earlier lecture rely on the following assumptions: 1.Near-wall velocity obeys the log-law. 2.The total shear stress remain constant over the near-wall control volume. 3.Within the fully turbulent region of the near-wall control volume, the turbulent kinetic energy remains constant. 4.The dissipation rate is inversely proportional the wall distance over the inner region and constant across the viscous sub- layer. 5.In three-dimensional flows the velocity direction remains unchanged between the near-wall node and the wall. To appreciate how limiting these approximations are, it would be instructive to: 2

近壁面函数的简单理解

一个成功的湍流计算离不开好的网格。在许多的湍流中,空间的有效粘性系数不同,是平均动量和其它标量输运的主要决定因素。因此,如果需要有足够的精度,这就需要保证湍流量要比较精确求解。由于湍流与平均流动有较强的相互作用,因此求解湍流问题比求解层流时候更依赖网格。对于近壁网格而言,不同的近壁处理对网格要求也不同。下面对常见的几种近壁处理的网格要求做个说明。采用壁面函数时候的近壁网格:第一网格到壁面距离要在对数区内。对数区的y+ >30~60。FLUENT在y+ <时候采用层流(线性)准则,因此网格不必要太密,因为壁面函数在粘性底层更本不起作用。对数区与完全湍流的交界点随压力梯度和雷诺数变化。如果雷诺数增加,该点远离壁面。但在边界层里,必须有几个网格点。壁面函数处理时网格划分采用双层模型时近壁网格要求当采用双层模型时,网格衡量参数是y+ ,并非y* 。最理想的网格划分是需要第一网格在y+ =1位置。如果稍微大点,比如=4~5,只要位于粘性底层内,都是可以接收的。理想的网格划分需要在粘性影响的区域内(Rey<200 )至少有十个网格,以便可以计算粘性区域内的平均速度和湍流量。采用双层区模型时网格划分采用Spalart-Allmaras 模型时的近壁网格要求该模型属于低雷诺数模型。这就要求网格能满足求解粘性影响区域内的流动,引入了阻尼函数,用以削弱粘性底层的湍流粘性影响。因此,理想的近壁网格要求和采用双层模型时候的网格要求一致。采用大涡模拟的近壁网格要求对于大涡模拟,壁面条件采用了壁面法则,因此对近壁网格划分没有太多限制。但是,如果要得到比较好的结果,最好网格要细,最近网格距离壁面在 y+=1的量级上。 for Hexa mesh, ==>Y+是第一层高度一半和 viscous length scale 的比值 for Tetra mesh==>Y+是第一层高度1/3和 viscous length scale 的比值 y+就是Yplus,它跟你在湍流模型里采用的近壁面函数选取有关,若Yplus为个位数,选增强型壁面函数,若在两位数以上,选标准或非平衡的壁面函数。 y+的意思是底层网格必须划分在对数率成立的区域内。 一般应使y+的值为15~300,但是y+是模拟完成后才知道的。 而且同一个模型不同地方不同流速y+不一样,所以不是很精确。如果模拟传热应注意y+对结果的影响。

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知 发文机关:卫生部(已撤销) 发布日期: 2001.01.09 生效日期: 2001.02.01 时效性:现行有效 文号:卫医发(2001)10号 各省、自治区、直辖市卫生厅局: 为贯彻实施《脐带血造血干细胞库管理办法(试行)》,保证脐带血临床使用的安全、有效,我部制定了《脐带血造血干细胞库设计管理规范(试行)》。现印发给你们,请遵照执行。 附件:《脐带血造血干细胞库设置管理规范(试行)》 二○○一年一月九日 附件: 脐带血造血干细胞库设置管理规范(试行) 脐带血造血干细胞库的设置管理必须符合本规范的规定。 一、机构设置 (一)脐带血造血干细胞库(以下简称脐带血库)实行主任负责制。 (二)部门设置 脐带血库设置业务科室至少应涵盖以下功能:脐带血采运、处理、细胞培养、组织配型、微生物、深低温冻存及融化、脐带血档案资料及独立的质量管理部分。 二、人员要求

(一)脐带血库主任应具有医学高级职称。脐带血库可设副主任,应具有临床医学或生物学中、高级职称。 (二)各部门负责人员要求 1.负责脐带血采运的人员应具有医学中专以上学历,2年以上医护工作经验,经专业培训并考核合格者。 2.负责细胞培养、组织配型、微生物、深低温冻存及融化、质量保证的人员应具有医学或相关学科本科以上学历,4年以上专业工作经历,并具有丰富的相关专业技术经验和较高的业务指导水平。 3.负责档案资料的人员应具相关专业中专以上学历,具有计算机基础知识和一定的医学知识,熟悉脐带血库的生产全过程。 4.负责其它业务工作的人员应具有相关专业大学以上学历,熟悉相关业务,具有2年以上相关专业工作经验。 (三)各部门工作人员任职条件 1.脐带血采集人员为经过严格专业培训的护士或助产士职称以上卫生专业技术人员并经考核合格者。 2.脐带血处理技术人员为医学、生物学专业大专以上学历,经培训并考核合格者。 3.脐带血冻存技术人员为大专以上学历、经培训并考核合格者。 4.脐带血库实验室技术人员为相关专业大专以上学历,经培训并考核合格者。 三、建筑和设施 (一)脐带血库建筑选址应保证周围无污染源。 (二)脐带血库建筑设施应符合国家有关规定,总体结构与装修要符合抗震、消防、安全、合理、坚固的要求。 (三)脐带血库要布局合理,建筑面积应达到至少能够储存一万份脐带血的空间;并具有脐带血处理洁净室、深低温冻存室、组织配型室、细菌检测室、病毒检测室、造血干/祖细胞检测室、流式细胞仪室、档案资料室、收/发血室、消毒室等专业房。 (四)业务工作区域应与行政区域分开。

第三章_湍流模型

第三章 湍流模型 第一节 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 Direct Numerical Simulation 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

脐带血间充质干细胞的分离培养和鉴定

脐带血间充质干细胞的分离培养和鉴定 【摘要】目的分离培养脐带血间充质干细胞并检测其生物学特性。方法在无菌条件下用密度梯度离心的方法获得脐血单个核细胞,接种含10%胎牛血清的DMEM培养基中。单个核细胞行贴壁培养后,进行细胞形态学观察,绘制细胞生长曲线,分析细胞周期,检测细胞表面抗原。结果采用Percoll(1.073 g/mL)分离的脐血间充质干细胞大小较为均匀,梭形或星形的成纤维细胞样细胞。细胞生长曲线测定表明接后第5天细胞进入指数增生期,至第9天后数量减少;流式细胞检测表明50%~70%细胞为CD29和CD45阳性。结论体外分离培养脐血间充质干细胞生长稳定,可作为组织工程的种子细胞。 【关键词】脐血;间充质干细胞;细胞周期;免疫细胞化学 Abstract: Objective Isolation and cultivation of mesenchymal stem cells (MSCs) in human umbilical cord in vitro, and determine their biological properties. Methods The mononuclear cells were isolated by density gradient centrifugation from human umbilical cord blood in sterile condition, and cultured in DMEM medium containing 10% fetal bovine serum. After the adherent mononuclear cells were obtained, the shape of cells were observed by microscope, then the cell growth curve, the cell cycle and the cell surface antigens were obtained by immunocytochemistry and flow cytometry methods. Results MSCs obtained by Percoll (1.073 g/mL) were similar in size, spindle-shaped or star-shaped fibroblasts-liked cells. Cell growth curve analysis indicated that MSCs were in the exponential stage after 5d and in the stationary stages after 9d. Flow cytometry analysis showed that the CD29 and CD44 positive cells were about 50%~70%. Conclusions The human umbilical cord derived mesenchymal stem cells were grown stably in vitro and can be used as the seed-cells in tissue engineering. Key words:human umbilical cord blood; mesenchymal stem cells; cell cycle; immunocytochemistry 间充质干细胞(mesenchymal stem cells,MSCs)在一定条件下具有多向分化的潜能,是组织工程研究中重要的种子细胞来源。寻找来源丰富并不受伦理学制约的间充质干细胞成为近年来的研究热点[1]。脐血(umbilical cord blood, UCB)在胚胎娩出后,与胎盘一起存在的医疗废物。与骨髓相比,UCB来源更丰富,取材方便,具有肿瘤和微生物污染机会少等优点。有人认为脐血中也存在间充质干细胞(Umbilical cord blood-derived mesenchymal stem cells,UCB-MSCs)。如果从脐血中培养出MSCs,与胚胎干细胞相比,应用和研究则不受伦理的制约,蕴藏着巨大的临床应用价值[2,3]。本研究将探讨人UCB-MSCs体外培养的方法、细胞的生长曲线、增殖周期和细胞表面标志等方面,分析UCB-MSCs 作为间充质干细胞来源的可行性。

第五章离散选择模型

第五章离散选择模型 在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。 本章主要介绍以下内容: 1、为什么会有离散选择模型。 2、二元离散选择模型的表示。 3、线性概率模型估计的缺陷。 4、Logit模型和Probit模型的建立与应用。 第一节模型的基础与对应的现象 一、问题的提出 在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。 1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。由离散数据建立的模型称为离散选择模型。 2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。这种类型的数据成为审查数据。再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。这两种数据所建立的模型称为受限被解释变量模型。有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,

就把高出分数线和低于分数线划分为了两类。 下面是几个离散数据的例子。 例5.1 研究家庭是否购买住房。由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即 我们希望研究买房的可能性,即概率(1) P Y=的大小。 例5.2 分析公司员工的跳槽行为。员工是否愿意跳槽到另一家公司,取决于薪资、发展潜力等诸多因素的权衡。员工跳槽的成本与收益是多少,我们无法知道,但我们可以观察到员工是否跳槽,即 例5.3 对某项建议进行投票。建议对投票者的利益影响是无法知道的,但可以观察到投票者的行为只有三种,即 研究投票者投什么票的可能性,即(),1,2,3 ==。 P Y j j 从上述被解释变量所取的离散数据看,如果变量只有两个选择,则建立的模型为二元离散选择模型,又称二元型响应模型;如果变量有多于二个的选择,则为多元选择模型。本章主要介绍二元离散选择模型。 离散选择模型起源于Fechner于1860年进行的动物条件二元反射研究。1962年,Warner首次将它应用于经济研究领域,用于研究公共交通工具和私人交通工具的选择问题。70-80年代,离散选择模型被普遍应用于经济布局、企业选点、交通问题、就业问题、购买行为等经济决策领域的研究。模型的估计方法主要发展于20世纪80年代初期。(参见李子奈,高等计量经济学,清华大学出版社,2000年,第155页-第156页) 二、线性概率模型 对于二元选择问题,可以建立如下计量经济模型。

相关文档
最新文档