MOS管原理图解

MOS管原理图解
MOS管原理图解

场效应管的替换

一:个人认为 09N03 06N03可以替代台机主板上使用的N 沟道MOS 管,使用绝对没问题 二:废主板的CPU 供电处MOS 基本可以替换主板其他位置的MOS 。

三:替换时注意看清场管的型号,有点稳压器和三极管也长的和MOS 一个模样!

四:华硕及部分主板CPU 供电的下管使用LD1010D,LD1014D 为结型管,不能用N-MOS 替换

其他可以相互替代的一些场管.

如无特别说明,同一条内的管子可以相互替换.

(资料转自 中国主板维修基地 论坛,张先生整理,原帖地址

https://www.360docs.net/doc/774000464.html,/viewthread.php?tid=78285&highlight=s5n )

1、SD9435 SOP-8 < 5.3A 30V 50 mΩ >,可替代市面上各类型9435 :

APM9435、CEM9435、AP9435、SSM9435 、TM9435、MT9435、GE9435、SDM9435、STM9435、H9435、FDS9435、Si9435、STP9435、SPP9435、Si9435DY 、SM9435、iTM9435、MI9435、ME9435、ME4405 等等!

2、SD9926 SOP-8 <6A 20V 28 mΩ>,可替代市面上各类型9926 :

APM9926、CEM9926、AP9926、SSM5N20V 、SDM9926、STM9926、 MT9926、TM9926 、GE9926、 iTM9926、 MI9926、 TF9926 、AFT9926 、FDS9926、GT9926 等等!

3、SG9926 TSSOP-8 <6A 20V 28 mΩ>:暂无。

4、SD4953 SOP-8 <30V 5A 53mΩ>,可替代市面上各类型4953 :

GE4953、 iTM4953、AF4953P 、H4953、MT4953 、SSM4953、CEM4953、STS4953、 AP4953、 TM4953、STM4953、SDM4953、STP4953、AO4801、AO4801A 、AO4803、AO4803A 、AFT4953、SPP4953、STP4953A 、SPP4953A 、

GT4953、Si4953DY 、MI4953、ME4953、SM4953、TF4953、AKE4953 等等! SD4953BDY 替代APM4953、Si4953、FDS4953、CEM4953

5、 SD4435 SOP-8 <30V 8A 20mΩ>,可替代市面上各类型4435 :

APM4435、 Si4435DY 、 CEM4435、 SDM4435、 SSM4435、 GE4435 、MT4435、 H4435、STM4435、 AP4435、TM4953、AO4411、STP4435、GT4435、MI4435、ME4435、SPP4435、SM4435 等等!

6、SD4410 SOP-8 <10A 13.5mΩ 30V>,替代各型4410:

APM4410、CEM4410、AP4410、FDS4410、AO4406、SSM4410、SDM4410、STM4410、MT4410、iTM4410、STS4410、H4410、P4410、GE4410、AF4410N 、STN4410、STP4410、SPN4410、MI4410、SM4410、GT4410、AFT4410 等等!

7、SD2300 SOT-23-3L <20V 4A 28mΩ>,替代各型2300:

APM2300、Si2300、CEM2300、STS2300、AP2300、MT2300、MI2300、ST2300、SSS2300、GT2300、GE2300、GE2312、iTM2300、SM2300、TM2300、ME2314 等等!

中国主板维修基地

月饼原创

8、SD2301 SOT-23-3L <20V , 2.6A , 130mΩ>,替代各类2301 :

APM2301 、 Si2301、 CEM2301 、STS2301 、 AP2301 、 MT2301、IRLML6401、ST2301、ST2301A 、STS2301A 、SSS2301、SSS2301A 、MI2301、ST2301M 、ME2301、TM2301、CES2301、KI2301DY 等等!

9、SD2301 SOT-23-3L <20V , 2.6A , 130mΩ>,可替代市面上各类型2301M 、2301A 、2301S : APM2301A 、SSS2301A 、STS2301A 、ST2301M 等等!

10、SD2302 SOT-23-3L <20V 3.2A 85mΩ>,可替代市面上各类型2302 : APM2302 、 SSS2302 、 AP2302 、 STS2302 、 MT2302、ST2302 等等! 11、锂电保护板MOS 管: SD8205 (SD8205G TSSOP-8;SD8205S TSOP-6 ) SD8205S TSOP-6 <4A 20V 28 m Ω>,可替代市面上所有TSOP-6 封装的8205;

SD8205G TSSOP-8 <6A 20V 28 m Ω>,可替代市面上所有TSSOP-8 封装的8205、5N20V 、9926。

12、SD9410 SOP-8<18A 5.5m Ω 30V >,可替代市面上各类型9410 :

NDS9410A 、NDS9410、APM9410K 、 SSM9410A 、CEM9436A 、FDS6630A 、IRF7832ZPbF 、IRF7805、 FDFS6N303、Si9410、GT9410、TM9410、GE9410、G9410、IRF7832、FDS9410A 、FDS9410 等等!

备注 : 请切勿用南科NK9410D <6A 16V 40 m Ω >的质量规格与价格与SD9410 相比。

13、SD4501 SOP-8 :

规格N+P ( N-Channel :30V 28mohm 7A ) ( P-Channel :-30V 50mohm -5.3A) 3K 盘装场效应管。

性价比强力替代 AO4604 以及市面上各类取代AO4604 的替代料,如:

STM8401、SDM8401、SI4532、SI4539、SI4544、SI4558、SI4562、SI9928、APM4546、AP4501、CEM3259、GE8401、MT4604、SI9939、SI4500、SI4542、FDS8928A 、FDS8958A 、NDS9952A 、STP8401 等等!

14、SD4503 SOP-8 :

规格N+P ( N-Channel :30V 28mohm 6.9A )、( P-Channel :-30V 36mohm -6.3A) 3K 盘装场效应管。

性价比强力替代 AO4606 以及市面上各类取代AO4606 的替代料,如:

STM8401、SDM8401、SI4532、SI4539、SI4544、SI4558、SI4562、SI9928、APM4546、AP4503、CEM3259、GE8401、GE8405、MT4606、STP8405、SPC4539、GT4503、IRF7319 等等!

15、SD2305 SOT-23-3L <4.2A 20V 65m Ω >,可替代各款2305,如:

AP2305GN 、APM2305、AO3413、SSS2305、STS2305、SI2305、STP2305、ST2305、GE2305、GT2305、

中国主板维修基地

月饼原创

IRLML6401 等等

16、SD4228 SOP-8 < Dual N-Channel 6.8A 30V 26 m Ω >,替代:

AO4800、AO4812、Si4800、Si4804、FDS6912A 、FDS6930A 、FDS6930B 、FDS6990S 、SDM4800、APM7313、IRF7313、AP4920、Si4936、NDS9956A 、Si9925、Si9926、Si9956、SI4804、SI9936、FDS9926A 、FDS6912、ME4922、 GT4228、P07D03LV 、P07D03LVG 等等!

17、SD9971 SOP-8 < Dual N-Channel 5A 60V 50 m Ω >,替代:

AP9971GM 、STM6960、STM6960A 、Si4900DY 、Si4946、AO4828、APM9946K 、APM9945K 、STM6930、STM6930A 、Si9945AEY 、CEM4426、FDS9945、MT4946 等!

18、SD4953BDY SOP-8 < 30V 5A 31m Ω >,专替代:

APM4953、CEM4953、Si4953 ( Si4953DY )、GT4953BDY 、AO4801、AO4801A 。 SD4953BDY 具稳定电气特性与低阻抗及价格优越性之优点,专替代:

APM4953、Si4953DY 、FDS4953、CEM4953、AO4801、AO4801A 、AO4803、AO4803A 、FDS4936、SDM4953、GT4953BDT 等几款物料之最强替代料。

19、SD3400 SOT-23-3L < 30V 5.8A 28 m Ω>,专替代:

AO3400、STS3402、Si3400、MT3400、GT3400、GE3400、APM3400、AP3400、IRLML2502 等。

20、SD3055 TO-252 < 30V 26m Ω 15A > ,替代各类3055 与15N03:

AP15N03、APM3055、APM3054、NK3055、GE3055、GT3055、MT3055、TM3055、MI3055、AP9T16H 等等!

21、SD6679 SOP-8 < 30V 10m Ω 14A > ,专替代:

AO4407、AO4407A 、AO4411、AO4413、AF4407P 以及与该物料同类规格等级之诸MOSFET 元器件

22、SD8822 TSSOP-8 < 20V 24m Ω 7A > ,专替代:

AO8822、SSG8822、TF8822、GE8822、GT8822、PJ8822、STN8822、STC5N20V 、 SSG5N20V 、STN8205、MI8822、ME8822、SPN8822 及同类规格之诸MOSFET 元器件

23、锂电保护板MOS 管: STD5N20V TSSOP-8;STS5N20V TSOP-6

STS5N20V : TSOP-6 <4A 20V 28 m Ω>,可替代市面上所有TSOP-6 封装的8205、5N20V 、9926。 STD5N20V : TSSOP-8 <6A 20V 28 m Ω>,可替代市面上所有TSSOP-8 封装的8205、5N20V 、9926。

中国主板维修基地

月饼原创

24、SD6680 SOP-8 <11.5A 11mΩ30V> ,各型4410 升级版可完全替代各型4410 与6680 :APM4410、CEM4410、AP4410、FDS4410、AO4406、SSM4410、SDM4410、STM4410、MT4410、iTM4410、STS4410、H4410、P4410、GE4410、AF4410N、STN4410、STP4410、SPN4410、MI4410、SM4410、GT4410、AFT4410、GT6680、FDS6680、ME6680、AP6680、SI6680、SI4410DY 等等!

附部分MOS参数表格

中国主板维修基地

月饼原创

MOS管的结构和工作原理

在P 型衬底上,制作两个高掺杂浓度的N 型区,形成源极(Source )和漏极(Drian ),另外一个是栅极(Gate ).当Vi=VgsVgs 并且在Vds 较高的情况下,MOS 管工作在恒流区,随着Vi 的升高Id 增大,而Vo 随这下降。 常用逻辑电平:TTL 、CMOS 、LVTTL 、LVCMOS 、ECL (Emitter Coupled Logic )、PECL (Pseudo/Positive Emitter Coupled Logic )、LVDS (Low Voltage Differential Signaling )、GTL (Gunning Transceiver Logic )、BTL (Backplane Transceiver Logic )、ETL (enhanced transceiver logic )、GTLP (Gunning Transceiver Logic Plus );RS232、RS422、RS485(12V ,5V , 3.3V );TTL 和CMOS 不可以直接互连,由于TTL 是在0.3-3.6V 之间,而CMOS 则是有在12V 的有在5V 的。CMOS 输出接到TTL 是可以直接互连。TTL 接到CMOS 需要在输出端口加一上拉电阻接到5V 或者12V 。 cmos 的高低电平分别 为:Vih>=0.7VDD,Vil<=0.3VDD;Voh>=0.9VDD,Vol<=0.1VDD. ttl 的为:Vih>=2.0v,Vil<=0.8v;Voh>=2.4v,Vol<=0.4v. 用cmos 可直接驱动ttl;加上拉电阻后,ttl 可驱动cmos. 1、当TTL 电路驱动COMS 电路时,如果TTL 电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V ),这时就需要在TTL 的输出

MOS管工作原理及芯片汇总

MOS管工作原理及芯片汇总 一:MOS管参数解释 MOS管介绍 在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。 MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。 这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 在MOS管内部,漏极和源极之间会寄生一个二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。 MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V, 其他电压,看手册)就可以了。PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率M OS管导通电阻一般在几毫欧,几十毫欧左右 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。降低开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 MOS管驱动 MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。但是,我们还需要速度。

MOS管工作原理及其驱动电路

功率场效应晶体管MOSFET 技术分类:电源技术模拟设计 | 2007-06-07 来源:全网电子 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的 MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET 器件的耐压和耐电流能力。

详细讲解MOS管工作原理

详细讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

N沟道和P沟道MOS管

MOS/CMOS集成电路简介及N沟道MOS管和P沟道MOS管 在实际项目中,我们基本都用增强型mos管,分为N沟道和P沟道两种。 我们常用的是NMOS,因为其导通电阻小,且容易制造。在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 1.导通特性 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低

端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 2.MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越高,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 3.MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极

mos管工作原理及详解

万联芯城致力于打造一个方便快捷的电子物料采购平台。采购MOS管等电子元器件,就到万联芯城,万联芯城MOS场效应管主打 IR,AOS,VISHAY等知名国际品牌,均为原装进口货源,当天可发货。点击进入万联芯城 点击进入万联芯城

MOS管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS 管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管工作原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 MOS管工作原理图电源开关电路详解 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS的工作原理图。

它一般有耗尽型和增强型两种。本文使用的为增强型MOS MOS管,其内部结构见mos管工作原理图。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

讲解MOS管工作原理及分析

管驱动电路 讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个

MOS管电路工作原理详解

MOS管电路工作原理详解,MOS管工作原理文章-KIA MOS管 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N 沟道共4种类型,但实际应用的只有增强型的N沟道MOS管型号和增强型的P沟道MOS管型号,所以通常提到NMOS,或者PMOS指的就是这两种。至于为什么不使用耗尽型的 MOS管,不建议刨根问底。对于这两种增强型MOS管,比较常用的是NMOS。原因是导通 电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由 于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但 没有办法避免,后边再详细介绍。在MOS管原理图上可以看到,漏极和源极之间有一个寄 生二极管。这个叫体二极管,在驱动感性负载,这个二极管很重要。顺便说一句,体二极管 只在单个的MOS管中存在,在集成内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。NMOS的特性,Vgs大于一定的值就会导通,适 合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。PMOS的 特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽 然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在 高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的会减小导通损耗。现在的小功率MOS 管导通电阻一般在几十毫欧左右,几毫欧的也有。MOS在导通和截止的时候,一定不是在瞬 间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多, 而且开关频率越快,损失也越大。导通瞬间电压和电流的乘积很大,造成的损失也就很大。 缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

相关文档
最新文档