QPSK 16QAM 64QAM matlab仿真

QPSK 16QAM 64QAM matlab仿真
QPSK 16QAM 64QAM matlab仿真

西安邮电学院

通信与信息工程学院

科研训练报告

专业班级: 通工1113班 学生姓名: 杨佳磊 学号(班内序号): 03111050(06号)

2014 年 4 月 10 日

——————————————————————————装 订 线————————————————————————————————

报告份数:

实验总成绩:

LTE系统中调制技术研究

摘要

本文主要做了LTE中调制与解调技术的相关仿真,其中包括QPSK、16QAM、64QAM调制与解调制的matlab实现,其中包含了一些老前辈的经验以及在这基础之上我的一些相关创新,希望通过本次研究能够加深对LTE相关技术的深一步的了解,当然其中也有很多问题需要自己去解决,比如星座图的分析、比特数据的映射问题、解调制等等,这些问题及解决办法在文档中都会有所体现。

一、引言

为了更好的进行大学实习教育的体制改革,更好的迎合当代企业对于毕业生的要求,实现大学与企业的更好的衔接。让学生了解LTE当代的发展前景以及其中的一些关键技术,更好的让学生将所学知识应用到实际工作当中去,利用仿真工具对所遇到的问题进行深一步的研究并能够发现问题,自主的解决一些问题,因此进行这种开放性的实习是必要的。特别是在这个信息膨胀的时代里,学会利用一些检索工具最快的发现与找到所需资料也显得尤为重要。

二、原理内容及研究现状

在LTE中,调制和解调的方式包括QPSK、16QAM、64QAM,具体使用哪种调制方式,要看UE的能力和信道状况(UE即用户设备),一般来说根据具体的物理信道,在3GPP36.211,36.212标准中,PDCCH的调试方式是bpsk,qpsk,PDSCH是qpsk,16QAM,64QAM,剩下的广播信道等的调试方式为低阶的。

现阶段上述三种技术都已经很成熟,在这里我只做相关知识原理的一些阐述。

1.QPSK

1)QPSK调制

QPSK的产生方法有两种:

第一种是用相乘电路,如下图1-1所示,图中输入信号A(t)是二进制双极性不归零码元,它被“串/并变换”电路变成两路码元a和b。变成并行码元a和b后,其每个码元a和b。变成并行码元a和b后,其每个码元的持续时间是输入码元的2倍。这两路并行码元序列分别用以和两路正交载波相乘。之后这两路信号在经过相加电路相加之后得到输出矢量s(t)。这里主要进行的是单极性码元变换成双极性码元。

QPSK信号的解调原理框图如图所示,

第一种,正交振幅法:用两路独立的正交的4ASK信号叠加,就可形成,因4ASK有四个振幅值和相位值,两路相乘即可得到所要的16QAM信号。

复合相移法

图 1-5

第二种,复合相移法,用两路独立的QPSK信号叠加,形成16QAM信号,其形成过程可用下图1-5说明

2)QAM解调

QAM的解调框图:

中大量的采用这种调制方式不仅提高了频谱利用率而且能够更加高效快速的传递信息。

三、仿真及分析

1.QPSK仿真与分析

QPSK通过改变已调信号的相位信息进行对数字信号的调制。设置不同的初相位来区别不同的数字码符,而其解调过程需要通过相位信息进行。首先产生一系列随机的01码序列,之后每两个码字分为一组进行判别、映射画出星座图,使序列通过高斯噪声在进行解调制,画出星座图,从中观察信噪比对于码元传输的影响。以下是QPSK的仿真和主要程序段(见附录)。

映射之后的星座图过噪声之后的星座图

误码率和误比特率曲线图

在途中可以看出来信噪比对于误码率的影响,信噪比越高误码率越低,因此在噪声很大的信道中适当的提高信噪比可以有效的提高通信的质量。另外从QPSK的星座图可以看出其噪声容限值也很大,因此在解调制过程中其信息的错误率也会很低,但是其频谱的利用率却相对不高。所以现阶段普遍偏好与QAM调制,更好的利用频谱资源,提高频谱利用率,下面开始对QAM调

制进行简要的分析与仿真。

2.QAM仿真与分析

一个正交幅度调制的信号采用两个正交载波,每一个载波被一个独立的信息比特序列所调制。而其幅度可以看作是一系列电平集合,这些电平通过将比特序列映射为信号振幅获得,而我所做的仿真中采用了3个电平,并且映射的时候没有采用函数库里自带的modulate和demodulate函数进行调制与解调。首先将产生的一系列01比特流进行进制的划分,其划分根据log2M其中M是调制的数,如16、64、128等等。这里再将分好组的比特数据进行坐标映射,画出星座图。在解调的过程中采用区域判别的方法,首先进行判决门限的划定,之后进行比较画出星座图。这种方法只做了16QAM,64QAM与此相同就不做陈述,对64QAM采用内部函数的调用方式。下面对16和64QAM的调制与解调和信噪比对误码率的影响进行分析。

16QAM星座图 16QAM加噪后的星座图

16QAM误码率曲线图

64QAM映射星座图 64QAM加噪后的星座图

64QAM误码率曲线图

图上可以看出来,64QAM调制出来的星座点更多因此其信息的容量更多,在带宽资源一样的情况之下其容纳的信息量将会更多,其传输的信息比特速率会更高,但是其代价是可以容易看到的,其解调的错误率会更高而且设备的复杂度也会相应的更加的高。因此16和64QAM还有QPSK在实际的应用中需要根据具体的情况而定,根据我个人的理解,我们传输中当只有语音业务的时候我们可以采用最传统的调制与解调就可以满足,但是现今社会数据量的迅速膨胀,人们对多媒体以及数据业务的需求很高,因此采用更高的QAM

调制技术是必要的,而且随着用户的数量日益增加,对于频谱资源极其有限的今天,跟好的利用频谱,提高频谱利用率是所用的商家都在考虑的一个难题,因此在LTE中广泛的应用QAM调制就是这个原因。

四、结论

通过本次的科研训练,我更加熟练的能够操作matlab,并且通过两个星期来对于LTE中调制与解调的研究中发现了QPSK、QAM调制的优点,并且通过仿真的观察更加直观的理解书本上的一些相关知识。

在这两个星期中首先是加深了对一些知识的了解,并且学会如何去搜索资源,利用网络以及书籍来学到相关知识。当然在与同学的讨论中也发现了自己的许多不足之处。希望在今后的学习工作中能够虚心学习,踏实创新。

五、致谢

在这里还要感谢姜静、畅智贤两位老师这两周来的悉心指导还有院里领导给我们提供这个环境和这个机会,还要感谢许多书籍的作者,给我很多启迪与鼓舞。

六、参考文献

1 MA TLAB通信仿真与应用刘敏魏玲国防工业出版社

2樊昌信,曹丽娜.通信原理.第六版[M].北京:国防工业出版社,2008.4-5.

3 (美)S. Lin and D. J. Costello 著. 晏坚,何元智,潘亚汉等译. 差错控制编码.

4 张忠培,史治平,王传丹编著. 现代编码理论与应用. 北京:人民邮电出版社.2007

5 蔡涛等译.无线通信原理与应用[M].北京:电子工业出版社,1999:174-179.

6 仇佩亮.《信息论与编码》高等教育出版社.

7 徐文燕.通信原理[M].北京:北京邮电学院出版社,2008

8 王新梅,肖国镇.纠错码原理与方法[M].西安:西安电子科技大学出版社,2001.

9 Matlab通信仿真及应用实例详解邓华人民邮电出版社

10 Bertsekas D,Gallager R.Data Network.Prentice Hall,NJ,USA,1992

11 Kleinrock L. Quenuing System Theory. Chichester: John Wiley & Sons,1975

12 Kleinrock https://www.360docs.net/doc/722772871.html,munication Nets: Stochastic Message Flow and Delay.Dover,https://www.360docs.net/doc/722772871.html,A.1964

13 Garey M R ,Johnson D S Witesnhausen H S. the Complexity of the Generalized Lloyd-Max problemS

14 J un Tan. Gordon L. Stüber. New SISO decoding algo2 rithms[J ] . IEEE Trans. Commun , 2003 , 51 (6) : 845~848

15 孟夏, 申敏, 王飞.TD-SCDMA中(2,1,9)卷积编码及其VITERBI译码算法的S IMULINK S-FUNCTION实现[J].通信技术,2008,41(8):26-30.

16 Viterbi A J.Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[J].IEEE https://www.360docs.net/doc/722772871.html,rm Theory,1967,IT-IS(2):260-269

17 王新梅,肖国镇.纠错码一原理与方法.西安,西安电子科技大学出版社,2001, 4.

18 邓华.Matlab通信仿真及应用[M].北京:人民邮电出版社,2000

19H Jin, A Khandekar, R McEliece. “Irregular repeat-accumulate codes”. Proc. 2nd

Int. Symp. Turbo Codes and Related Topics, 2000 - https://www.360docs.net/doc/722772871.html,.

20 S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. “A Soft-Input Soft-Output APP Module for Iterative Decoding of Concat enated Codes”. IEEE

附录:主要程序代码

1.QPSK

星座图映射程序段:

sum=1000000;

data= randsrc(sum,2,[0 1]); %generate a 1000000*2 random matrix, using [0 1]

[a1,b1]=find(data(:,1)==0&data(:,2)==0); %returns the row and column indices of the evaluated expression which are TRUE.

message(a1)=-1-j; % map [ 1 1] to 225??

[a2,b2]=find(data(:,1)==0&data(:,2)==1);

message(a2)=-1+j; % map [ 0 1] to 135??

[a3,b3]=find(data(:,1)==1&data(:,2)==0);

message(a3)=1-j; % map [ 1 0] to 275??

[a4,b4]=find(data(:,1)==1&data(:,2)==1);

message(a4)=1+j;% map [ 0 0] to 45??

scatterplot(message)

title('映射后的信号的星座图')

解调制后过噪声后的星座图:

for Eb_NO_id=1:length(sigma)

noise1=sigma(Eb_NO_id)*randn(1,sum);

noise2=sigma(Eb_NO_id)*randn(1,sum);

receive=message+noise1+noise2*j; %previously unconsidered: how to add gaussian noise to the original signal

%receive=message;

resum=0;

total=0;

m1=find(angle(receive)<=pi/2&angle(receive)>0); %demodulate the [ 1 1] pattern

remessage(1,m1)=1+j;

redata(m1,1)=1;

redata(m1,2)=1;

m2= find( angle(receive)>pi/2&angle(receive)<=pi); %demodulate the [ 0 1] pattern

remessage(1,m2)=-1+j;

redata(m2,1)=0;

redata(m2,2)=1;

m3=find( angle(receive)>-pi&angle(receive)<=-pi/2); %demodulate the [ 0 0] pattern

remessage(1,m3)=-1-j;

redata(m3,1)=0;

redata(m3,2)=0;

m4=find( angle(receive)>-pi/2&angle(receive)<=0); %demodulate the [ 1 0] pattern

remessage(1,m4)=1-j;

redata(m4,1)=1;

redata(m4,2)=0;

[resum,ratio1]=symerr(data,redata); % 'symerr' Compute number of symbol errors and symbol error rate pbit(Eb_NO_id)=resum/(sum*2); %1000000 symbols -->2000000 bits QPSK: 2bits per symbol [total,ratio2]=symerr(message,remessage); %Compute number of symbol errors and symbol error rate pe(Eb_NO_id)=total/sum; % Calculated according to the definition

end

scatterplot(receive)

title('1加噪声的星座图')

2.16QAM和64QAM

M=16或者64;

k=log2(M);

n=120000; %比特序列长度

samp=1; %过采样率

x=randint(n,1); %生成随机二进制比特流

stem(x(1:50),'filled'); %画出相应的二进制比特流信号

title('二进制随机比特流');

xlabel('比特序列');ylabel('信号幅度');

x4=reshape(x,k,length(x)/k); %将原始的二进制比特序列每四个一组分组,并排列成k行length(x)/k 列的矩阵

xsym=bi2de(x4.','left-msb'); %将矩阵转化为相应的16进制信号序列

figure;

stem(xsym(1:50)); %画出相应的16进制信号序列

title('64进制随机信号');

xlabel('信号序列');ylabel('信号幅度');

y=modulate(modem.qammod(M),xsym); %用16QAM调制器对信号进行

scatterplot(y); %画出16QAM信号的星座图

text(real(y),imag(y),dec2bin(xsym));

axis([-5 5 -5 5]);

EbNo=-5:1:20;

for n=1:length(EbNo);

snr(n)=EbNo(n)+10*log10(k)-10*log10(samp); %信噪比

yn=awgn(y,snr(n),'measured'); %加入高斯白噪声

yd=demodulate(modem.qamdemod(M),yn); %此时解调出来的是16进制信号

z=de2bi(yd,'left-msb'); %转化为对应的二进制比特流

z=reshape(z.',numel(z),1');

[number_of_errors(n),bit_error_rate(n)]=biterr(x,z)

theoryPe(n)=(1/k)*3/2*erfc(sqrt(k*0.1*(10.^(EbNo(n)/10))));

end

semilogy(EbNo,bit_error_rate,'b-',EbNo,theoryPe,'r*');

legend('64QAM实际误码率','64QAM理论误码率');

xlabel('EbNo/dB');

ylabel('误比特率');

h=scatterplot(yn(1:1*5e3),samp,0,'g.'); %经过信道后接收到的含白噪声的信号星座图

hold on;

scatterplot(y(1:1*5e3),1,0,'k+',h); %加入不含白噪声的信号星座图title('接收信号星座图');

legend('含噪声接收信号','不含噪声信号');

axis([-8 8 -8 8]);

hold off

指导教师评语:

实 验 成 绩: 指导(辅导)教师 :

—————————————————————————装 订 线————————————————————————————————

曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (21) 参考文献 (22)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

基于 MATLAB 的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生姓名: 所在班级: 任课教师: 2016年10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验内容 (3) 1.3.1实验平台 (3) 1.3.2实验内容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

基于Workbench仿真的内燃机曲柄连杆机构动力学分析

基于Workbench的仿真内燃机曲柄连 杆机构动力学分析 (机械与动力工程学院南京 211816) 摘要:本文以S195 内燃机为例,对单缸内燃机的曲柄连杆机构简化模型 进行了有限元分析。根据力学分析结果和强度要求设计内燃机曲柄连杆机构结构,并应用UG软件建立该机构三维数字化虚拟装配模型,结合有限元理论及其分析软件ANSYS Workbench,模拟分析了曲柄连杆机构装配体动力学分析,结果表明,数字化模型结合装配体有限元分析,可解决曲柄连杆机构结构强度评价问题,有助于缩短汽油机开发周期和减少成本。 关键词:曲柄连杆,有限元分析,Workbench,动力学仿真。 Dynamic analysis of the crank connecting rod mechanism based on Workbench simulation (Nanjing Technology of University, mechanical and power engineering, Yin Zhenhua, Nanjing, 211816) Abstract Based on the S195 diesel engine as an example, the crank connecting rod mechanism of single cylinder diesel engine was analyzed in finite element analysis. According to the mechanical analysis results and strength requirements, the structure of the engine crank connecting rod mechanism is designed, and the 3D digital virtual assembly model of the mechanism is established. Combined with the finite element theory and the analysis software ANSYS Workbench. The results show that the numerical model combined with the finite element analysis can solve the problem of structural strength evaluation of the crank link mechanism, which helps to shorten the development cycle and reduce the cost. Key words: crank connecting rod, finite element analysis, Workbench, dynamic simulation.

基于MATLAB的QPSK通信系统仿真设计毕业设计论文

基于MATLAB的QPSK通信系统仿真设计 摘要 随着移动通信技术的发展,以前在数字通信系统中采用FSK、ASK、PSK 等调制方式,逐渐被许多优秀的调制技术所替代。本文主要介绍了QPSK调制与解调的实现原理框图,用MATLAB软件中的SIMULINK仿真功能对QPSK调制与解调这一过程如何建立仿真模型,通过对仿真模型的运行,得到信号在QPSK 调制与解调过程中的信号时域变化图。通过该软件实现方式,可以大大提高设计的灵活性,节约设计时间,提高设计效率,从而缩小硬件电路设计的工作量,缩短开发周期。 关键词 QPSK,数字通信,调制,解调,SIMULINK -I-

Abstract As mobile communications technology, and previously in the adoption of digital cellular system, ASK, FSK PSK modulation, etc. Gradually been many excellent mod ulation technology substitution, where four phase-shift keying QPSK technology is a wireless communications technology in a binary modulation method. This article prim arily describes QPSK modulation and demodulation of the implementation of the prin ciple of block diagrams, focuses on the MATLAB SIMULINK software emulation in on QPSK modulation and demodulation the process how to build a simulation model, through the operation of simulation model, I get signal in QPSK modulation and dem odulation adjustment process domain change figure. The software implementation, ca n dramatically improve the design flexibility, saving design time, increase efficiency, design to reduce the workload of hardware circuit design, and shorten the developmen t cycle. Keywords QPSK, Digital Communication,modulation,demodulation,SIMULINK -II-

SolidWorks的曲柄连杆机构动力学仿真研究

基于SolidWorks的曲柄连杆机构动力学仿真研究 发表时间:2012-2-28 作者: 陈敏*刘晓叙来源: 万方数据 关键字: 发动机运动学动力学仿真 本文用SolidWorks软件建立了一个简化的单缸发动机模型,用COSMOS Motion对该模型进行了发动机运动学和动力学仿真,对运动学仿真的结果进行了验证。 设计往复活塞式发动机时,要进行发动机的运动学和动力学计算,发动机的运动学是计算发动机活塞的位移、速度和加速度。动力学计算主要包括主要运动件的载荷,为零件的强度计算提供依据。在过去的设计中,发动机的运动学和动力学引算一般是采用计算机编程的方式进行。 SolidWorks是目前应用较为广泛的三维设计软件,COSMOS Motion是以ADAMS软件的技术为内核的机构运动学和动力学仿真软件,是SolidWorks的一个插件,与SolidWorks可以进行无缝对接。我们运用该软件,对一个简化的单缸发动机模型进行了运动学与动力学仿真,其结果对往复活塞式发动机的运动学和动力学设计计算有参考意义,现将研究情况介绍如下: 1 发动机模型的基本情况 为了研究的需要,建立了一个简化的单缸发动机模型,主要的结构参数为:缸径125mm,行程160mm,连杆大、小头孔中心距210mm,λ=0.381。发动机的活塞、活塞销、连杆和曲轴用SolidWorks进行三维实体造型设计,然后进行装配,发动机装配后效果及坐标系见图1。 图1 发动机模型 2 发动机的运动学仿真 由于是对一个特定的模型作定量的运动学和动力学仿真,所以,从简单起见,在仿真参数中,将曲轴的转速设为60r/min,即1r/s。在COSMOS Motion中运行仿真后,可以得到活塞运行的位移、速度和加速度,见图2、图3、图4。

QPSK通信系统性能分析与MATLAB仿真报告

淮海工学院课程设计报告书 课程名称:通信系统的计算机仿真设计 题目:QPSK通信系统性能分析 与MATLAB仿真 学院:电子工程学院 学期:2013-2014-2 专业班级: 姓名: 学号: 评语: 成绩: 签名: 日期:

QPSK通信系统性能分析与MATLAB仿真 1 绪论 1.1 研究背景与研究意义 数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。 本实验采用QPSK。QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 课程设计的目的和任务 目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 课程设计的任务是: (1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。 (2)训练学生网络设计能力。 (3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。1.3 可行性分析 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,

基于MATLAB的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于 MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生: 所在班级: 任课教师: 2016年 10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验容 (3) 1.3.1实验平台 (3) 1.3.2实验容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

汽车曲柄连杆机构设计

摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E

发动机曲柄连杆机构动力学运动规律仿真研究

发动机曲柄连杆机构动力学运动规律仿真研究 Dynamics simulation analysis of engine crank connecting rod mechanism 黄硕 东风商用车有限公司发动机厂 湖北省十堰市 442001 摘 要:本文从动力学角度研究了曲柄连杆机构的工作原理,,建立简易曲柄连杆机构的三维实体模型,利用机械系统动力学仿真分析软件HyperWorks,对dCi11发动机曲柄连杆机构进行仿真;并基于模态综合分析法研究柔性体的力学性能,对连杆进行了动态特性分析,得出连杆在自由模态情况下的模态振型;然后对该曲柄连杆机构进行运动学和动力学分析,得到连杆在一个工作循环过程中应力变化规律,从而确定了连杆的受力边界条件以及危险工况分析,为连杆优化设计和强度校核提供了依据,并为进一步分析和研究曲柄连杆机构特性提供了参考。 关键词:曲柄连杆机构 多体系统动力学 模态分析 结构优化 HyperWorks Abstract: This paper has studied the crank works from dynamics perspective. the mechanical system dynamics simulation software HyperWorks has simulated the crank of engine of car;And based on a comprehensive analysis of modal,Studied flexible body the mechanical properties and conducted a dynamic characteristics analysis to the connecting rod.Rod in the case of free modal shape has been came out.Then the crank has done kinematic and dynamic analysis, the connecting rod determined the linkage of the force boundary condition sin a work cycle variation of stress, and dangerous working conditions analysis, link optimization and strength check provides the basis for further analysis and study crank feature provides a reference. Keywords:Crank and Connecting Rod Mechanism, Multi-Body Dynamics, Model Analysis, Structural optimization, HyperWorks 1 课题研究意义 目前,随着工程技术的发展在研究曲柄连杆机构的运动学和动力学分析方法很多,而且已经较完善和成熟。其中机构运动学分析是研究两个或两个以上物体间的相对运动即位移、速度和加速度随时间变化的关系,动力学则是研究产生运动的力。通过对机构运动学和动力学分析,我们可以清楚了解曲柄连杆机构工作的运动性能、运动规律等,从而可以更好地对机构进行性能分析和产品设计。但是过去由于手段的原因,大部分复杂的机构运动尽管能够给出解析式,却难以计算出供工程使用的计算结果,不得不用粗糙的图解法求得数据。随着计算机的发展,通过计算机辅助设计、校核和计算的系统,可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,并绘制受力分析曲线图,对进一步研究内燃机的平衡与振动等均有较为实用的应用价值。

汽车曲柄连杆机构毕业设计说明书

本科毕业设计(论文)通过答辩 优秀论文设计,答辩无忧,值得下载!摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

本科毕业设计(论文)通过答辩 优秀论文设计,答辩无忧,值得下载!ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E

毕业设计基于matlab的QPSK系统仿真

基于MATLAB的QPSK仿真设计与实现 一.前言 1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱 c.QPSK信号星座图 2.构建一个在AWGN(高斯白噪声)信道条件下的QPSK仿真系统,要求仿真结果有

MATLAB对QPSK通信系统的仿真

QPSK通信系统的性能分析与matlab仿真 1 绪论 在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。在新技术革命的高速推动和信息高速公路的建设,全球网络化发展浪潮的推动下,通信技术得到迅猛的发展,载波通信、卫星通信和移动通信技术正在向数字化、智能化、宽带化发展。Simulink具有适应面广、结构和流程清晰及仿真精细、效率高、贴近实际、等优点,基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件应用于Simulink。本文设计出一个QPSK仿真模型,以分析QPSK在高斯信道中的性能,通过此次课程设计,更好地了解QPSK系统的工作原理,传输比特错误率和符号错误率的计算。 1.1 研究背景与研究意义 1.1.1 研究背景 在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。信息的数字转换处理技术走向成熟,为大规模、多领域的信息产品制造和信息服务创造了条件。高新技术层出不穷。随着通信技术的发展,通信系统方面的设计也会越来越复杂,利用计算机软件的仿真,可以大大地降低通信过程中的实验成本。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中只

要通过简单的鼠标操作,就可以构造出复杂的系统。Simulink提供了一个建立模型方块图的图形用户接口,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。 1.1.2研究意义 通过完成实验的设计内容,加深对通信原理理论的理解,熟悉通信系统的基本概念,复习正交相位偏移键控(QPSK)调制解调的基本原理和误比特率的计算方法,了解调制解调方式中最基础的方法。包括模拟调制中的幅度调制(AM)如双边带幅度调制(DSB)、单边带幅度调制(SSB)、常规幅度调制;角度调制中的相位调制(FM)和频率调制(PM)。以及数字调制中的幅度调制,相位调制,频率调制等方式,了解QPSK的实现方法及数学原理,掌握通信系统Simulink仿真建模方法。数字通信之所以取得迅速的发展不是偶然的现象, 有其理论上、技术上和客观需求上的基础从理论分析开始, 人们早就认识到数字通信在理论上比模拟通信具有一系列优点。除上述各点外, 在频带和功率的有效利用方面也更为有利计算技术和微电子学的进展为通信的数字化提供了坚实的技术基础人们在社会生活中对多种功能综合服务的需要是数字通信发展的强大动力。 1.2 课程设计的目的和任务 1.2.1 课程设计的目的 本次课程设计是根据“通信工程专业培养计划”要求而制定的。通信系统的计算机仿真设计课程设计是通信工程专业的学生在学完通信工程专业基础课、通信工程专业主干课及科学计算与仿真专业课后进行的综合性课程设计。其目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 1.2.2课程设计的任务 (1)掌握一般通信系统设计的过程、步骤、要求、工作内容及设计方法;掌握

一种气动发动机曲柄连杆机构的仿真性能研究

一种气动发动机曲柄连杆机构的仿真性能研究 气动发动机是以高压空气作为“燃料”,来提供动力。由于高压空气能力密度较低,且气动发动机的能量利用率低,因此,改善其能量利用率,提高其机械效率至关重要。曲柄连杆机构是发动机动力传输的核心机构,对发动机的整体工作及汽车的动力传递起到至关重要的作用。通过研究一种新型气动发动机的曲柄连杆机构,利用MATLAB/Simulink对其运动特性进行仿真分析,分析其对气动发动机性能的影响,研究结果为今后进一步提高气动发动机的效率提供了指导方向。 标签:曲轴;连杆;气动发动机;运动学仿真;发动机性能 0引言 气动发动机以压缩空气作为工质,将高压空气直接输入气缸膨胀以推动活塞做功,实现了将高压空气的压力能转化为转动形式的机械能输出。与传统内燃机相比,气动发动机的做功原理比较简单,通过气体膨胀推动活塞做功,进而对外输出功率,实现了无燃烧、零污染物,是真正意义上的绿色动力汽车。气动发动机具有突出的特点和很好的应用前景,但其能量利用效率低是最为突出的和最需要迫切解决的问题。 曲柄连杆机构是发动机实现工作循环,完成能量转换的关键部件,它将活塞的周期往复运动转变为曲轴的旋转运动,从而对外输出转矩,为汽车提供行驶所需的动力,对发动机的可靠性、动力性影响很大。一直以来,以曲柄连杆机构为基础的往复活塞式发动机的研究及进展对汽车行业乃至整个工业的发展起着较大的推动作用。当活塞在作往复运动时,其速度和加速度的数值及变化规律对曲柄连杆机构以及内燃机整体的工作有很大影响,研究曲柄连杆机构运动学的主要任务实际上就是研究活塞的运动规律。为了进一步提高循环热效率和燃烧效率以及机械效率,优化内燃机的性能,众多国内外的专家学者都对传统往复式活塞所用的曲柄连杆机构(图1)进行改进,试图通过对内燃机曲柄连杆机构的改进提高其性能。笔者对一种新的双连杆往复机构进行仿真研究,这种曲柄连杆机构的结构特点,使得其在运动过程中,活塞在上止点附近停留时间较长。本文对应用这种机构的气动发动机建立了数学模型,利用Matlab/simulink进行仿真,并与传统往复活塞式曲柄连杆机构进行对比,得出仿真结果。此外,对这种新型曲柄连杆机构的活塞运动规律以及有可能对气功发动机工作过程产生的影响作了简要分析。 1.1传统曲柄连杆机构数学模型及求解 根据图1所示,设OB=R为曲拐中心到曲轴旋转中心的距离(即曲柄),AB=L 为连杆长度,λ=R/L。活塞在上止点时(A1位置)曲轴转角为0,活塞在下止点时(A2位置)曲轴转角为180°。由此可推导出活塞的位移为:

相关文档
最新文档