爱默生、西门子、ABB变频器基本操作

爱默生、西门子、ABB变频器基本操作
爱默生、西门子、ABB变频器基本操作

爱默生EV2000系列通用变频器

面板:

按移位键显示停机或运行状态参数,三个单位指示灯有七种组合,分别对应七种指示单位,组合状态与单位的对应关系如下图:

面板有运行状态和运行命令通道两个状态指示灯,状态指示灯说明如下表:

按编程键进入参数设置。按进入键(确认键)进入参数组,按增减键

选择相应参数组,按进入键(确认键)进入该参数组,按增减键更改相应

参数值,再按确认键(进入键)确认,按编程键返回上一级菜单。

进入参数FP.00可进行用户密码设置,该参数范围为0000~9999

初始值为0000即无需密码。密码更改按确认键后,若连续5分钟内无按键操作密码自动生效。

进入FP.01可进行参数写入保护,该参数范围为0~2。

0:表示全部参数允许被改写。

1:除设定频率(F0.02)和本功能码外,其他参数禁止改写。

2:除本功能码外,其他参数禁止改写。

进入F9.07可进行面板按键功能及选择,该参数范围为000~422

十位取0表示面板运行命令通道切换键操作无效;取1表示变频器在停机状态下有效;

2表示停机、运行状态下均有效。

进入F0.03进行运行命令通道选择,范围0~2.

0:表示可用操作面板上运行键停止键点动键进行起停

1:用外部控制端子(DCS)进行起停。

2:通过串行口起停。

进入F0.02进行运行频率数字设定,范围为下限频率~上限频率,一般设为50.00HZ。

进入F0.00进行频率给定通道选择,范围0~5。

0:表示用操作面板上加减键来调节频率。

4:频率调节由CCI端子模拟电压/电流确定,输入范围为DC0~10V,DC0~20 mA.

装置给的频率调节信号都为4~20mA,所以把频率给定曲线1的最小给定参数F1.04改为20%。

如果面板完好、运行命令通道指示灯不亮和参数F0.00的值不为0的情况下,只要不更

改参数,面板上的按键可以随意操作,操作完后请按编程键返回原来显示值。

参数设置:

基本运行参数(根据实际需求设置)

F0.00 频率给定通道选择 0:LED键盘按键给定3:VCI电压给定 0-10VDC

4:CCI电流给定 0-20mA 6:LED键盘电位器给定(EV1000) F0.03 运行命令通道选择0:LED键盘命令通道面板起停 1:端子运行命令通道端子起停 F0.10 加速时间

F0.11 减速时间

根据所需要的控制类型进行设置

频率给定参数

F1.04 最小给定值 20%

F1.05 最小给定值对应频率

F1.06 最大给定值 100

F1.07 最大给定值对应频率 50Hz

如果需要4-20mA给定是如上述设置,如需要0-10VDC电压给定,参数F1.04=0%.

注意跳线CN10(拆开外壳,在控制板上)。CN10跳线,在V侧位电压给定,在I侧位电流给定。根据实际需要调整跳线位置。

起动停机参数

F2.08

停机方式0:减速停机1:自由停车

停车方式根据实际情况进行选择,默认为减速停机。但大惯量设备如风机等,建议选择自由停车,减少减速过电压风险。

可编程继电器输出

F7.12 继电器输出功能选择0:变频器运行信号 16:变频器故障

此信号为传输给DCS的运行反馈信号,也可作变频器故障信号使用。继电器TA,TC间为常开点,TA,TB间为常闭点。

电机参数

FH.00 电机极数电机铭牌

FH.01 额定功率电机铭牌

FH.02 额定电流电机铭牌

参数保护

FP.01 参数写入保护0:全部参数允许被改写

FP.02 参数初始化2:恢复出厂设置

新变频器FP.01出厂设置为1:除F0.02外其他参数禁止改写。设置其他参数时,应该首先改写此参数。

注意事项:

新变频器应首先解除FP.01参数写入保护,再根据实际需求进行参数设置。旧变频器建议利用FP.02进行恢复出厂设置,再根据实际需求进行参数设置。基本运行参数组,根据实际需求进行修改。

西门子440变频器快速设置

变频器调试步骤及参数设置

变频器设置

DIP开关为2 OFF=50HZ (一般为默认,不用调

P0010=1 调试参数过滤器:快速调试

P0003=1 用户访问级:标准级,可以访问最经常使用的一些参数

P0100=0 使用地区:欧洲[kW],缺省值50Hz

P0304=380V 电机额定电压:

P0305=28A 电机额定电流

P0307=11KW 电机额定功率

P0310=50Hz 电机额定频率

P0311=726 电机额定速度

P0700=1 选择命令源:BOP(键盘)设置

P1000=1 频率设定的选择:电动电位计给定

P3900=1 快速调试结束显示BUSY

按面板上电机启动键起动电机后停止再进行其它的设置

P0003=3 用户访问等级:专家级(可以访问所有参数)

P0700=2 选择命令源:由端子排输入

P1000=2 频率设定值的选择:模拟量给定

P0701=9 5号端子数字输入1的功能,故障确认

P0702=0 6号端子数字输入2的功能,禁止输入

P0703=1 7号端子数字输入3的功能,ON/OFF1(接通正转/停车命令1)

P0704=2 8号端子数字输入4的功能,ON reverse/OFF1(接通反转/停车命令1)P0971=1 从RAM到EEPROM的数据传送

BUSY 调试结束

ABB-ACS510-变频器快速调试说明

ABB变频器配有一个图形显示终端(即参数设定和就地控制面板),其包括图形显示器(显示各种参数)。

操作说明:

通电以后,显示主画面,按【ENT】键转换到【REF(给定模式)——】,通过【上/下按钮】改变到【PAR】,按【ENT】键转换到【--01--】,按【上/下按钮】键转换到【--99--】,按【ENT】键转换到【9901】,按【上/下按钮】转换到【9902】,按【ENT】键转换到【1】,继续按【ENT】键,数值【1】闪烁,按【上/下按钮】键来改变数值大小到【1】——即选择标准控制宏;按【ENT】键保存参数,按同样的方法改变以下参数:

【9901】=1(语言)

【9902】=1(标准宏控制)

【9905】=(电机的额定电压)

【9906】=(电机的额定电流)

【9907】=(电机的额定频率)

【9908】=(电机的额定转速)

【9909】=(电机的额定功率)

【1103】=0(控制盘给定),=1(AI1给定),=2(AI2给定)

【1301】=20% ,【1302】=100%

【2002】=15S(加速时间)

【2003】=10S(减速时间)

【2007】=25HZ(电机运行时的最小频率)

【2008】=50HZ(电机运行时的最大频率)

ABB-ACS510-变频器 PID快速调试说明

注意:在接入模拟量信号为电流时需将AI1、AI2所对应的跳线开关拨至1位置。如果是电压,则拨至U位置。

【9901】=1(语言)

【9902】=6(PID控制)

【9905】=(电机的额定电压)

【9906】=(电机的额定电流)

【9907】=(电机的额定频率)

【9908】=(电机的额定转速)

【9909】=(电机的额定功率)

【1103】=1(AI1给定),=2(AI2给定)——(模拟量输入位置选择)【1301】=20%,【1302】——模拟量的范围(4MA对应值为20%,0MA对应0%)(此两项为AI1输入电流时设置)

【1304】=20%,【1304】——模拟量的范围(4MA对应值为20%,0MA对应0%)(此两项为AI2输入电流时设置)

【1403】=3(报警继电器)

【4010】=19(恒压设定值选择——内部给定)

【4011】=内部给定(要求恒定的压力、流量等所对应电流的百分数)

ABB变频器使用教程【精编版】

ABB变频器使用教程 内容来源网络,由深圳机械展收集整理! 更多变频器及自动化技术,就在深圳机械展! 初次接触工控的人对其都会感到很神秘,许许多多的自动控制,错综复杂的联锁及很多高新的电气元器件,让人无从下手。其实我们只需掌握一些基本的知识,分解各个部件,了解各部件的性能及要点,然后再整合起来,就清晰多了。 整个工控的组成好似人体一样,一般有:大脑(DCS),神经中枢(网络),躯干(P LC),手脚(现场执行器),五观(现场传感器)。 今天为大家谈谈现场执行器中的一个工控中常用的电气部件——变频器。变频器由于其本身具有可调速及节能的重要特性,在近几年发展很快,广泛应用于各领域。对于品种繁多的变频器和其本身内部各参数之多,往往第一次接触会感到无从下手,但可以从各种变频器的共性中学习,掌握一种变频器,举一反三就能从而了解各种变频器的应用。 下面就用一种常用的ABB变频器-ACS550给大家讲解其在实际工作中的应用。 一、安装: 打开包装首先要查看的是选用的变频器功率是否与配套的电机功率一致,要求是变频器功率≥电机功率,否则变频器因功率不足带不起负荷而烧坏。变频器上一般会有如下标签: 表示该变频器输入要求电压为3相380电压,频率50HZ,其上边的数字是一个适用范围,一般不用理会,因为国内的电压等级均满足其要求。输出电压为0至380V,3相交流,电流为6.9A,也就是能带3KW左右的电机,频率可调0-500Hz,一般应用中最大也只有60Hz。 一般变频器要求安装在无尘,无水气,无腐蚀的环境中,并在变频器本身上下左右周围留有一定的空间,有利散热。条件好的话最好能安装在特定的配电房内,并配有恒温设备,因为变频器本身也有发热,其电子元件会受温度的影响,如果其散热片上积尘多散热不好的话,会加剧变频器的损坏。 由于变频器本身是个干拢源,所以它产生的电磁干拢对其周围会有一定的影响,由其是对周围有DCS,PLC这种高精度工控设备更要注意安装中的每一环节。其解决方法有:1、

PLC变频器接线图

PLC变频器接线图 一、引言 风机、泵类等由电机拖动的设备,其耗电量占据了我厂总用电量的绝大多数,从目前我厂此类设备的运行情况来看,在节能方面有巨大的潜力可以挖掘。根据工艺流程特点和需要,我厂区各装置中泵类设计使用上,一般在同一工艺点中均采用两台同容量泵(一主泵、一备用泵)。为了节能和自 控的目的,目前针对机泵一开一备的方式可以有两种解决方案:将主机加装变频器;或将主机和备机同时加装变频器。但是,上述两种方案都存在不同的弊端,前一种方案当备机运行时将不能实现节能和自控(备机运行时间基本等同与主机);后一种方案则造成设备的闲置浪费(两台变频器在同 一时间内只有一台运行)。 二、解决方案 我们假设一下,如果能够用一台变频器带动两台电动机运行,并用控制设备对其操作进行控制,这样一来,即可发挥变频器的优势,又可以节省资金的投入。变频器的技术已经比较成熟,基本型的变频器都有一拖二甚至更高的功能,但是使用常规电器搭建控制部分则非常困难,同时因大量使用继电器、时间继电器又将造成控制部分的可靠度降低和故障率的升高,因此很少有这样的设计方案。可编程控制器

(PLC)是近年来发展极为迅速,应用面极广,它具有功能齐全、使用方便、维护容易、通用性强、可靠性高、性能价格比高等优点,已在工业控制的各个领域得到了极为广泛的应用,成为实现工业自动化的一种强有力工具。 本设计正是基于以上背景,在原有设备的基础上添加一台PLC,利用PLC控制,实现变频器一拖二控制电机改造,用一台变频器带动两台电机调节转速,实现一机多用,最大限度的提高设备利用率,挖掘增效潜力。既提高了自动化水平,又节约电能,一举两得。 本方案采用OMRON公司的CPM1A型PLC,输出形式继电器,并结合适当的外围设备搭建控制变频器的控制系统,具有使用可靠性高、响应速度快、动作准确、功能可扩展性强、外围设备少、成本低、抗干扰能力强等特点。所以本文考虑设备数量及应用场合,选择CPM1A。因为它具有可靠性高、体积小、扩展方便,使用灵活的特点。选其型号为CPM1A-30CDR-A。I/O点为30点;电源类型为AC型,范围100V~240V;输出方式为继电器输出型。性能如下:2048程序存储器;2048数据存储器;18点输入,12点输出;可扩展3个模块;对于大型控制工程,18点输入不能满足点数要求时,可以通过I/O扩展模块进行行输入点数的扩展。CPM1A最多可扩展到54个输入点。若要增加PLC电源的可靠性,我们可以选择CPM1A-30CDR-D型机,功能同上,

PLC和变频器配合使用时注意事项

PLC和变频器配合使用时注意事项 当利用变频器构成自动控制系统进行控制时,很多情况下是采用plc和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。 1.开关指令信号的输入 变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。 图1运行信号的连接方式 在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。

在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。 图2变频器输入信号接入方式 图3输入信号的错误接法 当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。

图4输入信号防干扰的接法 2.数值信号的输入 变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10V/5V的电压信号或0/4~20mA的电流信号输入。由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择PLC 的输出模块。图5为PLC与变频器之间的信号连接图。 当变频器和PLC的电压信号范围不同时,如变频器的输入信号为0~10V,而PLC的输出电压信号范围为0~5V时;或PLC的一侧的输出信号电压范围为0~10V而变频器的输入电压信号范围为0~5V时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过PLC和变频器相应的容量。此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。 通常变频器也通过接线端子向外部输出相应的监测模拟信号。电信号的范围通常为0~10V/5V及0/4~20mA电流信号。无论哪种情况,都应注意:PLC一侧的输入阻抗的大小要保证电路中电压和电流

ABB变频器使用教程

教你如何使用ABB变频器 序言:初次接触工控的人对其都会感到很神秘,许许多多的自动控制,错综复杂的联锁及很多高新的电气元器件,让人无从下手。其实我们只需掌握一些基本的知识,分解各个部件,了解各部件的性能及要点,然后再整合起来,就清晰多了。 整个工控的组成好似人体一样,一般有:大脑(DCS),神经中枢(网络),躯干(PLC), 手脚(现场执行器),五观(现场传感器)。 今天我为大家谈谈现场执行器中的一个工控中常用的电气部件一一变频器。变频器由于其本身具有可调速及节能的重要特性,在近几年发展很快,广泛应用于各邻域。对于品种繁多的变频器和其本身内部各参数之多,我们往往第一次接触会感到无从下手,但我们可以从各种变频器的共性中学习,掌握一种变频器,举一反三就能从而了解各种变频器的应用。 下面我就用一种常用的ABB变频器-ACS550给大家讲解其在实际工作中的应用。 一、安装: 打开包装我们首先要查看的是选用的变频器功率是否与配套的电机功率一致,要求是变频器功率'电机功率,否则变频器因功率不足带不起负荷而烧坏。变频器上一般会有如下标签: 表示该变频器输入要求电压为3相380电压,频率50HZ ,其上边的数字是一个适用范围,我们一般不用理会,因为国内的电压等级均满足其要求。输出电压为0至380V , 3相交流,电流为6.9A ,也就是能带3KW左右的电机,频率可调0-500HZ,—般我们应用中

最大也只有60Hz。 一般变频器要求安装在无尘,无水气,无腐蚀的环境中,并在变频器本身上下左右周围留有一定的空间,有利散热。条件好的话最好能安装在特定的配电房内,并配有恒温设备,因为变频器本身也有发热,其电子元件会受温度的影响,如果其散热片上积尘多散热不好的话,会加剧变频器的损坏。 由于变频器本身是个干拢源,所以它产生的电磁干拢对其周围会有一定的影响,由其是对周围有DCS,PLC这种高精度工控设备更要注意安装中的每一环节。其解决方法有: 1、在电源输入侧加装电抗器,现在有些变频器在设计时已经在输入端加入了抗干拢的电抗器,可以在订购时加以注意。 2、在电源输出侧,即电机电缆选用带屏蔽的三芯或四芯对称电缆,其优点是电缆上的电磁干拢是对称的,相互加以抵消,如以下图示: 3、控制电缆选用屏蔽双绞线,如图所示: 4、电缆屏蔽层在变频侧接CE端,变频器的PE、CE单独接地。电缆布线时,控制电缆与动力电缆分开,至少不小于20Cm距离。注意控制电缆的模拟量与开关量不用同一电缆。 二、接线: 1、电源的进线接变频器的U1、VI、W1,电缆接地线接PE;电机电缆接变频器的U 2、V2、W2,电缆接地线接PE;变频器的GND接地;如果电机需要快速停机的话,需要变频器的 R+、R-侧接止动电阻,上边有短接线的并拆除。如图: 2、数字输入控制常有开关、继电器等发出信号至变频器,其连接需按实际应用要求,一般有二种接线,如图: 注意:按以上不同方式连接时,有些品牌的变频器会要求在变频上有跳针设置。 常用的连接线有,变频器启动信号,变频器停止信号(有些启停是同一输入点,接通启 动,断开停止),变频器正转信号,变频器反转信号(正转信号往往与启动是同一信号),变频器多段速度信号(如低速、中速、高速分三个输入信号接入) ABB-ASC550出厂默认DI1为启停信号(接通启动,断开停止)DI2为正反转信号(接通为反转,断开为正转) 3、模拟输入信号接线分电压型,电流型,及可变电阻信号输入,如图连接;

ABB变频器操作说明和主要参数

ABB变频器操作说明和主要参数1.键盘按钮位置、名称 ABB键盘图4—42。 图4—42 ABB键盘 (退出/实际)(菜单)(上下传/功能)(传动选择) (快上)(上) (快下)(下)(确定) (远近)(复位)(给定)(启动) (正转)(反转)(停机) 2. 键盘按钮中英文对照: ACT——退出/实际 PAR——菜单 FUNC——上下传/功能 DRIVE——传动选择 ENTER——确定 LOC/REM——远近控 RESET——复位 REF——给定 3.选择键盘操作: 按‘远近’,显示1 (远控—面板操作)变为1 L。 按‘给定’,中部显示中括号[]。 按‘启动’,右上角显示0变为1。 按‘快上’或‘上’或‘下’,电机转。 .按‘停机’,按‘正转’或‘反转’变向。 按‘给定’,按‘启动’,按‘上’或‘快上’或‘下’。电机反转。 三、参数 1.参数设置:

按(菜单),按(快增)或(快减)调出大菜单;按△(慢增)或(慢减)调出子菜单。按(确认)给最下行需要改动的加中括号[],按(或,或△或)修改,按(确认)保存——中括号消除,按(退出),恢复待机状态。 700采煤机变频器参数:U=380V,I=152A,r=1477,P=80KW,f=50Hz. 930采煤机变频器参数:U=380V,I=105A,r=1475,P=55KW,f=50Hz.。 2.举例:改电机电压。按“菜单”键,显示“10.01”,按(快减)一下,显示“99.01”,按△4下,显示“99.05”和“***V”,按“确认”,显示[***V]。按或或按△或改变中括号中数字为380V;按确认,中括号消失。 改电机电流:按△1下,显示“99.06”和“***A”,按“确认”,显示[***A]。按或 或按△或改变中括号中数字为60A;按确认,中括号消失。 改变电机功率:按△3下,显示“99.09”和“***kw”,按“确认”,显示[***kw]。按 或或按△或改变中括号中数字为55kw;按确认,中括号消失。 停止操作40秒,键盘自动恢复为监视状态。 变频器菜单11.05是上限频率,20.08是最大频率。一般只改变11.05。用于限制采煤机速度。 3.改变变频器键盘显示状态:△或选择行(黑影闪动),按确定,△或选择要显示的项,按确定。键盘可以同时显示三个参数。最好的显示状态应该是输出频率、输出电压、电机电流。电工和采煤机司机,要经常观察电机电流,一旦超过额定值105A,必须立即停机,进行查找原因、处理。电机电流是反映电机工作状况(负荷大小、电机绕组好坏)的最快、最准确的物理量。 主要参数 代码设置可选项名称 10.01 DI1,2 DI1控制启动和停机,DI2控制转向 DI1F DI2R DI1控制正向启动和停机,DI2控制反向启动和停机 10.03 FORWARD 固定为正向 REVERSE 固定为反向 REQUSET 转向选择。双向 11.02 EXT1 定义有效的控制口为10.01和11.03 EXT2 定义有效的控制口为10.02和11.06 11.03 AI1 模拟量输入AI1有效 AI2 模拟量输入AI2有效 AI3 模拟量输入AI3有效 DI3U,4D(R)数字量输入DI3加速、DI4减速,无记忆 DI3U,4D 数字量输入DI3加速、DI4减速,有记忆 11.04 0 输出频率下限,设置最低速度 11.05 50Hz 输出频率上限,设置最高速度 11.07 0% 所有信号源的最小设定值 11.08 100% 所有信号源的最大设定值 15.06 SPEED 电机转速 16.02 OPEN 参数锁打开,参数值可以修改 LOCKED 参数锁处于锁定,键盘不能修改参数。当16.03输入密码才可打开16.03 0 设置358开锁,该值将自动回零

关于PLC与变频器的结合使用

关于P L C与变频器的结合使用 目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,这里面经常会用到PLC与变频器的结合使用,当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC 和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。 1.开关指令信号的输入 变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。 在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。 在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。 当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。 2.数值信号的输入 输入信号防干扰的接法 变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10V/5V的电压信号或0/4~20mA的电流信号输入。由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择PLC的输出模块。图5为PLC与变频器之间的信号连接图。 当变频器和PLC的电压信号范围不同时,如变频器的输入信号为0~10V,而PLC的输出电压信号范围为0~5V时;或PLC的一侧的输出信号电压范围为0~10V而变频器的输入电压信号范围为0~5V时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过PLC和变频器相应的容量。此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。

ABB变频器使用说明书

一、环境条件 ?防护等级 ?IP21/UL 1:这个等级要求安装现场无粉尘,无腐蚀性气体或液体,无导电性颗粒物,例如凝露、碳粉或小金属颗粒。 ?IP54/UL 12:这个等级可以提供对气体粉尘以及各个方向的轻度溅水的保护。 与IP21/UL 1 的防护等级相比,IP54/UL 12防护等级具有以下特点: ?与IP21/UL 1 的防护等级相同的内部塑料罩。 ?不同的出风口侧塑料盖板。 ?附加一个内部风扇以改善冷却。 ?更大的外部尺寸。 ?同样的容量(不需要降容使用)。 ?环境条件 1、海拔高度 ?海拔高度在0~1000米时,输出电流=I2N 额定电流 ?海拔高度在1000~2000米时,每升高100米则P N和I2N 降容1%。 ?如果安装地点海拔高度高于2000米,请联系当地的ABB变频器。 2、环境温度 ?最低温度-15℃-不允许有结霜。 ?最高温度(fsw=1或4KHZ)为40℃。fsw指开关频率 ?如果P N和I2N 降容到90%时,允许温度为50℃. ?如果P N和I2N 降容到80%时,允许最高温度(fsw=8KHZ)为40℃。 ?如果P N和I2N 降容到65%时,允许最高温度(fsw=12KHZ)为30℃. ?温度在40~50℃之间,温度高于40℃时(fsw=4KHZ)每增加1℃,额定输出电流降低1%。实际输出电流要乘以降容因子 例如:如果环境温度是50℃,那么降容因子为 100%-1%/℃x10℃=90%或0.90 则输出电流为0.90 xI2N 。 3、相对湿度 ?小于95%(不允许结露) 4、污染级别 ?不允许有导电性粉尘存在。 ?ACS510应根据外壳防护等级安装在清洁的通风环境中。 ?冷却空气必须是清洁的,无腐蚀性气体和无导电性粉尘。 ?化学气体:Class 3C2 ?固体颗粒:Class 3S2

ABB变频器使用说明

ABB变频器使用说明

一、环境条件 ?防护等级 ?IP21/UL 1:这个等级要求安装现场无粉尘,无腐蚀性气体或液体,无导电性颗粒物,例如凝露、碳粉或小金属颗粒。 ?IP54/UL 12:这个等级可以提供对气体粉尘以及各个方向的轻度溅水的保护。 与IP21/UL 1 的防护等级相比,IP54/UL 12防护等级具有以下特点: ?与IP21/UL 1 的防护等级相同的内部塑料罩。?不同的出风口侧塑料盖板。 ?附加一个内部风扇以改善冷却。 ?更大的外部尺寸。 ?同样的容量(不需要降容使用)。 ?环境条件 1、海拔高度 ?海拔高度在0~1000米时,输出电流=I2N 额定电流 ?海拔高度在1000~2000米时,每升高100米则P N和I2N 降容1%。 ?如果安装地点海拔高度高于2000米,请联系当地的ABB变频器。

2、环境温度 ?最低温度-15℃-不允许有结霜。 ?最高温度(fsw=1或4KHZ)为40℃。fsw指开关频率 ?如果P N和I2N 降容到90%时,允许温度为50℃. ?如果P N和I2N 降容到80%时,允许最高温度(fsw=8KHZ)为40℃。 ?如果P N和I2N 降容到65%时,允许最高温度(fsw=12KHZ)为30℃. ?温度在40~50℃之间,温度高于40℃时(fsw=4KHZ)每增加1℃,额定输出电流降低1%。实际输出电流要乘以降容因子 例如:如果环境温度是50℃,那么降容因子为100%-1%/℃x10℃=90%或0.90 则输出电流为0.90 x I2N 。 3、相对湿度 ?小于95%(不允许结露) 4、污染级别 ?不允许有导电性粉尘存在。 ?ACS510应根据外壳防护等级安装在清洁的通风环境中。

ABB变频器操作说明书

1:启动2:停机3:激活给定参数设置4:正转 5:反转6:故障复位7:本地控制/远程(外部)控制 1:如何启动,停机,改变运转方向 1:按(显示状态行)2:按(切换为本地模式:在显示屏第一 行没有字母L)3:按(停机)4:按(启动)5:按(反向运转)6:按(正向运转) 2:如何设置转速给定值 1:按(显示状态行)2:按(切换为本地模式:在显示屏第一行没有字母L)3:按(进入给定参数功能)4:按(慢速改变)或者 按(快速改变)5:按()(保存给定值) 3:如何选择在显示屏幕上的实际信号 1:按(进入实际信号显示模式)2:按(选择某一行,光标选择的地方就是你选择的地方)3:按(进入实际信号的选择功能)4:按(选择

一个实际信号)或者按(改变实际信号组)5:按(确认并返回实际信号显示模式)或者按(取消所作选择,恢复原设置) 4:如何显示实际信号的全称 1:按保持(显示3个实际信号的全称)2:释放(返回实际信号选择模式)5:如何查看和清楚故障记录:注:故障或警告正在发生,则不能清楚故障记录 1:按(进入实际信号显示模式)2:按(进入故障记录显示功能) 3:按(选择上条或下条故障/警告记录)4:按(清楚故障记录) 5:按(返回实际显示信号) 6:如何显示和清楚当前故障记录 1:按(显示当前故障记录)2:按(将故障复位) 7:如何选择一个参数并改变参数值 1:按(进入参数模式)2:按(选择一个参数组)3:按 (在组内选择一个参数)4:按(进入参数设置功能)5:按(慢 速改变数字及文字)或者按(快速改变数字值,仅对数字)6:按 (储存新的参数值)或者按(为了取消新的设置并恢复原有设置,按任意一个模式选择键退出,并同时进入相应的模式) 8:启动向导的启动,浏览,退出 1:按(进入功能模式)2:按(从列出项中选择一个任务或功能项) 或者按(翻页,以便显示更多的操作向导/功能项)3:按(进入所选任务)4:按(接受并继续)5:按(接受并继续)

变频器与PLC通讯连接方式!民熔【图文详解】

变频器与plc连接方式一般有以下几种方式 ①利用PLC的模拟量输出模块控制变频器PLC的模拟量输出模块输出0~5V电压信号或4~20mA电流信号,作为变频器的模拟量输入信号,控制变频器的输出频率。这种控制方式接线简单,但需要选择与变频器输入阻抗匹配的PLC输出模块,且PLC的模拟量输出模块价格较为昂贵,此外还需采取分压措施使变频器适应PLC的电压信号范围,在连接时注意将布线分开,保证主电路一侧的噪声不传至控制电路。 ②利用PLC的开关量输出控制变频器。PLC的开关输出量一般可以与变频器的开关量输入端直接相连。这种控制方式的接线简单,抗干扰能力强。利用PLC的开关量输出可以控制变频器的启动/停止、正/反转、点动、转速和加减时间等,能实现较为复杂的控制要求,但只能有级调速。

使用继电器触点进行连接时,有时存在因接触不良而误操作现象。使用晶体管进行连接时,则需要考虑晶体管自身的电压、电流容量等因素,保证系统的可靠性。另外,在设计变频器的输入信号电路时,还应该注意到输入信号电路连接不当,有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载,继电器开闭时,产生的浪涌电流带来的噪声有可能引起变频器的误动作,应尽量避免。 ③PLC与RS-485通信接口的连接。所有的标准民熔变频器都有一个RS-485串行接口(有的也提供RS-232接口),采用双线连接,其设计标准适用于工业环境的应用对象。单一的RS-485链路最多可以连接30台变频器,而且根据各变频器的地址或采用广播信息,都可以找到需要通信的变频器。链路中需要有一个主控制器(主站),而各个变频器则是从属的控制对象(从站) 民熔RS485连接 Plc和变频器通讯方式

plc与变频器连接时应注意的问题

plc与变频器连接时应注意的问题 本文介绍了可编程控制器与变频器的连接和连接时应注意的问题,以免导致可编程控制器或变频器的误动作或损坏。 引言 可编程控制器(PLC)是一种数字运算与操作的控制装置。PLC作为传统继电器的替代产品,广泛应用于工业控制的各个领域。由于PLC可以用软件来改变控制过程,并有体积小,组装灵活,编程简单,抗干扰能力强及可靠性高等特点,特别适用于恶劣环境下运行。 当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。 1.开关指令信号的输入 变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。 在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。 在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。 当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。 2.数值信号的输入 图1 运行信号的连接方式

西门子PLC与变频器之间的总线的连接

西门子PLC与变频器之间的总线的连接 (1) 系统配置 该系统以西门子公司和ABB公司的相关产品来实现全数字交流调速系统在Profibus-DP网中的通讯及控制原理。附图为该系统的Profibus-DP网的网络配置图,其中PLC为西门子公司的SIMATIC S7-315-2DP,变频器为ACS600系列,NPBA-12为与变频器配套的通讯适配器。编程软件为STEP7 V5.2软件,用于对S7-300 PLC编程和对Profibus-DP网进行组态和通讯配置。上位机画面操作采用WinCC5.1进行画面编程和操作,与PLC通讯采用以太网通讯方式。 (2) 通讯协议 在本系统中,S7-300 PLC作为主站,变频器作为从站时,主站向变频器传送运行指令,同时接受变频器反馈的运行状态及故障报警状态的信号。变频器与NPBA-12通讯适配器模块相连,接入Profibus-DP网中作为从站,接受从主站SIMATIC S7-315-2DP 来的控制。NPBA-12通讯适配器模块将从Profibus-DP网中接收到的过程数据存入双向RAM中,的每一个字都被编址,在变频器端的双向RAM可通过被编址参数排序,向变频器写入控制字、设置值或读出实际值、诊断信息等参量。变频器现场总线控制系统若从软件角度看,其核心内容是现场总线的通讯协议。Profibus-DP通讯协议的数据电报结构分为协议头、网络数据和

协议层。网络数据即PPO包括参数值PKW及过程数据PZD。参数值PKW是变频器运行时要定义的一些功能码;过程数据PZD是变频器运行过程中要输入/输出的一些数据值,如频率给定值、速度反馈值、电流反馈值等。 Profibus-DP共有两类型的网络PPO:一类是无PKW而有2个字或6个字的PZD;另一类是有PKW且还有2个字、6个字或10个字的PZD。将网络数据这样分类定义的目的,是为了完成不同的任务,即PKW的传输与PZD的传输互不影响,均各自独立工作,从而使变频器能够按照上一级自动化系统的指令运行。 3、STEP7项目系统组态及通讯编程 (1) 使用STEP7V5.2组态软件,进入Hardware Configure完成S7-300 PLC硬件组态;

PLC与变频器的结合使用

P L C与变频器的结合使 用 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

关于P L C与变频器的结合使用目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,这里面经常会用到PLC与变频器的结合使用,当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。 1.开关指令信号的输入 变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。 在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。 在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。

当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。 2.数值信号的输入 输入信号防干扰的接法 变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10V/5V的电压信号或0/4~20mA的电流信号输入。由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择PLC的输出模块。图5为PLC与变频器之间的信号连接图。 当变频器和PLC的电压信号范围不同时,如变频器的输入信号为0~10V,而PLC的输出电压信号范围为0~5V时;或PLC的一侧的输出信号电压范围为0~10V而变频器的输入电压信号范围为0~5V时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过PLC和变频器相应的容量。此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。 通常变频器也通过接线端子向外部输出相应的监测模拟信号。电信号的范围通常为0~10V/5V及0/4~20mA电流信号。无论哪种情况,都应注意:PLC一侧的输入阻抗的大小要保证电路中电压和电流不超过电路的允许值,以保证系统

ABB变频器参数设置说明

ABB 变频器参数设置说明 一、变频器的简朴本地启动1. 首先确定空开闭合,接触器得电;2.按LOC/REM 使变频器为本地控制模式3. 按PAR 进入控制盘的参数设置模式用双箭头键选到99 参数组,然后用单箭头键选择04,ENTER 进入99.04 电机传动模式(DTC) DTC 变频器设定值为转速(多数情况下用这种模式) SCALA 变频器的设定值为频率选择好模式后按ENTER 确认(取消按ACT 返回)4. 按ACT 回到当前状态5. 按REF ,选择上下调节键,输入指定的参数后,按ENTER 确认6. 按启动键,变频器启动至此,完成了一个变频器简单的本地运行过程假如需要将已显示的实际信号替换显示成其他的实际信号,可以按以下步骤进行操作:1. 按ACT 进入实际信号显示模式;2. 选择需要改变的参数行,按ENTER 进入;3. 按单双箭头键,选择要显示的参数或改变参数组;(常用的几个显示信号:01.02 电机的实际转速SPEED 01.03 传动输入频率的实际值FREQ 03.20 变频器最后一次故障的代码LAST FLT )4. 按ENTER 确认并返回实际信号显示模式;(取消直接按ACT )二、上传和下载 如何将已经设置好电机需要上传到CDP-312 操作面板上: 1. 激活可选设备的通讯确认98.02 COMM.MODULE LINK 设定为FIELDBUS 98.07 COMM PROFILE 设定为ABB DRIVES 2. 按LOC/REM 切换到L 本地控制状态;3. 按FUNC 进入功能模式;4. 按单双箭头键进入

UPLOAD 功能按ENTER 执行上传,完成后自动切换到当前信号显示模式;、5. 如果要将控制盘从一个传动单元移开前,确认控制盘处于远程控制模式状态(可以按LOC/REM 进行改变)如何将数据从控制盘下载到传动单元:1. 将存有上传数据的控制盘连接到传动设备;2. 确认处于本地控制模式(可以按LOC/REM 选择);3. 按FUNC 进入功能模式;4. 进入DOWNLOAD 下载功能,按ENTER 执行下载。三、PLC 与变频器PROFIBUS-DP 通讯为了实现变频器与PLC 之间的通讯,首先确定通讯模板已安上,然后把DP 网线安装好。此时需要在本地模式下(按LOC/REM 选择)设定和确认以下参数:(按FAR 进入参数选择模式,用单双箭头选择,ENTER 键进入参数或参数组的设定)1、98.02 COMM.MODULE LINK 选择FIELDBUS 这一个值,表示RPBA-01 通讯摸板被激活; 98.07 COMM PROFILE 选择值为ABB DRIVES ,作用是选择传动单元的通讯协议;2、10.01 EXT1 STRT/STP/DIR 选择值为COMM.CW 定义外部控制地,用于启动、停机、转向的命令的连接和信号源; 3、10.02 同10.01; 4 、10.03 REF DIRECTION 定义电机的转向FORWARD 正向REVERSE 反向REQUEST 答应用户定义转向(选定此项);5、16.01 Run Enable 运行使能设为YES;6、16.04 FAULT RESET SEL 选择故障复位的信号源选值为COMM.CW (现场总线控制) 。如果10.01 和10.01 已经设定为COMM.CW 则此参数自动激活;7、11.02 EXT1/EXT2/ SELECT 选择控制字的控制源值为

plc和变频器通讯接线图详解

plc与变频器两者是一种包含与被包含的关系,PLC与变频器都可以完成一些特定的指令,用来控制电机马达,PLC是一种程序输入执行硬件,变频器则是其中之一,但是PLC的涵盖范围又比变频器大,还可以用来控制更多的东西,应用领域更广,性能更强大,当然PLC的 控制精度也更大。 变频器无法进行编程,改变电源的频率、电压等参数,它的输出频率可以设为固定值, 也可以由PLC动态控制。 plc是可以编程序的,用来控制电气元件或完成功能、通信等任务。 PLC与变频器之间通信需要遵循通用的串行接口协议(USS),按照串行总线的主从通信原 理来确定访问的方法。总线上可以连接一个主站和最多31个从站,主站根据通信报文中的地址字符来选择要传输数据的从站,在主站没有要求它进行通信时,从站本身不能首先发送数据,各个从站之间也不能直接进行信息的传输。 一、PLC基本结构图 PLC可编程控制器的存储器可以分为系统程序存储器、用户程序存储器及工作数据存储 器等三种。 1、系统程序存储器 系统程序存储器用来存放由可编程控制器生产厂家编写的系统程序,并固化在ROM内,用户不能直接更改。系统程序质量的好坏,很大程度上决定了PLC的性能,其内容主要包括 三部分:第一部分为系统管理程序,它主要控制可编程控制器的运行,使整个可编程控制器 按部就班地工作,第二部分为用户指令解释程序,通过用户指令解释程序,将可编程控制器 的编程语言变为机器语言指令,再由CPU执行这些指令;第三部分为标准程序模块与系统调用程序。 2、用户程序存储器 根据控制要求而编制的应用程序称为用户程序。用户程序存储器用来存放用户针对具体 控制任务,用规定的可编程控制器编程语言编写的各种用户程序。目前较先进的可编程控制 器采用可随时读写的快闪存储器作为用户程序存储器,快闪存储器不需后备电池,掉电视数 据也不会丢失。 3、工作数据存储器 工作数据存储器用来存储工作数据,既用户程序中使用的ON/OFF状态、数值数据等。 在工作数据区中开辟有元件映像寄存器和数据表。其中元件映像寄存器用来存储开关量、输

plc控制变频器调速

基 于 PLC 控 制 变 频 器 调 速 实 验 报 告 电控学院 电气

实训目的:本次实验针对电气工程及其自动化专业。通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。学生实验应做到以下几点: 1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。 2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。 3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。 4. 培养动手能力,增强对可编程控制器运用的能力。 5. 培养分析,查找故障的能力。 6. 增加对可编程控制器外围电路的认识。 实训主要器件:欧姆龙CPM2AH-40CDR可编程控制器(PLC),欧瑞F1000-G系列变频器,三相异步电机 第一部分采样 转速的采样采用的是欧姆龙的光电编码器,结合PLC的高速计数器端子,实现高精度的采样。。 编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是1还是0;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是1还是0,通过1和0的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 欧姆龙(OMRON)编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到

ABB变频器使用说明书

一、环境条件 防护等级 I P21/UL 1:这个等级要求安装现场无粉尘,无腐蚀性气体或液体,无导电性颗粒物, 例如凝露、碳粉或小金属颗粒。 I P54/UL 12:这个等级可以提供对气体粉尘以及各个方向的轻度溅水的保护。 与IP21/UL 1 的防护等级相比,IP54/UL 12防护等级具有以下特点: 与IP21/UL 1 的防护等级相同的内部塑料罩。 不同的出风口侧塑料盖板。 附加一个内部风扇以改善冷却。 更大的外部尺寸。 同样的容量(不需要降容使用)。 环境条件 1、海拔高度 海拔高度在0~1000米时,输出电流=I2N 额定电流 海拔高度在1000~2000米时,每升高100米则P N和I2N 降容1%。 如果安装地点海拔高度高于2000米,请联系当地的ABB变频器。 2、环境温度 最低温度-15℃-不允许有结霜。 最高温度(fsw=1或4KHZ)为40℃。fsw指开关频率 如果P N和I2N 降容到90%时,允许温度为50℃. 如果P N和I2N 降容到80%时,允许最高温度(fsw=8KHZ)为40℃。 如果P N和I2N 降容到65%时,允许最高温度(fsw=12KHZ)为30℃. 温度在40~50℃之间,温度高于40℃时(fsw=4KHZ)每增加1℃,额定输出电流降低1%。实际输出电流要乘以降容因子 例如:如果环境温度是50℃,那么降容因子为 100%-1%/℃x10℃=90%或 则输出电流为 xI2N 。

3、相对湿度 小于95%(不允许结露) 4、污染级别 不允许有导电性粉尘存在。 A CS510应根据外壳防护等级安装在清洁的通风环境中。 冷却空气必须是清洁的,无腐蚀性气体和无导电性粉尘。 化学气体:Class 3C2 固体颗粒:Class 3S2 二、基本型控制盘使用

abb变频器使用说明书(1)

一、环境条件 防护等级 IP21/UL 1:这个等级要求安装现场无粉尘,无腐蚀性气体或液体,无导电性颗粒物,例如凝露、碳粉或小金属颗粒。 IP54/UL 12:这个等级可以提供对气体粉尘以及各个方向的轻度溅水的保护。与IP21/UL 1 的防护等级相比,IP54/UL 12防护等级具有以下特点:与IP21/UL 1 的防护等级相同的内部塑料罩。 不同的出风口侧塑料盖板。 附加一个内部风扇以改善冷却。 更大的外部尺寸。 同样的容量(不需要降容使用)。 环境条件 1、海拔高度 海拔高度在0~1000米时,输出电流=I2N 额定电流 海拔高度在1000~2000米时,每升高100米则P N和I2N 降容1%。 如果安装地点海拔高度高于2000米,请联系当地的ABB变频器。 2、环境温度 最低温度-15℃-不允许有结霜。 最高温度(fsw=1或4KHZ)为40℃。fsw指开关频率 如果P N和I2N 降容到90%时,允许温度为50℃. 如果P N和I2N 降容到80%时,允许最高温度(fsw=8KHZ)为40℃。 如果P N和I2N 降容到65%时,允许最高温度(fsw=12KHZ)为30℃. 温度在40~50℃之间,温度高于40℃时(fsw=4KHZ)每增加1℃,额定输出电流降低1%。实际输出电流要乘以降容因子 例如:如果环境温度是50℃,那么降容因子为 100%-1%/℃x10℃=90%或 则输出电流为 xI2N 。 3、相对湿度 小于95%(不允许结露) 4、污染级别 不允许有导电性粉尘存在。 ACS510应根据外壳防护等级安装在清洁的通风环境中。 冷却空气必须是清洁的,无腐蚀性气体和无导电性粉尘。 化学气体:Class 3C2 固体颗粒:Class 3S2

PLC控制变频器的几种方法

在工业自动化控制系统中,最为常见的是PLC和变频器的组合应用,并且产生了多种多样的PLC控制变频器的方法,其中采用RS-485通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉。但是,RS-485的通讯必须解决数据编码、求取校验和、成帧、发送数据、接收数据的奇偶校验、超时处理和出错重发等一系列技术问题,一条简单的变频器操作指令,有时要编写数十条PLC梯形图指令才能实现,编程工作量大而且繁琐,令设计者望而生畏。 本文介绍一种非常简便的三菱FX系列PLC通讯方式控制变频器的方法:它只需在PLC主机上安装一块RS-485通讯板或挂接一块RS-485通讯模块;在PLC的面板下嵌入一块造价仅仅数百元的“功能扩展存储盒”,编写4条极其简单的PLC梯形图指令,即可实现8台变频器参数的读取、写入、各种运行的监视和控制,通讯距离可达50m或500m。这种方法非常简捷便利,极易掌握。本文以三菱产品为范例,将这种“采用扩展存储器通讯控制变频器”的简便方法作一简单介绍。 2、三菱PLC采用扩展存储器通讯控制变频器的系统配置 2.1 系统硬件组成 FX2N系列PLC(产品版本V 3.00以上)1台(软件采用FX-PCS/WIN-C V 3.00版); FX2N-485-BD通讯模板1块(最长通讯距离50m); 或FX0N-485ADP通讯模块1块+FX2N-CNV-BD板1块(最长通讯距离500m); FX2N-ROM-E1功能扩展存储盒1块(安装在PLC本体内); 带RS485通讯口的三菱变频器8台(S500系列、E500系列、F500系列、F700系列、A500系列、V500系列等,可以相互混用,总数量不超过8台;三菱所有系列变频器的通讯参数编号、命令代码和数据代码相同。); RJ45电缆(5芯带屏蔽); 终端阻抗器(终端电阻)100Ω; 选件:人机界面(如F930GOT等小型触摸屏)1台。 2.2 硬件安装方法 (1) 用网线专用压接钳将电缆的一头和RJ45水晶头进行压接;另一头则按图1~图3的方法连接FX2N-485-BD通讯模板,未使用的2个P5S端头不接。 (2) 揭开PLC主机左边的面板盖, 将FX2N-485-BD通讯模板和FX2N-ROM-E1功能扩展存储器安装后盖上面板。 (3) 将RJ45电缆分别连接变频器的PU口,网络末端变频器的接受信号端RDA、RDB之间连接一只100Ω终端电阻,以消除由于信号传送速度、传递距离等原因,有可能受到反射的影响而造成的通讯障碍。 2.3 变频器通讯参数设置 为了正确地建立通讯,必须在变频器设置与通讯有关的参数如“站号”、“通讯速率”、“停止位长/字长”、“奇偶校验”等等。变频器内的Pr.117~Pr.124参数用于设置通讯参数。参数设定采用操作面板或变频器设置软件FR-SW1-SETUP-WE在PU口进行。 2.4 变频器设定项目和指令代码举例 2.5 变频器数据代码表举例 2.6 PLC编程方法及示例 (1) 通讯方式 PLC与变频器之间采用主从方式进行通讯,PLC为主机,变频器为从机。1个网络中只有一台主机,主机通过站号区分不同的从机。它们采用半双工双向通讯,从机只有在收到主机的读写命令后才发送数据。 (2) 变频器控制的PLC指令规格

相关文档
最新文档