第四章 二次曲面

第四章 二次曲面
第四章 二次曲面

二次曲面

Ⅰ 授课题目 §7.3 曲面及其方程 Ⅱ 教学目的与要求

1、理解曲面与方程之间的关系,会建立简单曲面的方程;

2、理解旋转曲面的概念,能建立旋转曲面的方程;

3、理解柱面的概念,掌握柱面方程的特点;

4、理解二次曲面的概念,知道二次曲面的方程与图形的对应关系。 Ⅲ 教学重点与难点

重点:曲面方程的概念、旋转曲面、柱面。 难点:二次曲面的形状,截割分析 Ⅳ 讲授内容

一、曲面方程的概念

在空间解析几何中, 任何曲面都可以看作点的几何轨迹. 在这样的意义下, 如果曲面S 与三元方程

F (x , y , z )=0

有下述关系:

(1) 曲面S 上任一点的坐标都满足方程F (x , y , z )=0; (2) 不在曲面S 上的点的坐标都不满足方程F (x , y , z )=0,

那么, 方程F (x , y , z )=0就叫做曲面S 的方程, 而曲面S 就叫做方程F (x , y , z )=0的图形. 常见的曲面的方程:

例1 建立球心在点M 0(x 0, y 0, z 0)、半径为R 的球面的方程. 解 设M (x , y , z )是球面上的任一点, 那么

|M 0M |=R .

R z z y y x x =-+-+-202020)()()(,

或 (x -x 0)2+(y -y 0)2+(z -z 0)2=R 2.

这就是球面上的点的坐标所满足的方程. 而不在球面上的点的坐标都不满足这个方程. 所以 (x -x 0)2

+(y -y 0)2

+(z -z 0)2

=R 2

.

就是球心在点M 0(x 0, y 0, z 0)、半径为R 的球面的方程. 特殊地, 球心在原点O (0, 0, 0)、半径为R 的球面的方程为

x 2+y 2+z 2=R 2.

例2 设有点A (1, 2, 3)和B (2, -1, 4), 求线段AB 的垂直平分面的方程.

解 由题意知道, 所求的平面就是与A 和B 等距离的点的几何轨迹. 设M (x , y , z )为所求平面上的任一点, 则有

|AM |=|BM |,

222222)4()1()2()3()2()1(-+++-=-+-+-z y x z y x .

等式两边平方, 然后化简得

2x -6y +2z -7=0.

这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程, 所以这个方程就是所求平面的方程.

以上表明作为点的几何轨迹的曲面可以用它的点的坐标间的方程来表示,反之,变量x 、y 和z 间的方程通常表示一个曲面。因此在空间解析几何中关于曲面的研究,有下列两个基

本问题: (1) 已知一曲面作为点的几何轨迹时, 建立这曲面的方程;

(2) 已知坐标x 、y 和z 间的一个方程时, 研究这方程所表示的曲面的形状.

例3 方程x 2+y 2+z 2

-2x +4y =0表示怎样的曲面?

解 通过配方, 原方程可以改写成

(x -1)2+(y +2)2+z 2=5.

这是一个球面方程, 球心在点M 0(1, -2, 0)、半径为5=R . 一般地, 设有三元二次方程

Ax 2+Ay 2+Az 2+Dx +Ey +Fz +G =0,

这个方程的特点是缺xy , yz , zx 各项, 而且平方项系数相同, 只要将方程经过配方就可以化成方程

(x -x 0)2

+(y -y 0)2

+(z -z 0)2

=R 2

.

的形式, 它的图形就是一个球面. 二、旋转曲面

以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面叫做旋转曲面, 这条定直线叫做旋转曲面的轴.

设在yO z 坐标面上有一已知曲线C , 它的方程为

f (y , z ) =0,

把这曲线绕z 轴旋转一周, 就得到一个以z 轴为轴的旋转曲面. 它的方程可以求得如下:

设M (x , y , z )为曲面上任一点, 它是曲线 C 上点M 1(0, y 1, z 1)绕z 轴旋转而得到的. 因 此有如下关系等式

0) ,(11=z y f , 1z z =, 221||y x y +=

,

从而得 0) ,(22=+±z y x f , 这就是所求旋转曲面的方程.

在曲线C 的方程f (y , z )=0中将y 改 成2

2

y x +±, 便得曲线C 绕z 轴旋转所

成的旋转曲面的方程0) ,(22=+±z y x f .

同理, 曲线C 绕y 轴旋转所成的旋转曲面的方程为

) ,(22=+±

z x y f .

例4 直线L 绕另一条与L 相交的直线旋转一周, 所得旋转曲面叫做圆锥面. 两直线的交点叫做圆锥面的顶点, 两直线的夹角α (2

α<

<)叫做圆锥面的半顶角. 试建立顶点在坐标原点O , 旋转轴为z 轴, 半顶角为α的圆锥面的方程. 解 在yO z 坐标面内, 直线L 的方程为

z =y cot α ,

将方程z =y cot α 中的y 改成22y x +±, 就得到所要求的圆锥面的方程

αc o t 22y x z +±=,

z 2=a 2 (x 2+y 2

),

其中a =cot α .

例5. 将zOx 坐标面上的双曲线122

22=-c

z a x 分别绕x 轴和z 轴旋转一周, 求所生成的旋转曲面

的方程.

解 绕x 轴旋转所在的旋转曲面的方程为

12

2

222=+-c z y a x ;

绕z 轴旋转所在的旋转曲面的方程为

12

2

2

22=-

+c z a y x . 这两种曲面分别叫做双叶旋转双曲面和单叶旋转双曲面. 三、柱面

例6 方程x 2+y 2=R 2表示怎样的曲面?

解 方程x 2+y 2=R 2在xOy 面上表示圆心在原点O 、半径为R 的圆. 在空间直角坐标系中, 这方程不含竖坐标z , 即不论空间点的竖坐标z 怎样, 只要它的横坐标x 和纵坐标y 能满足这方程, 那么这些点就在这曲面上. 也就是说, 过xOy 面上的圆x 2+y 2=R 2, 且平行于z 轴的直线一定在x 2+y 2=R 2表示的曲面上. 所以这个曲面可以看成是由平行于z 轴的直线l 沿xOy 面上的圆x 2+y 2=R 2移动而形成的. 这曲面叫做圆柱面, xOy 面上的圆x 2+y 2=R 2叫做它的准线, 这平行于z 轴的直线l 叫做它的母线. 例6 方程x 2+y 2=R 2表示怎样的曲面?

解 在空间直角坐标系中, 过xOy 面上的圆x 2

+y 2

=R 2

作平行于z 轴的直线l , 则直线l 上的点都满足方程x 2+y 2=R 2, 因此直线l 一定在x 2+y 2=R 2表示的曲面上. 所以这个曲面可以看成是由

平行于z 轴的直线l 沿xOy 面上的圆x 2+y 2=R 2移动而形成的. 这曲面叫做圆柱面, xOy 面上的圆x 2+y 2=R 2叫做它的准线, 这平行于z 轴的直线l 叫做它的母线.

柱面: 平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面, 定曲线C 叫做柱面的准线, 动直线L 叫做柱面的母线.

上面我们看到, 不含z 的方程x 2+y 2=R 2在空间直角坐标系中表示圆柱面, 它的母线平行于z 轴, 它的准线是xOy 面上的圆x 2

+y 2

=R 2

. 一般地, 只含x 、y 而缺z 的方程F (x , y )=0, 在空间直角坐标系中表示母线平行于z 轴的柱面, 其准线是xOy 面上的曲线C : F (x , y )=0.

例如, 方程y 2=2x 表示母线平行于z 轴的柱面, 它的准线是xOy 面上的抛物线y 2 =2x , 该柱面叫做抛物柱面.

又如, 方程 x -y =0表示母线平行于z 轴的柱面, 其准线是xOy 面的直线 x -y =0, 所以它是过z 轴的平面.

类似地, 只含x 、z 而缺y 的方程G (x , z )=0和只含y 、z 而缺x 的方程H (y , z )=0分别表示母线平行于y 轴和x 轴的柱面.

例如, 方程 x -z =0表示母线平行于y 轴的柱面, 其准线是zOx 面上的直线 x -z =0. 所以它是过y 轴的平面.

四、二次曲面

与平面解析几何中规定的二次曲线相类似, 我们把三元二次方程所表示的曲面叫做二次曲面. 把平面叫做一次曲面.

怎样了解三元方程F (x , y , z )=0所表示的曲面的形状呢? 方法之一是用坐标面和平行于坐标面的平面与曲面相截, 考察其交线的形状, 然后加以综合, 从而了解曲面的立体形状. 这种方法叫做截痕法.

研究曲面的另一种方程是伸缩变形法:

设S 是一个曲面, 其方程为F (x , y , z )=0, S '是将曲面S 沿x 轴方向伸缩λ倍所得的曲面. 显然, 若(x , y , z )∈S , 则(λx , y , z )∈S '; 若(x , y , z )∈S ', 则S z y x ∈) , ,1(λ

.

因此, 对于任意的(x , y , z )∈S ', 有0) , ,1(=z y x F λ

, 即0) , ,1(=z y x F λ

是曲面S '的方程.

例如,把圆锥面2222z a y x =+沿y 轴方向伸缩a

b 倍, 所得曲面的方程为

2

222

)(z a y b a x =+, 即222

22z b

y a x =+.

(1)椭圆锥面 由方程22

222

z b

y a

x =+

所表示的曲面称为椭圆锥面.

圆锥曲面在y 轴方向伸缩而得的曲面. 把圆锥面

2

2

22z a y x =+沿y 轴方向伸缩a b 倍, 所得曲面称为椭圆锥面222

22z b y

a x =+.

以垂直于z 轴的平面z =t 截此曲面, 当t =0时得一点(0, 0, 0); 当t ≠0时, 得平面z =t 上的椭圆

1)()(2

222

=+bt y at x .

当t 变化时, 上式表示一族长短轴比例不变的椭圆, 当|t |从大到小并变为0时, 这族椭圆从大到小并缩为一点. 综合上述讨论, 可得椭圆锥面的形状如图. (2)椭球面 由方程

12

2

22

22=++c z b y a x 所表示的曲面称为椭球面.

球面在x 轴、y 轴或z 轴方向伸缩而得的曲面.

把x 2

+y 2

+z 2

=a 2

沿z 轴方向伸缩a c 倍, 得旋转椭球面1222

22=++c

z a y x ; 再沿y 轴方向伸缩a b

倍,

即得椭球面12

2

22

22=++c z b y a x .

(3)单叶双曲面 由方程

12

2

22

22=-+c z b y a x 所表示的曲面称为单叶双曲面.

把zOx 面上的双曲线

12

2

22=-c z a x 绕z 轴旋转, 得旋转单叶双曲面

122

2

22=-+c

z a y x ; 再沿y 轴方向伸缩a

b 倍, 即得单叶双曲面12

2

22

22=-+c z b y a x .

(4)双叶双曲面

由方程122

2222=--c

z b y

a x 所表示的曲面称为双叶双曲面.

把zOx 面上的双曲线122

22=-c

z a

x 绕x 轴旋转, 得旋转双叶双曲面12

22

22

=+-c y z

a

x ;

再沿y 轴方向伸缩c

b 倍, 即得双叶双曲面12

2

2

222

=-

-

c z b y a

x .

(5)椭圆抛物面 由方程

z b

y a

x =+

2

22

2所表示的曲面称为椭圆抛物面.

把zOx 面上的抛物线z a x =22绕z 轴旋转, 所得曲面叫做旋转抛物面z a

y x =+2

2

2, 再沿y 轴方向伸缩a b 倍, 所得曲面叫做椭圆抛物面z b

y

a x =+22

22

(6)双曲抛物面. 由方程

z b y a x =-2

222所表示的曲面称为双曲抛物面.

双曲抛物面又称马鞍面.

用平面x =t 截此曲面, 所得截痕l 为平面x =t 上的抛物线 2

22

2a t z b y -

=-

,

此抛物线开口朝下, 其项点坐标为) ,0 ,(22

a

t t . 当t 变化时, l 的形状不变, 位置只作平移, 而l

的项点的轨迹L 为平面y =0上的抛物线

22

a

x z =.

因此, 以l 为母线, L 为准线, 母线l 的项点在准线L 上滑动, 且母线作平行移动, 这样得到的曲面便是双曲抛物面.

还有三种二次曲面是以三种二次曲线为准线的柱面:

12222=+b y a x , 122

22=-b

y

a x , ay x =2,

依次称为椭圆柱面、双曲柱面、抛物柱面.

Ⅴ 小结与提问

小结:1、曲面方程的概念、旋转曲面方程的概念、柱面方程的概念。

2、二次曲面方程的概念。

提问:1、指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形: (1)x =2; (2) y =x +1; (3) x 2+y 2=4; (4) x 2-y 2=1. Ⅵ 课外作业

数学建模里面的公式超级全的

导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

强大!!高等数学公式超级集合!

daodhaklhdsjdasjdklahskldh 高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

曲线积分与曲面积分

第十章 曲线积分与曲面积分 一、 基本内容要求 1. 理解线、面积分的概念,了解线、面积分的几何意义及物理意义,能用线、 面积分表达一些几何量和物理量; 2. 掌握线、面积分的计算法; 3. 知道两类曲线积分及两类曲面积分的联系; 4. 掌握格林公式,并能将沿闭曲线正向的积分化为该曲线所围闭区域上的二重 积分; 5. 掌握曲线积分与路径无关的充要条件,并能求全微分为已知的某个原函数, 注意此时所讨论问题单连通域的条件不可缺少; 6. 掌握高斯公式,并能将闭曲面Σ外侧上的一个曲面积分化为由其所围空间闭 区间Ω上的三重积分。 二、 选择 1.设OM 是从O (0,0)到点M (1,1)的直线段,则与曲线积分I=ds e om y x ? +2 2不相等的积分是:( ) A)dx e x 21 2? B) dy e y 21 02? C) dt e t ? 2 D) dr e r 21 ? 2.设L 是从点O(0,0)沿折线y=1-|x-1| 至点A(2,0) 的折线段,则曲线积分I= ? +-L xdy ydx 等于( ) A)0 B)-1 C)2 D)-2 3.设L 为下半圆周)0(222≤=+y R y x ,将曲线积分I= ds y x L ? +)2(化为定

积分的正确结果是:( ) A) dt t t R )sin 2(cos 0 2+? -π B) dt t t R )sin 2(cos 0 2 +?π C) dt t t R )cos 2sin (0 2+-?- π D) dt t t R )cos 2sin (232 2+-?π π 4.设L 是以A(-1,0) ,B(-3,2) ,C(3,0) 为顶点的三角形域的周界沿ABCA 方向, 则 ? -+-L dy y x dx y x )2()3(等于:( ) A) -8 B) 0 C) 8 D) 20 5.设AEB 是由点A(-1,0) 沿上半圆 21x y -=经点E(0,1)到点B(1,0), 则曲线积分I= dx y AEB ? 3等于:( ) A) 0 B)dx y BE ? 32 C) dx y EB ? 32 D) dx y EA ? 32 三、 填空 1.γβαcos ,cos ,cos 是光滑闭曲面Σ的外法向量的方向余弦,又Σ所围的空间闭区域为Ω;设函数P(x,y,z),Q(x,y,z)和R(x,y,z)在Ω上具有二阶连续偏导数,则由高斯公式,有 ds y P x Q x R z P z Q y R ]cos )(cos )(cos )[( γβα??-??+??-??+??-???? ∑ = 。 2.设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,且

第十一章曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (),(βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ α d r r r r f ds y x f L )()()sin ,cos (),(22'+=??

二次型的几何分类及其应用

二次型的几何分类及其应用 田金慧 内容摘要:通过对二次型的基本概念与基本理论的阐述,重点讨论了二次型的五种分类:正定二次型、半正定二次型、负定二次型、半负定二次型和不定二次型,通过具体的实例给出了分类问题的几何描述。其次,分析并列举了二次型相关理论在实际中的一些应用,其中包括二次型标准型在二次曲面分类上的应用,由此得到了十七种二次曲面标准方程,并对典型方程给出了图形描述;同时包括二次型正定性用于求解多元函数极值问题的应用实例;还包括以实例展示半正定二次型用于不等式证明的步骤和方法。最后,作为二次型理论应用广泛的例证,阐述了它在统计学中关于统计距离、参数估计量的自由度求解以及量子物理中关于耦合谐振子问题的应用。 在问题的研究中,采用理论分析与实例应用相结合,充分发挥数学应用软件的优势,将二次型(实)理论的内涵形象、直观、清晰地给予展现。 关键词:二次型;几何描述;正定性;实际应用 1导言 在数学的学习和应用中,二次型的理论是十分重要的,它不仅是代数中的重要理论,更是连接代数与几何的有力桥梁。事实上,二次型的理论就起源于解析几何中二次曲线、二次曲面方程的化简问题。学习和理解二次型的理论不但可以对数学中的代数定理有深刻地理解,也可以对几何有更为形象的认识。 因此,掌握二次型理论的有关应用问题是十分必要的。 但是,在现有的教材中,都只是对二次型理论的代数性质进行了一定的介绍,

并没有对它的几何意义加以阐述;即使有一些书籍对它的几何性质稍有涉及,但也只是点到为止,并没有给出形象的表示,关于二次型可能的应用问题更是很少提及,然而在数学的很多分支以及一些其他学科中都或多或少地涉及到二次型有关理论的应用,如解析几何、统计学和量子物理等。 本文以二次型分类为切入点,以几何描述为主线,充分发挥数学软件的优势,将二次型有关理论的内涵加以展现。 当然,这里所讨论的二次型理论只是其中的基础,关于它的深入研究请参阅参考文献[1]。 2 二次型及其标准型 所谓二次型就是一个二次齐次多项式。 定义2.1 在数域F 上,含有n 个变量12,, ,n x x x 的二次齐次函数 22 212111222(,, ,)n nn n f x x x a x a x a x =++ + n n x x a x x a 11211222+++ +n n n n x x a 112--+ (1) 称为n 元二次型,简称二次型【2】。 当ij a 为复数时,),,,(21n x x x f 称为复二次型;当ij a 为实数时,),,,(21n x x x f 称为实二次型。本文仅讨论实二次型。 若取ij ji a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成 12,1 (,, ,)n T n ij i j i j f x x x a x x X AX ===∑ (2) 其中,11 12121 2221 2 n n n n nn a a a a a a A a a a ?? ? ?= ? ? ???,12 n x x X x ?? ? ?= ? ? ??? ,A 为实对称矩阵,称为二次型f 的矩阵

ZEMAX光学设计超级学习手册-第1章

第1章ZEMAX入门 ZEMAX是一款使用光线追迹的方法来模拟折射、反射、衍射、偏振的各种序列和非序列光学系统的光学设计和仿真软件。ZEMAX有3种版本:ZEMAX-SE(标准版)、ZEMAX-XE(扩展版)、ZEMAX-EE(工程版),其中ZEMAX-EE的功能最为全面。 ZEMAX的界面设计得比较简洁方便,稍加练习就能很快地进行交互设计使用。ZEMAX的大部分功能通过都能选择弹出或下拉式菜单来实现,键盘快捷键可以用来引导或略过菜单,直接运行。本章将要讲述ZEMAX中的有关约定的解释,界面功能的习惯用法,以及一些常用窗口操作的快捷键。一旦学会了在整个软件中通用的、简单的习惯用法,ZEMAX用起来就很容易了。 学习目标: (1)了解界面主窗口菜单的各项功能。 (2)熟练运用快捷工具栏。 (3)熟练掌握大量光学行业中约定的解释,如优化、公差分析等。 (4)熟练掌握各对话窗口的操作,如镜头数据、波长数据等。 1.1 ZEMAX的启动与退出 安装ZEMAX软件后,系统自动在桌面上产生了ZEMAX快捷图标。同时,“开始”菜单中也自动添加了ZEMAX命令。下面讲解ZEMAX的启动与退出。 1.ZEMAX安装成功后,需要启动ZEMAX,才能使用该软件进行设计工作。ZEMAX 的启动有4种方式。 (1)选择“开始”菜单命令启动。 选择“开始→ZEMAX”命令,启动ZEMAX,如图1-1所示。 (2)选择桌面快捷方式图标。 安装完成,系统会在桌面上自动创建ZEMAX的快捷方式图标,双击图标便可启动ZEMAX,如图1-2所示;右键单击快捷方式图标后单击“打开”也可以启动,如图1-3所示。 如果桌面上没有快捷方式图标,可以从“开始”菜单中找到相应的程序命令发送到桌面快捷方式,如图1-4所示。

最新曲线积分与曲面积分习题及答案

第十章 曲线积分与曲面积分 (A) 1.计算()?+L dx y x ,其中L 为连接()0,1及()1,0两点的连直线段。 2.计算? +L ds y x 22,其中L 为圆周ax y x =+22。 3.计算()?+L ds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=, ()π20≤≤t 。 4.计算?+L y x ds e 2 2,其中L 为圆周222a y x =+,直线x y =及x 轴在第一 角限内所围成的扇形的整个边界。 5.计算???? ? ??+L ds y x 34 34,其中L 为内摆线t a x 3cos =,t a y 3sin =??? ??≤≤20πt 在第一象限内的一段弧。 6.计算 ? +L ds y x z 2 22 ,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。 7.计算?L xydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。 8.计算?-+L ydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线 段AB 。 9.计算()?-+++L dz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直 线。 10.计算()()?---L dy y a dx y a 2,其中L 为摆线()t t a x sin -=,() t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧): 11.计算()()?-++L dy x y dx y x ,其中L 是: 1)抛物线x y =2上从点()1,1到点()2,4的一段弧; 2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。

常见的空间曲面与方程

常见的空间曲面与方程 常见的空间曲面有平面、柱面、锥面、旋转曲面和二次曲面。 1. 平面 空间中平面的一般方程为 0a x b y c z d +++= 其中,,a b c 均为常数,且,,a b c 不全为零。 例如,1x y z ++=(图8-6(a )),0x =(图8-6(b ))均表示空间中的平面, z yoz 平面(x =0) y y x 图8-6(a ) 图8-6 (b) 图8-6 2. 柱面 与给定直线L 平行的动直线l 沿着某给定的曲线C 移动所得到空间曲面,称为柱面, l 为母线,C 为准线。 如图8-7所示 图8-7 图8-8

例如,222x y R +=表示空间中母线平行于z 轴,准线是xoy 平面上的圆222x y R +=的 圆柱面的方程,简称圆柱面图(8-8)。 3. 二次曲面 三元二次方程 222 1231 2 31230a x a y a z b x y b y z b z x c x c y c z d +++ ++++++= 所表示的曲面称为二次曲面,其中,,(1,2,3),i i i a b c i d =均为常数,且,,i i i a b c 不全为0. 二次曲面有以下几种标准形式,它们分别为: 球面: 图8-9 椭球面:222 2221(,,0)x y z a b c a b c ++=>图8-10 图8-9 图8-10 单叶双曲面:222 2221(,,0)x y z a b c a b c -+=>图8-11 双叶双曲面:222 2221(,,0)x y z a b c a b c +-=->图8-12 2222(0)x y z R R + += >x z

二次曲面的一般理论

第六章 二次曲面的一般理论 教学目的 : 本章讨论了一般二次曲面的渐近方向、中心、切线、切平面、径面 奇向、主径面与主方向等重要概念 ,从不同角度对二次曲面进行了分类 . 研究了二次曲面的几何性质 , 并通过坐标变换和不变量、半不变量两种形式 化二次曲面的一般方程为规范方程 , 对二次曲面进行了分类和判定 , 是二次曲面理 论的推广和扩充 . 教学重难点 : 通过坐标变换和运用不变量、半不变量化二次曲面的一般方程为 规范方程 , 既是重点又是难点 . 基本概念 二次曲面 : 在空间 , 由三元二次方程 2 2 2 a 11x a 22 y a 33z 2a 12 xy 2a 13 xz 2a 23 yz 2a 14 x 2a 24 y 2a 34z a 44 0 (1) 所表示的曲面 . 虚元素 :空间中,有序三复数组 (x,y,z) 叫做空间复点的坐标,如果三坐标全是 实数,那么它对应的点是 实点 ,否则叫做 虚点 二次曲面的一些记号 F(x,y,z) F 1(x,y,z) a 11x a 12y a 13z a 14 F 2(x,y,z) a 12x a 23y a 23z a 24 F 3( x, y, z) a 13x a 23y a 33z a 34 F 4 (x,y,z) a 14x a 24y a 34z a 44 2 2 2 (x, y,z) a 11x 2 a 22 y 2 a 33z 2 2a 12 xy 2a 13 xz 2a 23 yz 1 (x,y,z) a 11x a 12 y a 13z 2 (x,y,z) a 12 x a 22 y a 23z 2 a 11 x 22 a 22 y a 33 z 2a 12 xy 2a 13 xz 2a 23 yz 2a 14 x 2a 24 y 2a 34 z a 44

二次曲面的一般理论

第六章 二次曲面的一般理论 教学目的: 本章讨论了一般二次曲面的渐近方向、中心、切线、切平面、径面奇向、主径面与主方向等重要概念,从不同角度对二次曲面进行了分类. 研究了二次曲面的几何性质,并通过坐标变换和不变量、半不变量两种形式,化二次曲面的一般方程为规范方程,对二次曲面进行了分类和判定,是二次曲面理论的推广和扩充. 教学重难点: 通过坐标变换和运用不变量、半不变量化二次曲面的一般方程为规范方程,既是重点又是难点. 基本概念 二次曲面: 在空间,由三元二次方程 022222244342414231312233222211=+++++++++a z a y a x a yz a xz a xy a z a y a x a (1) 所表示的曲面. 虚元素:空间中,有序三复数组),,(z y x 叫做空间复点的坐标,如果三坐标全是实数,那么它对应的点是实点,否则叫做虚点 二次曲面的一些记号 ≡ ),,(z y x F 44 342414231312233222211222222a z a y a x a yz a xz a xy a z a y a x a +++++++++ 141312111),,(a z a y a x a z y x F +++≡ 242323122),,(a z a y a x a z y x F +++≡ 343323133),,(a z a y a x a z y x F +++≡ 443424144),,(a z a y a x a z y x F +++≡ yz a xz a xy a z a y a x a z y x 231312233222211222),,(+++++≡Φ z a y a x a z y x 1312111),,(++≡Φ z a y a x a z y x 2322122),,(++≡Φ

曲线与曲面积分习题参考答案

十 曲线积分与曲面积分习题 (一) 对弧长的曲线积分 1. 计算ds y x L ?+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t . 解 320 32 2 2 2 20 2 2 2 2 2 2 2cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x L ππ π==++=+???. 2. 计算ds x L ?,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界. 解 )12655(12 1 4121 021 0-+= ++=???dx x x dx x ds x L . 3.计算?L yds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧. 解 ?L yds =dy y y dy y y ??+=+2 22 2421)2(1 )122(3 4)4(4412202-=++= ?y d y . 4.计算?+L ds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段. 解 ?+L ds y x )(=23 2 11)(1 0= ++?x x . 5.计算?L xyzds ,其中L 是曲线232 1 ,232,t z t y t x == =)10(≤≤t 的一段. 解 ?L xyzds =??+=++1 31 02223)1(232 )2(121232dt t t t dt t t t t t =143 216. 6.计算L ?,其中L 为圆周222x y a +=,直线y x =及x 轴在第 一象限所围成的扇形的整个边界.

曲线积分与曲面积分总结

对弧长的曲线积分??+=L L y d x d y x f ds y x f 22),(),( ???==) ()(:t y y t x x L βα≤≤t dt t y t x t y t x f ?'+'βα)()())(),((22 (,,)((),(),(L L f x y z ds f x t y t z t =??():()()x x t L y y t z z t =??=??=? βα≤≤t ((),(),(f x t y t z t βα ? 22222.2x y L L L e ds e ds e ds e π+===? ?? 22=2(0)L x y y +≥为上半圆周 ?+L dy y x q dx y x p ),(),( ???==) ()(:t y y t x x L α=t β=t dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'?βα (,,)(,,)(,,)L P x y z dx Q x y z dy R x y z dz ++?

():()()x x t L y y t z z t =??=??=? α=t β =t ((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++? 11 (,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+?? 1( )(,)(,)L D q p dxdy p x y dx q x y dy x y ??=±--+????? ??=??-??D dxdy y p x q )( ?+L dy y x q dx y x p ),(),( y p x q ??=?? ???+=+2 1212211),(),(),(),(21) ,(),(y y x x y x y x dy y x q dx y x p dy y x q dx y x p (,)(,)(,)P x y dx Q x y dy dU x y +=Q P x y ??? =?? 1、 ?? ??++= =∑xy D y x dxdy f f y x f y x ds z y x y x f z 221)),(,,(),,(),(μμ 2、 (,)(,,)(,(,),xz D y f x z x y z ds x f x z z μμ∑==???? 3、 (,)(,,)((,),,yz D x f y z x y z ds f y z y z μμ∑==???? ds ∑ =∑??面积。

第八章 曲线积分与曲面积分

第八章曲线积分与曲面积分 本章是把定积分概念推广到定义在曲线是的函数和定义曲面上的函数上去,就得到曲线积分和曲面积分。 §1对弧长的曲线积分 问题:设有一曲线形构件占xOy 面上的一段曲线L ,设构件的质量分布函数为),(y x ρ,设),(y x ρ定义在L 上且在L 上连续,求构件的质量。 ∑=→=n i i i i S M 10 ),(lim ?ηξρλ 定义:设L 为xOy 平面上的一条光滑的简单曲线弧,),(y x f 在L 上有界,在L 上任意插入一点列1M ,2M ,…,1-n M 把L 分成n 个小弧段 i i i M M L 1-=?的长度为i S ?,又),(i i ηξ是i L ?上的任一点,作乘积 i i i S f ?ηξ),(,),,2,1(n i =,并求和∑=n i i i i S f 1 ),(?ηξ,记}max {i S ?λ=,若 ∑=→n i i i i S f 1 ),(lim ?ηξλ存在,且极限值与L 的分法及),(i i ηξ在i L ?的取法无关, 则称极限值为),(y x f 在L 上对弧长的曲线积分,记为:?L s y x f d ),(,即 ?L s y x f d ),(∑=→=n i i i i S f 1 ),(lim ?ηξλ 。 其中),(y x f 叫做被积函数,L 叫做积分曲线。 对弧长曲线积分的存在性: 设),(y x f 在光滑曲线L 上连续,则?L s y x f d ),(一定存在。 对弧长曲线积分的性质:

1、???±=±L L L s y x g s y x f s y x g y x f d ),(d ),(d )],(),([ 2、??=L L s y x f k s k y x kf d ),(d ),( 3、设21L L L +=,则???+=2 1 d ),(d ),(d ),(L L L s y x f s y x f s y x f 这里规定:若L 是封闭曲线,则曲线积分记为?L s y x f d ),( 有上述对弧长的曲线积分,则上面的问题就可以用对弧长的曲线积分表示为 ?=L s y x f M d ),( 对弧长的曲线积分的计算法: 在一定体积下化为定积分计算,首先要注意: 1、),(y x f 定义在曲线L 上, 2、s d 是弧长微分。 定理:设),(y x f 在光滑曲线L 上连续,L 由参数方程) ()() (βαψ?≤≤? ? ?==t t y t x 给出,其中)(t ?、)(t ψ在],[βα上具有连续导数且0)()(22≠'+'t t ψ?,则 ? L s y x f d ),(存在,且:??'+'=β α ψ?ψ?t t t t t f s y x f L d )()()](),([d ),(22。 若L 方程为:)(x y ψ=,b x a ≤≤,则??'+=b a L x x x x f s y x f d )(1)] (,[d ),(2ψψ。 若L 方程为:)(y x ?=,d y c ≤≤,则??'+=d c L y y y y f s y x f d )(1]),([d ),(2?? 例1、计算?L s y d ,其中L :)20()cos 1() sin (π≤≤? ? ?-=-=t t a y t t a x

高数下册常用常见知识点

高等数学下册常用常见知识点 第八章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 ; 6、 7、 向量的模、方向角、投影: 1) 向量的模: 2 22z y x r ++= ; 2) 两点间的距离公式: 2 12212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 | (二) (三) 数量积,向量积 1、 数量积:θcos b a b a =? 1)2 a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?=

大小:θsin b a ,方向:c b a ,,符合右手规则 1)0 =?a a 2)b a //? =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (四) 曲面及其方程 1、 ] 2、 曲面方程的概念: ),,(:=z y x f S 3、 旋转曲面:(旋转后方程如何写) yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(22=+±z x y f 绕 z 轴旋转一周: 0),(22=+±z y x f 4、 柱面:(特点) 0),(=y x F 表示母线平行于z 轴,准线为?????==0 0),(z y x F 的柱面 5、 @ 6、 二次曲面(会画简图) 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 2222=++c z b y a x

二次曲面的分类

二次曲面的分类 在空间直角坐标系下,二次曲面的一般方程可以写成 222111222333121213132323141242343442222220a x a x a x a x x a x x a x x a x a x a x a +++++++++=即 ()1112 1311232122232141242343443132 333,,2220a a a x x x x a a a x a x a x a x a a a a x ???? ???++++= ??? ??????? , 其中,ij ji a a =. 记123x X x x ?? ?= ? ???,那么实二次型()1112131123123212223231 32333(,,),,a a a x x x x x x x a a a x a a a x ???? ???Φ= ??? ???????的矩阵为111213212223313233a a a A a a a a a a ?? ?= ? ???,通过正交线性替换X TY =,其中123y Y y y ?? ?= ? ??? ,有 122221122333(,,)''(')'x y z X AX Y T AT Y Y Y y y y λλλλλλ?? ?Φ====++ ? ?? ?, 其中123,,λλλ是实对称矩阵A 的全部特征值,它们与正交矩阵T 无关,由矩阵A 唯一确定. 这样,在上述正交线性替换X TY =下(即所谓的转轴变换),原二次曲面的方程变成了 222112233141242343442220y y y b y b y b y a λλλ++++++=. 最后,再通过适当的平移变换消去一次项,二次曲面的一般方程可以化成下列十七种标准形之一,并且它们分别表示十七种曲面: (一)假设123,,λλλ都非零,即0A ≠,那么二次曲面的方程再通过适当的平移变换消去 一次项后可以变为2221122330z z z d λλλ+++=的形式。进而得到: 1. 椭圆面 2223122221z z z a b c ++=; 2. 虚椭圆面 2223122221z z z a b c ++=-;

曲线积分与曲面积分总结

第十一章:曲线积分与曲面积分 一、对弧长的曲线积分 ?? +=L L y d x d y x f ds y x f 22),(),( 若 ? ? ?==)() (:t y y t x x L βα≤≤t 则 原式= dt t y t x t y t x f ?'+'β α)()()) (),((22 对弧长的曲线积分 (,,)((),(),L L f x y z ds f x t y t z t =? ?若 ():()()x x t L y y t z z t =?? =??=? βα≤≤t 则 原式 = ((),(),(f x t y t z t β α ? 常见的参数方程为: 特别的: 2 2 222.2x y L L L e ds e ds e ds e π+===? ?? 22=2(0)L x y y +≥为上半圆周 二、对坐标的曲线积分 ? +L dy y x q dx y x p ),(),( 计算方法一: 若 ? ? ?==)() (:t y y t x x L 起点处α=t ,终点处β=t 则 原式= dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'?β α 对坐标的曲线积分 (,,)(,,)(,,)L P x y z dx Q x y z dy R x y z dz ++?

():() ()x x t L y y t z z t =?? =??=? 起点处 α=t ,终点处β=t 则 原式= ((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt β α'''++? 计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。 1 1 (,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+? ? 1 ( )(,)(,)L D q p dxdy p x y dx q x y dy x y ??=±--+????? 如图: 三、格林公式 ??=??-??D dxdy y p x q )( ? +L dy y x q dx y x p ),(),( 其中L 为D 的正向边界 特别地:当 y p x q ??=??时,积分与路径无关, 且 ??? +=+2 1 21 2211),(),(),(),(21) ,() ,(y y x x y x y x dy y x q dx y x p dy y x q dx y x p (,)(,)(,)P x y dx Q x y dy dU x y +=是某个函数的全微分Q P x y ??? =?? 注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式。 四、对面积的曲面积分 1、 当曲面为 ????++==∑ xy D y x dxdy f f y x f y x ds z y x y x f z 221)) ,(,,(),,() ,(μμ 2、 当曲面为 (,) (,,)(,(,),xz D y f x z x y z ds x f x z z μμ∑ ==???? 3、 当曲面为 (,) (,,)((,),,yz D x f y z x y z ds f y z y z μμ∑ ==????

曲线积分与曲面积分习题答案

第十一章 曲线积分与曲面积分 第三节 Green 公式及其应用 1.利用Green 公式,计算下列曲线积分: (1) ? -L ydx x dy xy 2 2,其中L 为正向圆周922=+y x ; 解:由Green 公式,得 23 222230 81()22 L D xy dy x ydx x y dxdy d r dr ππ θ-=+== ? ????, 其中D 为2 2 9x y +≤。 (2) ?-++L y y dy y xe dx y e )2()(,其中L 为以)2,1(),0,0(A O 及)0,1(B 为顶点的三角形负向边界; 解:由Green 公式,得 ()(2)(1)1y y y y L D D e y dx xe y dy e e dxdy dxdy ++-=---==?????。 *(3) ? +-L dy xy ydx x 2 2,其中L 为x y x 622=+的上半圆周从点)0,6(A 到点)0,0(O 及x y x 322=+的上半圆周从点)0,0(O 到点)0,3(B 连成的弧AOB ; 解:连直线段AB ,使L 与BA 围成的区域为D ,由Green 公式,得 6cos 2222 22 320 3cos 44 4620()0 1515353cos 334442264 L D BA x ydx xy dy y x dxdy x ydx xy dy d r dr d π θ θ π θπθθπ-+=+- -+=-= =???=???????? ? *(4) ? +-L y x xdy ydx 2 2,其中L 为正向圆周4)1(2 2=++y x . 解:因为222 22 () x y P Q y x x y -??==??+,(,)(0,0)x y ≠。作足够小的圆周l :222 x y r +=,取逆时针方向,记L 与l 围成的闭区域为D ,由Green 公式,得 22 0L l ydx xdy x y +-=+? ,故 22222 2 2 2 2 22 sin cos 2L l l ydx xdy ydx xdy ydx xdy x y x y r r r d r π θθ θπ ---+=-=++--==-? ?? ?

曲线积分与曲面积分备课教案

第十章曲线积分与曲面积分 一、教学目标及基本要求: 1、理解二类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2、会计算两类曲线积分 3、掌握(Green)公式,会使用平面曲线积分与路径无关的条件。 4、了解两类曲面积分的概念及高斯(Grass)公式和斯托克斯(Stokes)公式并会计算两类曲面积分。 5、了解通量,散度,旋度的概念及其计算方法。 6、会用曲线积分及曲面积分求一些几何量与物理量(如曲面面积、弧长、质量、重心、转动惯量、功、流量等)。 二、教学内容及学时分配: 第一节对弧长的曲线积分2学时 第二节对坐标的曲线积分2学时 第三节格林公式及其应用4学时 第四节对面积的曲面积分2学时 第五节对坐标的曲面积分2学时 第六节高斯公式通量与散度2学时 第七节斯托克斯公式环流量与旋度2学时 三、教学内容的重点及难点: 1、二类曲线积分的概念及其计算方法 2、二类曲面积分的概念及其计算方法 3、格林公式、高斯公式及斯托克斯公式 4、曲线积分及曲面积分的物理应用和几何应用也是本章重点。 5、两类曲线积分的关系和区别 6、两类曲面积分的关系和区别 7、曲线积分和曲面积分的物理应用及几何应用 五、思考题与习题 第一节习题10—1 131页:3(单数)、4、5 第二节习题10-2 141页:3(单数)、4、5、7(单数) 第三节习题10-3 153页:1、2、3、4(单数)、5(单数)6(单数)、7 第四节习题10-4 158页:4、5、6(单数)、7、8 第五节习题10-5 167页:3(单数)、4 第六节习题10-6 174页:1(单数)、2(单数)、3(单数) 第七节习题10-7 183页:1(单数)、2、3、4 第一节对弧长的曲线积分 一、内容要点 由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分化为定积分的计算方法。 1、引例:求曲线形构件的质量

计算机图形学

1.图形硬件设备主要包括哪些?请按类别举出典型的物理设备? 图形输入设备:鼠标、光笔、触摸屏、数据手套和坐标数字化仪,以及图形扫描仪等。图形输出设备:CRT、液晶显示器(LCD)、打印机、绘图仪等。 图形处理器:GPU(图形处理单元)、图形加速卡等等。 2.为什么要制定图形软件标准? 为了提高计算机图形软件、计算机图形的应用软件以及相关软件的编程人员在不同计算机和图形设备之间的可移植性。 图形软件标准通常是指图形系统及其相关应用系统中各界面之间进行数据传送和 通信的接口标准,另外还有供图形应用程序调用的子程序功能及其格式标准。 3)常用的图形输入设备有:() A 数据手套 B 扫描仪 C 绘图机 D 触摸屏 4)下列哪些是计算机图形学的应用领域:() A CAD/CAM/CAI B 图像处理 C 数据场可视化 D 艺术造型和模拟 5)下列哪些是常用的图形输出设备:() A 阴极射线管(CRT) B 触摸屏 C 绘图仪 ? D 打印机6)图形通常由__、__、__、__等几何元素和____、____、____、____等非几何属性组成。 ?7)图形在计算机中的表示有___________和___________

?8) 什么是openGL( Open Graphics Library ) ?OpenGL 是行业领域中最为广泛接纳的 2D/3D 图形 API ?OpenGL是个与硬件无关的软件接口,可以在不同的操作系统平台之间进行移植。 9) 什么是DirectX( Direct eXtension) ?微软公司创建的多媒体编程接口,由C++编程语言实现。 ?很多API组成的,按照性质分类,可以分为四大部分,显示部分、声音部分、输入部分和网络部分。 ?11) 虚拟现实技术的发展趋势() ?A) 动态环境建模技术 ?B) 实时三维图形生成和显示技术 ?C) 适人化、智能化人机交互设备的研制 ?D) 大型网络分布式虚拟现实的研究与应用 ?12) 智能CAD 系统可以实现从________到________的全过程。 ?13)什么是科学计算可视化? 用图形直接反映科学计算的结果,如分子模型、核爆炸过程、大气科学等。 ?1)常用的区域填充方法有:() ? A Bresenham算法 ? B 扫描线多边形填充算法 ? C 边界填充算法 ? D Cohen-SutherLand 算法 ?2)光栅图形的走样有如下几种:()

相关文档
最新文档