DLR-F6复杂组合体跨声速阻力计算研究

DLR-F6复杂组合体跨声速阻力计算研究
DLR-F6复杂组合体跨声速阻力计算研究

计算高超声速

fastran软件的强项就是计算高超声速,不过fluent在6.3版本中也加入了基于密度的求解器,有人做过对比,在马赫数3-5这个范围内,fluent和fastran的计算结果差不多,但是收敛明显慢于fastran,在马赫数超过5以后,fluent计算结果同fastran偏差越来越大。个人更倾向于fastran计算结果。关于收敛的问题,因为fluent软件试用的非结构求解器,无论你用的是结构的为网格还是非结构的网格,在fluent中均按照非结构处理,所以其收敛速度跟结构的求解器fastran比起来要稍逊一点。对于高超,尤其是气动热,结构求解器应该更适合。一家之言,仅供参考 同意二楼说法。Fluent号称能算高超,但有这样几个问题。首先,高超并不仅仅是可压缩,更重要的是离解、电离、烧蚀等物理化学现象,而Fluent不具备热力学非平衡求解能力(它只有一个温度即平动温度),这是它的致命伤。因此,你可以通过调整参数算高超问题(收敛速度很慢,但我们姑且认了),但其结果的温度分布是不可靠的――热流是温度的梯度的函数,自然也不可靠 嘿嘿,进来学习下等到ICEM CFD,CFX,FLUENT一合并,或许会有更先进的求解器了高超现在应该还是CFDRC公司比较好点呵呵 CAD的标准里面,IGES体系结构最差,STEP尚不成熟,STL精度不够(一般要自己设定),Parasolid和Acis是目前最NB的几个CAD软件所采用的格式,相对来说最实用。 CAD数据转换的无缝连接几乎是不可能的,所以最好就是象Summer大哥说的,直接用Geom 做,CFDRC的软件,从前处理、求解一直到后处理你要是用熟了会发现Geom比Gridgen强、ACE和Fastran比Fluent强、View比Tecplot强多少倍!!!

最全面的桩基计算总结

最全面的桩基计算总结 桩基础计算 一.桩基竖向承载力《建筑桩基技术规范》 5.2.2 单桩竖向承载力特征值Ra应按下式确定: Ra=Quk/K 式中 Quk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物; 2 对差异沉降适应性较强的排架结构和柔性构筑物; 3 按变刚度调平原则设计的桩基刚度相对弱化区; 4 软土地基的减沉复合疏桩基础。 当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。

单桩竖向承载力标准值的确定: 方法一:原位测试 1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.3 2.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规 范》5.3.4 方法二:经验参数法 1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.5 2.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5. 3.6 钢桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7 混凝土空心桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8 嵌岩桩桩承载力标准值的确定: 1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。 后注浆灌注桩承载力标准值的确定: 1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值; 特殊条件下的考虑 液化效应: 对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩

关于声速计算题专题训练(附答案)

1、地震波是一种由地震震源发出,在地球内部传播的波.地震波分为主波、次波和表面波,纵向震动的地震波称为主波,横向震动的地震波称为次波.主波比其他地震波运动得更快,主波的传播速度是6 km/s,次波传播的速度是4 km/s.5月12日四川汶川大地震发生时,我市也有震感.已知汶川到我市的直线距离约为1 440 km,则该地震波主波比次波早多长时间传到我市? 2、元旦节时,许多城市在广场燃放礼花。礼花在几十米的高空爆炸,响声巨大,并发出绚丽夺目的光彩,照亮了整个城市。如果你看到色彩和听到声音前后相差的时间为5s,那么,你离广场大约有多远?(取声速为340m/s) 3、一汽车在平直的公路上以15m/s的速度匀速行驶,在汽车的前方有一座峭壁,司机鸣笛后8s听到由峭壁反射回来的回声,求司机听到回声时汽车与峭壁之间的距离。(设当时气温为15℃) 4、某测量员是这样利用回声来测距离的:他站在两座平直峭壁间的某一位置鸣枪,并利用秒表记录了听到回声的时间,他发现在经过了1s后听到了第一次回声,又经过0.5s再次听到了回声,已知常温下空气中的声速约为340m/s,求:则两峭壁间的距离为多少?(提示:可画出简易示意图后再分析计算) 5、分析:站在百米赛跑终点的计时员,在听到发令员的枪声后才按表计时,测得运动员的成绩为13.69s,求运动员的真实成绩是多少?(设当时气温为15℃,无风) 6、某人站在铁路旁,看见远处的铁路检修工人用小铁锤向铁轨敲了一下,他贴近铁轨,过了一会儿听见了两次敲击声。若两次声音间隔为0.5s,该人离敲击处183.6m,求声音在铁轨中传播的速度是多少米/秒?(已知声音在空气中的传播速度是340m/s) 7、小红站在桥上,从桥面向河中扔下一块石头,见落石水花开始记时,经0.2s听到落石击水声,则桥高出水面多少米? 8、一个人在高处用望远镜注视地面上的木工以每秒一次的频率钉钉子。他听到声音时恰好看到击锤的动作,当木工停止击锤后,他又听到了两次击锤声,木工离他有多远?

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

(整理)2考虑负摩阻力的桩基设计需要注意的问题.

考虑负摩阻力的桩基设计需要注意的问题 1 地表的大面积堆载对堆载区内的桩基和邻近桩基的影响 地表的大面积堆载对堆载区内的桩基和邻近桩基会产生很大的影响.首先,地表在沉降过程中,桩侧土体将会对桩身产生负摩阻力,致使桩身的轴力和桩端力增大,甚至导致桩身的破坏;其次,地面堆载引起地基土的侧向变形,邻近桩基的被动桩受到土体挤压会产生绕曲、水平移动,甚至断裂.因此,堆载作用下的桩基可能受到负摩擦和侧向力两种荷载的共同作用. 2 负摩阻力计算分析案例 在有关桥梁地基与基础设计规范中规定,在软土层较厚,持力层较好的地基中,桩基计算应考虑路基填土荷载或地下水位下降所引起的负摩阻力的影响。事实上桥下大面积堆载是一种更危险的工况。 下面以一实际工程为例,对桥梁桩基负摩阻力计算作一分析。 该桥上部结构为30 m跨预应力混凝土连续箱梁,桥梁全宽25.5 m,采用分幅式布置。桥梁下部结构半幅采用变截面墩配2根D 160 (D180)钻孔灌注桩基础,单排桩基础,桩基设计按摩擦桩设计,单桩桩顶最大设计反力为6 150~7 100 KN,上部结构计算时考虑基础不均匀沉降为1.0 cm。 桥址处现为鱼塘,地面标高为0.2~1.6 m之间,由于桥址位于城区,远期规划标高6.5 m左右,如按规划标高平整场地,需填土5.0~ 6.3 m。设计时根据桥址处的地质情况,注意到负摩阻力对桩基的影响,考虑按以下2种方案进行场地平整,进行技术经济比较,以确定最终的设计方

案。 方案1:场地先不平整待桥梁施工完后再进行场地平整。 方案2:场地先平整到规划标高6.5 m(带状80m宽),半年后施工桥梁桩基。 桥址处土层各层分布情况按由上至下顺序描述如下:①人工填土; ②淤泥(Q4ml);③亚粘土(Q4ml);④粘土(Q1mc);⑤亚粘土(Q1al)。场地地质中第四系覆盖层巨厚,地质勘探未能揭露。 2.1 中性点位置的确定 要确定桩身负摩阻力的大小,首先需要确定中性点的位置。所谓“中性点”是指桩土位移相等、摩阻力等于零的分界点,该深度以上土的下沉量大于桩的下沉量,桩承受负摩阻力;该深度以下土的下沉量小于桩的下沉量,桩承受正摩阻力。故确定中性点的位置,首先必须计算出桩基及各土层的沉降量中性点的深度与桩周土的压缩性和变形条件、桩和持力层土的刚度等特性有关。在桩、土稳定前,它也是变动的。当有地面堆载时,中性点的深度取决于堆载的大小,堆载越大则中性点越深。 2.1.1 桩基沉降计算 按桥梁规范公式,单桩沉降 S=P(L0+ξh)/(Ep×Ap)+P/(Co×Ao) 式中P———桩顶荷载; L0———桩自由长度; h———桩入土长度;

声速测定以及声速数据处理

【实验目的】 1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。 2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。 3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。 【实验原理】 在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。 声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。 1.共振干涉法(驻波法)测量声速的原理: 当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π-ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按()λ?π/X 2cos 变化。如图28.1所示。 压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。根据波的干涉理论可以知道:任何二相邻的振幅最

桩侧负摩阻力的计算

桩侧负摩阻力的计算 一、 规范对桩侧负摩阻力计算规定 符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承 载力时应计入桩侧负摩阻力: 1、 桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时; 2、 桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括 填土)时; 3、 由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。 4、 桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力 和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。 ① 对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: N k 乞 R a ( 7-9-1) ② 对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并 可按下式验算基桩承载力: N k Q g

钢管桩测摩阻力计算

钢管桩设计与验算 钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I= 64 π (80.04-78.04)=1.936×10-3M 4。依据设计桩高度,钢管桩最大桩长为46.2m 。 1、桩的稳定性验算 桩的失稳临界力Pcr 计算 Pcr= 2 2 l EI π= 3 2 822 .4610 936.1101.2-????π =1878kN >R=658.3 kN 2、桩的强度计算 桩身面积 A=4π(D 2-a 2) =4 π (802-782)=248.18cm 2 钢桩自身重量 P=A.L.r=248.18×46.2×102×7.85*10-3 =90000kg=90kN 桩身荷载 p=658.3+90=748.3 kN б=p /A=748.3×102/248.18=301.5kg /cm 2=30.15Mpa 3、桩的入土深度设计 通过上述计算可知,每根钢管桩的支承力近658.3kN ,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN ,管桩周长 U=πD=3.1416×0.8=2.5133m 。依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为: 第一层 粉质黏土 厚度为3m , τ=120 Kpa

第二层 淤泥粉质黏土 厚度为4m ,τ=60 Kpa 第三层 粉砂 厚度为1.8m ,τ=90Kpa N=∑τi u h i N =120×2.5133×3+60×2.5133×4+90×2.5133×h 3=1316.6 kN =904.7+603.1+226.1 h 2 =1316.6kN 解得 h 3=-0.84m 证明钢管桩不需要进入第三层土,即满足设计承载力。 钢管桩实际入土深度: ∑h=3+4=7 m 4、打桩机选型 拟选用DZ90,查表得知激振动570 kN ,空载振幅≮0.8mm ,桩锤全高4.2 m ,电机功率90kw 。 5、振动沉桩承载力计算 根据所耗机械能量计算桩的容许承载力 []P =m 1 { ()[] v a A f m x 12 231111 βμα+-+Q } m —安全系数,临时结构取1.5 m 1—振动体系的质量 m 1=Q/g=57000/981=58.1 Q 1—振动体系重力 N g —重力加速度=981 cm /s 2 A X —振动沉桩机空转时振幅 A X = 10.3 mm M —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A x

根据状态方程计算R143a音速第2、第3维里系数

缪波zbl1905@https://www.360docs.net/doc/774243795.html, 根据状态方程计算R143a 音速第2、第3维里系数 缪波 1 zbl1905@https://www.360docs.net/doc/774243795.html, 摘要:“在重力场中考察真实气体的内能”一文也提出气体内能和状态方程的关系,本文验证这一关系式,从根据R143a 状态方程,计算音速的第2、第3维里系数,第2维里系数和实验符合。第3维里系数在超临界温区与实验符合,在亚临界温区与实验不符合,可能是气液在亚临界区域温相变造成的 关键词:音速第2维里系数状态方程热力学第2定律第3维里系数临界点分类号:O550引言 “在重力场中考察真实气体的内能”[1]给出出了状态方程和内能的关系,它建立在对流平衡和静力平衡基础上。关系如下V RT V V P V E +??=??(0.1) 或者ρρρρRT P E -??=??(0.2) 文献[2]利用状态方程计算HFC-227ea、丙烷音速第2维里系数,和实验符合,公式如下 ???? ????--??+=T b C T R C Rb T b C RT b RT v v v a 2202022020221γβ(0.3) (0.1)(0.2)对更大密度的气体是否符合,需要计算音速第3维里系数。音速的第3维里系数解析式比较复杂,这里先数值计算R143a 音速的第 2、第3维里系数。1状态方程和音速的关系的推导 文献[3]给出了状态方程R143a 状态方程,下面图1为方程截图 图1:R143a 状态方程

缪波zbl1905@https://www.360docs.net/doc/774243795.html, 文献[3]同时给出了理想气体的比热和音速第2和第3维里系数。 图2:R143a 比热 利用matlab ,可以将某一温度下,密度0.1-100mol/m 3的压强 3 322ρρρa a RT P ++=(1.1)4 332232------=??ρρρa a RT V P (1.2)3 322ρρρT a T a R T P ??+??+=??(1.3)3 32262ρρa a V E --=??(1.4)2 32032ρρa a C E V ??+??+=??(1.5)(1.4)(1.5)是反应了状态方程和内能的关系。音速的计算公式为: 22 211V T E V E P T P V P M V V P M P w s s ?????????? ?????????? ??????+??-??-=??-=??=ρ(1.6)将(1.1)-(1.5)代入(1.6)(在matlab 中进行),可以输出P 、2 w 两个变量,利用P 对2w 进行多项式拟合,得到2 2102P A P A A w ++=(1.7) 音速第2和第3维里系数,01A A a =β(1.8) 02A A a = γ (1.8)

八年级物理计算题专题(声速)

八年级物理计算题专题 (声速) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

八年级物理计算题专题(一) 1、人们常利用回声来探知发声体与远处物体的距离。最常用的是用声纳探测海洋深度或鱼群所在。声音在海水中的速度约为1500米/秒,若在海面某处声纳传送的声音4秒后接收到反射回来的信号,则此处海洋深度为多少米? 2、某雷雨天的晚上,玉红同学看到闪电5s后听到了雷声,打雷的地方距她多远? 3、在百米赛跑中,站在终点的计时员,假如在听到枪声时才计时,他记录下来的成绩有多大的误差( 当时空气中的声速为340 m/s) 4、站在百米赛跑终点的计时员,在听到发令员的枪声后才按表计时,测得运动员的成绩为13.69s,求运动员的真实成绩是多少? 5、站在200m赛跑终点的计时员,如果他听到起跑的枪声才开始计时,则他开始计时的时间比实际起跑时间大约晚多少秒?

6、小强在下雨天用秒表测量出看见闪电到听到雷声之间的时间间隔为3秒,那么打雷处离小强的距离为多少米?小强用皮尺测出学校大礼堂的最大长度是50米,如果声速为340米/秒,原声和回声的时间间隔最大为多少秒? 八年级物理计算题专题(二) 1、甲乙两同学分别在一跟铁管2侧,铁管长153米,甲在其一端敲击了一下,乙同学 听见了两次声音。已知听到两次声音的间隔为0.42秒。求声音在铁管中传播的速度。2.。某同学欲测出一段较长废铁轨的长度,小亮同学戴了一块电子表,他们让小亮将耳朵贴 在铁轨的一端,另一位同学用力敲击铁轨的另一端,小亮听到一声敲击声后,经过0.5 s又听到一声敲击声.(当时的气温为15 ℃)请你帮他们计算出铁轨的长是多少? 3、有一山峡宽1200米,两旁都是峭壁。有人在山峡内放一枪,他听到头两次回声间隔5秒,求这个人离两峭壁的距离。(空气中声速为340m/s) 4、有一山谷,两旁都是峭壁,有位猎人在山谷内放了一枪,0.5s听到第一声回声,1.5s后听到第二声回声.求这个山谷的宽度? 5 甲乙两人相距120m,两人距高大光滑的墙壁均为80m,现甲敲一下手中的鼓声,乙先后听到两声鼓声,求乙听到敌意声鼓声与乙听到第三声鼓声之间相隔多长时间?

桩基负摩阻力产生的原因及其计算

浅析桩基负摩阻力产生的原因及其计算 【摘要】桩周土体由于某种原因发生下沉时对桩身产生相对向下的位移,这就使桩身承受向下作用的摩擦力,这种摩擦力就是桩基的负摩擦阻力。本文针对桩基负摩擦阻力产生的机理及原因,并通过实例计算分析桩基负摩擦阻力。 【关键词】桩基;负摩擦阻力;机理及原因;实例计算 rough discuss the reason and count of pile foundation force of negative friction wang zhigang1 liang guankao2 (1.fifth geological mineral exploration and development institute of inner mongolia, baotou 014010, p.r.china;2.inner mongolia geology engineering co.,ltd, hohhot.010010,p.r.china) 【abstract】owing to some reasons ,the soil around pile foundation occur subside will produce displacement downward to pile foundation,so pile foundation will bear downward friction force,this friction force is negative friction force。this paper point at the reason of pile foundation negative friction force and analysis pile foundation negative friction force by living example。 【key words】pile foundation; negative friction force;the mechanisation and reason;living example account

桩测摩阻计算

利用ABAQUS进行桩侧摩阻力仿真计算 [摘要] 桩侧摩阻力的大小直接确定了桩的实际承载力。因而如何确定桩的侧摩阻力对于桩基设计计算的意义重要。此处借用ABAQUS有限元软件对桩的侧摩阻力进行仿真计算。[关键词] 有限元软件桩侧摩阻力仿真计算 一、引言 桩基设计的核心问题,不外是沉降和承载力两个方面。在现行的规范中,桩侧摩阻力主要通过原位测试、当地经验值、规范给定值三种方式经过修订而得的。事实上,桩侧摩阻力的值是随着桩顶载荷、地层情况,以及深度等各种因素而变的,而且深度效应较为明显。 对于摩擦型单桩,其承载力主要由桩侧摩阻力承担。因此如何正确分析和计算桩侧摩阻力的分布及影响因素至关重要。传统的方法是通过原位贯入试验测得桩的侧摩阻力。通过现场原位试验虽然可以有效的得到设计需要的数据。但是现场原位试验既费工又费钱,而且试验技术有一定的困难。现代计算机技术的飞速发展,因此如何根据室内试验得到的有关资料,利用仿真分析的方法来确定桩侧摩阻力作用情况,进而确定桩侧摩阻力,是值得广泛关注和讨论的问题。 二、桩土计算模型 在考虑土的非线性、桩周土分层、桩土间非线性相互影响、桩端有存渣、桩端及桩侧注浆加固、桩长及桩直径变化等因素时,有限元法是现阶段最适用的方法,它能解决由于试桩困难及实测费用大的问题。为了方便阐述和演示,本次仿真计算采用了很大的简化。本次计算只考虑桩打入土层之后的摩阻力的变化,土层只取一层。桩取直径0.5米,长度为10米,并简化为弹性本构模型,土水平边界设置为10米,深度方向设置为30米,并简化为弹塑形本构模型。

图1:计算模型 三、计算过程 在几何模型上,采用大尺寸来模拟半无限空间体系,土体的边界半径去10米(桩半径的40倍),土体深度方向上去30米(桩长度的3倍)。 在ABAQUS的Part模块中根据工程条件通过轴对称的方式建立图1的计算几何模型,并将模型分别建成2个part,一个桩的part,一个土的part。在桩的part中只保留桩的部分,在土的part中只保留土的部分。在桩和土接触问题上,要求在土和桩相接触的地方分别建立接触面。 在 ABAQUS的Property模块中,分别建立相应的混凝土材料和土体材料,并赋值给相应 的部件。

声速的计算

声速的计算: 269.2015年,我国无人驾驶汽车红旗HQ3将再次进行长途测试,之前的测试中,该车的平均车速约90km/h,合______m/s.某人在距海面6.8米的轮船甲板上向海底发射声音信号经过0.84s接收到反射信号、此处海的深度为______米.(当时空气气温为15℃,海水平均声速为1500m/s) 查看解析纠错 83.地面上某处发生了一次爆炸,由于爆炸地点的上空有面积较大的浓云层,距离爆炸地点3km处的某人先后听到两次爆炸声,时间相差6s.则可以估算出云层下表面距离地面的高度为(假设空气中的声速为km/s)() A. 1.5 km B. 2.0 km C. 2.5 km D. 3.0 km 85.有一山峡宽1200米,两旁都是竖直徒壁,有一人在山峡内放一枪,头两次回声间隔5秒,则人离两壁的距离是(设声速v=340米/秒).() A. 1025米,175米 B. 600米,600米 C. 1000米,200米 D. 850米,350米 93.

为了监督司机是否遵守限速规定,交管部门在公路上安装了周定测速仪.如图所示,汽车向放置在道路中间的测速仪匀速驶来,测速仪向汽车发出两次短促的超声波信号.第一次发出信号到测速仪接收到经汽车反射回来的信号用时0.5s,第二次发出信号到测速仪接收到经汽车反射回来的信号用时0.3s,若发出两次信号的时间间隔是1.1s,超声波的速度是340m/s,则() A. 汽车接收到第一次信号时,距测速仪170m B. 汽车接收到第二次信号时,距测速仪102m C. 汽车的速度是34m/s D.汽车的速度是30.9m/s 100. 为了监督司机遵守限速规定,交管部门在公路上设置了固定测速仪.如图所示,汽车向放置在路中的测速仪匀速驶来,测速仪向汽车发出两次短促的(超声波)信号,第一次发出信号到测速仪接收到信号用时0.5s,第二次发出信号到测速仪接收到信号用时0.3s,若发出两次信号的时间间隔是0.9s,超声波的速度是340m/s.则() A. 汽车接收到第一次信号时,距测速仪170m B. 汽车接收到第二次信号时,距测速仪51m C. 汽车的速度是26.2m/s D.汽车的速度是42.5m/s 105.一个人站在平行的峡谷之间,当他击掌后,在0.3秒和0.7秒先后听两次回声,若声速为330米/秒,则此峡谷宽为() A. 221米 B. 198米 C. 165米 D. 156米 109.站在100m赛跑终点的计时员,如果他听到起跑的枪声才开始计时,则他开始计时的时间比实际起跑时间大约晚()

浅谈桩的负摩阻力及实际工程中的处理

浅谈桩的负摩阻力及实际工程中的处理 [摘要]:负摩阻力是桩基础设计时常见的问题,本文从负摩阻力的产生机理出发,探讨了负摩阻力的计算方法,给出了减小负摩阻力的措施;并结合实际工程分析了桩与承台共同作用机理在负摩阻力桩基础工程中的适用范围。 [关键字]:负摩阻力桩与承台共同作用 1 前言 桩基础是目前采用广泛的一种软弱地基处理方式,其承载力由桩侧土的摩擦力和桩端反力共同构成。但是在有些地质条件下,由于某些原因,当桩周土体的沉降量大于桩本身的沉降时,桩侧表面的一部分面积上将产生负摩阻力。负摩阻力对桩产生下拉作用,致使桩基的荷载增加,变相的降低了桩的承载力,使其沉降加大,严重时会导致建筑物的损害或破坏,由于设计人员忽略了负摩阻力的影响从而引起的工程事故不在少数。本文对桩的负摩阻力的产生条件及其特性进行分析,探讨了桩负摩阻力的计算方法。 正常情况下,计算桩基础的承载力时,假定上部荷载通过承台传递给桩,然后再传给地基,并不考虑承台底部土的承载作用。但是,在某些地基土层中,往往在1m左右的根植土下有2-5m的粉质粘土硬壳层,再往下则是10几米甚至20几米的淤泥层。在这些场地的工程中,一般是采用桩基础进行地基处理,但是由于负摩阻力的存在,正常桩长的单桩承载力往往比较小,布桩很密而且造价比较高;如采用表层换土后作浅层基础,由于硬壳层厚薄不均,填土厚度及质量均难以控制,容易使基础沉降过大或沉降不均匀,影响正常使用。对于这类场地,由于采用的桩基一般是摩擦型桩,桩与桩间土的变形是相互影响的,桩间土具有一定的承载力,而承台承担的荷载将是可观的。因此本人认为,在这样的工程中,考虑桩与承台共同工作承担上部荷载是安全合理的,而且具有可观的经济效益。 2 负摩阻力产生机理、特性及其对桩基的影响分析 布置在土体里的桩,正常情况下由于上部荷载的作用,桩的沉降速率(或沉降量)大于桩周土的沉降速率(或沉降量),桩周土对桩的侧表面产生向上的摩擦阻力,称之为正摩阻力;反之,当由于以下几种情况: 1)桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层2)桩周存在软弱土层,临近桩侧地面承受局部较大的长期荷载,或地面大面积堆载3)由于降低地下水位,使桩周土中有效应力增大,并产生显著压缩沉降 4)冻土融化 使得桩周土的沉降速率(或沉降量)大于桩的沉降速率(或沉降量)时,桩周土将对桩产生向下的摩阻力,称之为负摩阻力。在桩身某一深度处,桩周土与桩的沉降一致,该处称为中性点。中性点是正、负摩阻力的分界点,且在该处桩身轴力最大。 负摩阻力的存在对桩基性能的不利影响可以概括为3个方面:负摩阻力的存在造成桩侧正摩阻力减小,从而引起桩基有效承载力的降低;负摩阻力的出现大大减少了桩周土提供的荷载抗力,使桩的承载力依靠中性点以下的桩周土和桩尖土来提供,使得桩端土体沉降增加从而引起桩基沉降增加;负摩阻力形成了对桩基的附加荷载,造成桩身轴力增加,降低了桩身强度的安全度。从桩基的工作状况来看,负摩阻力的影响对摩擦型桩和端承型桩有所区别

桩侧负摩阻力的计算

桩侧负摩阻力的计算 一、规范对桩侧负摩阻力计算规定 符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承载力时应计入桩侧负摩阻力: 1、桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时; 2、桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括填土)时; 3、由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。 4、桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。 ①对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: a k R N ≤ (7-9-1) ②对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并可按下式验算基桩承载力: a n g k R Q N ≤+ (7-9-2) ③当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入附加荷载验算桩基沉降。 注:本条中基桩的竖向承载力特征值只计中性点以下部分侧阻值及端阻值。 二、计算方法 桩侧负摩阻力及其引起的下拉荷载,当无实测资料时可按下列规定计算: 1、中性点以上单桩桩周第 i 层土负摩阻力标准值,可按下列公式计算: i ni n si q σξ'= (7-9-3) 当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:ri i σσ'=' 当地面分布大面积荷载时:ri i p σσ'+=' (7-9-4) 其中, i i i m m m ri z z ?∑+?='-=γγσ1 1 21 (7-9-5) (7-9-3)~(7-9-5)式中: n si q ——第i 层土桩侧负摩阻力标准值;当按式(7-9-3)计算值大于正摩阻力标准值 时,取正摩阻力标准值进行设计; ri σ'——由土自重引起的桩周第i 层土平均竖向有效应力;桩群外围桩自地面算起,桩 群内部桩自承台底算起;

声速的测定实验报告.doc

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: 3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 122-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

大学物理实验报告-声速的测量

声速的测量 【实验目的】 1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速 2.学会用逐差法进行数据处理; 3.了解声速与介质参数的关系。 【实验原理】 由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。 超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。 声波的传播速度与其频率和波长的关系为: v f λ=? (1) 由(1)式可知, 测得声波的频率和波长,就可以得到声速。同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。 1. 共振干涉法 实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 (3) 时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成 共振。 因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显

增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。 图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。 2.相位比较法 波是振动状态的传播,也可以说是位相的传播。沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。利用这个原理,可以精确的测量波 长。实验装置如图1所示,沿波的传播方向移动接收器,接收到的信号再次与 发射器的位相相同时,一国的距离等于与声波的波长。 同样也可以利用李萨如图形来判断位相差。实验中输入示波器的是来自同一信号源的信号,它们的频率严格一致,所以李萨如图是椭圆,椭圆的倾斜与两信 号的位相差有关,当两信号之间的位相差为0或时,椭圆变成倾斜的直线。 3.时差法 用时差法测量声速的实验装置仍采用上述仪器。由信号源提供一个脉冲信号经发出一个脉冲波,经过一段距离的传播后,该脉冲信号被接收,再将该信号返回信号源,经信号源内部线路分析、比较处理后输出脉冲信号在、之间 的传播时间t,传播距离L可以从游标卡尺上读出,采用公式(2)即可计算出声速。 4.逐差法处理数据 在本实验中,若用游标卡尺测出个极大值的位置,并依次算出每经过个 的距离为 这样就很容易计算出。如测不到20个极大值,则可少测几个(一定是偶数),用类似方法计算即可。

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

桩侧摩阻力计算

桩侧摩阻力计算 《桩侧摩阻力计算》 一、工程概况: 本工程 ?杂填土、?淤泥均为欠固结软弱土应计算桩侧负摩阻力。根据岩土工程勘察报告 ZK65揭示地基土分层如下:(孔口标高5.07m,地下水位标高2.02m) 第?层杂填土底部标高2.77(厚度2.30) 第?层淤泥底部标高-7.53(厚度10.30) 第?层卵石底部标高-12.43(厚度4.90) 第?层砂土状强风化凝灰岩底部标高- 14.73(厚度2.30) 第?层碎块状强风化凝灰岩………… 该位置软弱土层较厚且土层分布具有代表性,所以计算该位置的桩侧负摩阻力值。二、计算过程 (1) 根据JGJ 94-2008第5.4.4条桩侧负摩阻力标准值按下式计算: i,11n''' ; q,,,,,,,,,,,,zz,,iieeiisinii2e,1 根据地勘报告杂填土和淤泥的负摩阻力系数分别为0.4和0.25,素填土和淤泥的重度为 316.0kN/m。 3 =16.0kN/m,1 3'=16.0-10.0=6.0 kN/m ,2 2 n=0.4(0.5×16×2.30)=7.36kN/mqs1 n2=0.25(16×2.30+0.5×6×10.3)=16.92kN/m qs2 ll/(2) 桩持力层为?砂土状强风化凝灰岩,根据持力层性质中性点深度比取值为1。 n0ll,=12.6m n0 (3) 计算桩下拉荷载标准值。

根据JGJ 94-2008第5.4.4-4条 nnn,(不考虑群桩效应,取1.0),桩采用PHC500预制管桩。Quql,,,,ngnsiii,1 nQ=1.0×2×3.14×0.25×(7.36×2.3+16.92×10.3)= 300kN g

相关文档
最新文档