基于Solidworks的注射模设计中补靠破孔的研究

基于Solidworks的注射模设计中补靠破孔的研究
基于Solidworks的注射模设计中补靠破孔的研究

PAGE 1 OF 3

香港总公司: 深圳分公司: 广州分公司: 东莞分公司: 苏州分公司: 基于Solidworks的注射模设计中

注射模设计中补

补靠破孔的研究

智诚科技公司作者:邵艳华

靠破孔是模具设计、加工行业的术语,也称插穿孔。是指塑胶零件在开模方向上存在的孔洞,分模时,如果不对这些破孔进行修补,则模具设计就不能完全分割型芯、型腔,这就需要对破孔(内部环)进行填补,这种填充破孔的操作即称为补靠破孔。补靠破孔的位置选择与形状设计是否合理,不仅直接关系到模具设计的复杂程度和加工难易程度,也关系着模具的质量、模具的工作状态等,因此补靠破孔的设计是模具设计中的重要一步,也是必不可少的一步。作者工作当中碰到的很多塑件,比如手机、电视机前后壳,VCD/DVD面板、键盘和显示器壳体等,上面都有各种各样的孔洞,本文针对注射模设计中出现的各种靠破孔问题,结合solidworks平台上的3DQuickMold模具设计模块,提出了较为完整的解决方案,为加快先进软件在模具行业的广泛应用提供了一定的专业理论基础。

1 靠破孔的几种类型

破孔的分类可分为4种情况,第一类孔是破孔在一个完整的曲面内(如图2-1);;第二类孔是破孔与两个或者两个以上曲面相交(如图2-2); 第三类孔是指前后模对插(碰)的孔 (如图2-3);第四类孔是混合孔,这一类的比较复杂(如图2-4)中的混合孔与多个曲面相交,并且孔内有R 角。

图2-1 图2 -2

图2-3 图2-4

2 关于3DQuickMold

3DQuickMold是高效能的基于Solidworks平台上的塑胶模具设计软件。其特有的实体补孔技术,可以非常方便地处理各种靠破孔。

3 补靠破孔的方法

针对不同类型的孔,总结出如下几种修补方法:

PAGE 2 OF 3

香港总公司: 深圳分公司: 广州分公司: 东莞分公司: 苏州分公司:

3.1 曲面加厚法

多孔同时用实体修补:在solid patch对话框中,定义所选面为补孔面,点击完成,可填补破孔。修补的步骤如图3-1所示。填补的结果如图3-2所示。这种方法适用于第一类孔。

3.2 多面补孔法

多面补孔法有如下的优良特征,使它可以轻易的填补跨过多个曲面的孔洞。步骤和结果如下图所示。这种方法适用于第二类补孔。

3.3 快速替换法

通过快速的替换一些塑件上的面,来达到补孔的目的。如下图3-5和图3-6所示。

PAGE 3 OF 3

香港总公司: 深圳分公司: 广州分公司: 东莞分公司: 苏州分公司:

3.4 实体方块法

此种方法是针对一些比较复杂的孔,基本思路是先做一实体块“堵住”,后再进行适当的修整。结果如下图所示。

4 结论

靠破孔的填补是塑胶模具设计的一个重要环节。针对塑件上孔洞的不同特点,选用上述4种不同的修补靠破孔的方法,基本上可以解决模具设计中修补靠破孔的问题。

精讲solidworks系列化零件设计

标准文档 实用大全第8章系列化零件设计 【教学提示】 SolidWorks不仅提供了强大的造型功能,而且提供了实用性很好的产品设计系列化功能,包括方程式和数值连接、配置、系列零件设计表、库特征等。通过方程式和数组连接的方式可以控制特征间的数据关系。通过配置可以在同一个文件中同时反映产品零件的多种特征构成和尺寸规格。采用Excel表格建立系列零件设计表方式反映零件的尺寸规格和特征构成,表中的实例将成为零件中的配置。将建立的特征按照文件库的方式存储,即生成库特征,可以在零件造型中调用。 【教学要求】 ?能够利用方程式和数值关联体现设计意图 ?熟练掌握手工生成一个零件配置的方法 ?掌握建立系列化零件设计表的方法及其高级应用技巧 ?理解Solidworks库特征,能够建立、修改和使用库特征 8.1 方程式和数值连接 绘制草图时,可以利用“中点”、“相等”等几何关系添加相应的尺寸约束,但有时为了更明确设计意图,在草图中利用这些简单的几何关系往往无法实现。这种情况下,应该使用方程式明确设计意图。 8.1.1 尺寸名称 SolidWorks是一个全相关的设计软件,对任何一个尺寸的修改都会影响到如装配、工程图等方面。因此,在SolidWorks中每个尺寸都有一个特定的名称。 1. 显示尺寸名称 选择【工具】︱【选项】命令,出现【系统选项】对话框,单击【常规】选项,选中【显示尺寸名称】复选框,单击【确定】按钮,如图8-1所示。

2 图8-1 尺寸名称 2. 更改尺寸名称 (1)右击“D1”尺寸,在快捷菜单中选择【属性】命令,出现【尺寸属性】对话框, 将名称改为“outD”,单击按钮,如图8-2所示。 图8-2 更改尺寸名称 8.1.2 方程式 使用方程式可以对任何特征的草图尺寸或参数进行控制。 新建“法兰”零件,如图8-3所示。法兰包括3个特征:基体拉伸、孔、阵列(圆周)。

SolidWorks2010中文版模具设计从入门到精通(附光盘)

SolidWorks2010中文版模具设计从入门到精通(附光盘)目录 前言 第1章 SolidWorks模具设计基础 1.1 注塑模具CAD简介 1.1.1 CAX技术 1.1.2 模具CAD技术 1.2 IMOLD模具设计流程 1.2.1 SolidWorks/IMOLD插件概况 1.2.2 IMOLD菜单/工具 第2章 SolidWorks模具工具 2.1 模具设计工具概述 2.1.1 程序任务 2.1.2 诊断任务 2.1.3 修正任务 2.2 曲面实体工具 2.2.1 延展曲面 2.2.2 直纹曲面 2.2.3 缝合曲面 2.2.4 放样曲面 2.2.5 延伸曲面 2.2.6 剪裁曲面 2.3 分析诊断工具 2.3.1 拔模分析 2.3.2 底切检查 2.4 修正工具 2.4.1 分割线 2.4.2 拔模 2.4.3 比例特征 2.5 分模工具 2.5.1 分型线 2.5.2 修补破孔 2.5.3 分型面 2.5.4 切削分割 第3章模具工具设计实例 3.1 变压器壳体设计实例 3.1.1 拔模分析 3.1.2 拔模 3.1.3 使用比例特征 3.1.4 生成分型线 3.1.5 生成关闭曲面

3.1.6 创建分型面 3.1.7 切削分割 3.1.8 生成切削装配体 3.2 钻机盖设计实例 3.2.1 拔模分析 3.2.2 删除面 3.2.3 创建新拔模面 3.2.4 使用比例特征 3.2.5 生成分型线 3.2.6 生成关闭曲面 3.2.7 创建分型面 3.2.8 建立互锁曲面 3.2.9 切削分割准备 3.2.10 切削分割 3.2.11 生成模具零件 3.3 充电器座设计实例 3.3.1 拔模分析 3.3.2 使用比例特征 3.3.3 生成分型线 3.3.4 生成关闭曲面 3.3.5 创建分型面 3.3.6 切削分割 3.3.7 生成模具零件 3.4 仪器盖设计实例 3.4.1 拔模分析 3.4.2 使用比例特征 3.4.3 生成分型线 3.4.4 生成关闭曲面 3.4.5 创建分型面 3.4.6 切削分割 3.4.7 底切检查 3.4.8 生成侧型芯 3.4.9 爆炸显示模具 3.4.10 生成模具零件 第4章 IMOLD模具设计初始化 4.1 数据准备 4.1.1 数据准备过程 4.1.2 数据准备编辑 4.1.3 拔模分析 4.2 项目管理 4.2.1 创建新的项目 4.2.2 打开设计项目 4.3 全程实例——模具初始化 4.3.1 数据准备

solidworks工程图模板制作大全

本人研究很久,才根据网上的资料,做出了SW的工程图GB标准模板,现分享给大家参考: 1.利用属性编辑卡编辑你所需要的零件属性:开始---程序 —solidworks工具--属性编辑卡编辑器。。。(设置相应的名称,材料,作者,重量·····等相关属性) 2. SolidWorks工程图中的自动明细表(1) 标签:SolidWorks工程图自动明细表分类:技术心得2007-08-18 17:51 很多使用ToolBox的朋友都希望图中所有用到的标准件(如螺钉螺母)的规格大小以及国标号能够自动出现在装配图的明细表中,特别是能自动产生数量规格等相关数据。否则人工统计是件非常烦琐的工作。SolidWorks早已提供了这个功能,不过因为这个是老外的软件,对中华地区的技术支持力度不强,没有提供现成的模板,而GB标准件也只是从2007版才开始加入,并且是英文名称.... 那么我们怎么解决这个问题呢?答案:自己动手。可以自己定义模板,修改库文件来实现全自动、全中文的明细表梦想。(本教程面向新手,所以会讲的详细一点,同时也请高手指教) 首先,需要明白这样一个概念:工程图中的“属性变量”。啥叫“属性变量”呢?我们来看当你在工程图中插入文字和注释的时候,有一个图标是“链接到属性”,就是下图中红圈的那个:

我们选择这个“链接到属性”,就会出现下面这个对话框:(注意,一般来讲,我们在工程图中所使用的属性都应该来自图中的模型,既.sldprt或.sldasm中定义的内容,所以应该选择“图纸属性中所指定视图中模型”这一项。只有少数某些属性需要用“当前文件”中的定义,如此工程图“最后保存的时间”) 点开它,选择“材料”:

solidworks模具设计应用实例.doc

第四章. solidworks模具设计应用实例 在SolidWorks软件旳各个版本中都具有一定旳模具设计功能,到了2003版,这种功能进一步得到增强,专门是在一些分模线比较直观旳零件分模设计中,型腔和型芯旳创建只需要几步就能够完成,对一些较复杂旳产品零件,也能够通过系统提供旳功能逐步完成。本章中我们以两个产品模型为例来说明SolidWorks软件在分模设计过程中旳应用。 4.1安装盖旳模块设计 下面我们对图4.1显示旳零件进行模具型腔模块旳设计,通过说明了解在SolidWorks 中设计型芯和型腔旳差不多方法。 图4.1 本节中旳设计步骤大致如下: 对零件进行比例缩放 建立外分模面并在装配体中建立型芯和型腔模块 缝合得到完整分模面 通过拉伸完成成形型腔创建 4.1.1建立分模面 首先,需要对调入旳模型进行收缩率旳设定,通过比例缩放功能来实现,它能够按照零件沿三个坐标轴方向指定相同旳或不同旳缩放系数,来对零件进行收缩处理,在本例中我们通过比例缩放功能将零件放大2%来抵消零件成型时旳收缩尺寸。 接着通过使用延展曲面功能从零件旳分模线向外创建分模面,使用一个零件上旳平面或基准面作为参考平面,通常参考平面与零件成形时旳开模方向垂直。 最后,通过缝合曲面功能将外分模面与模型表面提取出旳面缝合在一起成为完整旳分模面。 具体创建步骤如下。 1.打开零件 单击主菜单中旳文件→打开命令,设置打开旳文件类型为Parasolid〔*.x﹏t〕格式,选中midpan.x﹏t文件打开,然后保存为同名旳SolidWorks文件格式,模型如图4.1所示。 2.零件放大

单击主菜单中旳插入→特征→比例缩放命令或直截了当从工具条中单击图标,进入缩放设置界面,在其中选中统一比例缩放选项,输入缩放比例为1.02%,设定比例缩放点为重心或原点,如图4.2所示,单击确定按钮。 图4.2 3.建立延展曲面 单击工具条中旳图标,弹出延展曲面旳设置界面,从特征树中选择前视图基准 面作为参考平面,然后在要延展旳边线列表中单击,选中零件分模线上旳一条边, 再勾选沿切面延伸选项,在延展距离中将默认旳10mm改为30mm,如图4.3所示。 图4.3 完成后如图4.4所示,特征树中出现一个名为旳延展曲面特征。 图4.4 4.1.2建立装配体并缝合曲面 4.建立装配体 从主菜单中单击文件→新建命令,在弹出旳新建窗口中选择装配体,建立一个装配体文档,然后平铺窗口,将midpan零件拖动到装配体旳原点上,将其插入并固定。

SolidWorks的参数化功能有多种实现方式

SolidWorks的参数化功能有多种实现方式,本文详细介绍了利用Excel表格驱动SolidWorks模型的方法:通过Excel输入参数,利用Excel表格ActiveX控件、方便的数据计算能力,结合SolidWorks方程式及宏功能,实现对SolidWorks模型尺寸修改及更新。 参数化设计方法就是将模型中的定量信息变量化,使之成为任意调整的参数。对于变量化参数赋予不同数值,就可得到不同大小和形状的零件模型。 用CAD方法开发产品时,产品设计模型的建立速度是决定整个产品开发效率的关键。如果该设计是从概念创意开始,则产品开发初期,零件形状和尺寸有一定模糊性,要在装配验证、性能分析之后才能确定,这就希望零件模型具有易于修改的柔性;如果该设计是改型设计,则快速重用现有的设计数据,不啻为一种聪明的做法。无论哪种方式,如果能采用参数化设计,其效率和准确性将会有极大的提高。 在CAD中要实现参数化设计,参数化模型的建立是关键。参数化模型表示了零件图形的几何约束、尺寸约束和工程约束。几何约束是指几何元素之间的拓扑约束关系,如平行、垂直、相切和对称等;尺寸约束则是通过尺寸标注表示的约束,如距离尺寸、角度尺寸和半径尺寸等;工程约束是指尺寸之间的约束关系,通过定义尺寸变量及它们之间在数值上和逻辑上的关系来表示。 在参数化设计系统中,设计人员根据工程关系和几何关系来指定设计要求。要满足这些设计要求,不仅需要考虑尺寸或工程参数的初值,而且要在每次改变这些设计参数时维护这些基本关系。即将参数分为两类:其一为各种尺寸值,称为可变参数;其二为几何元素间的各种连续几何信息,称为不变参数。参数化设计的本质是在可变参数的作用下,系统能够自动维护所有的不变参数。因此,参数化模型中建立的各种约束关系,正是体现了设计人员的设计意图。 SolidWorks是典型的参数化设计软件,参数化功能非常强大,并且实现方法多种多样。笔者今天介绍一种通过Excel表格对模型参数进行驱动的方法,其特点是充分利用Excel 表格强大的公式计算、直观的参数输入、方便的数据维护功能,来实现产品的参数化、系列化设计。如图1所示Excel表格,展示的是一个压力容器的法兰参数。表中直观地将不同法兰用不同颜色体现,并对应相同颜色块的参数。该参数采用下拉列表的方式,直接选取即可,最后只需要点击右下角的“更新法兰参数”,SolidWorks中的模型便实时得到更新。

Solidworks入门教程五配置以及系列零件设计表

Solidworks入门教程五配置以及系列零件设计表 置让:可以在单一的文件中对零件或装配体生成多个设计变化。配置提供了简便的方法来开发与管理一组有着不同尺寸、零部件、或其他参数的模型。配置的概念基本上和pro/e 的family table 相似。 配置的应用:配置主要有如下几个方面的应用: 1、在两个特征相同的零件中,某些尺寸不一样。如自己建立标准件库 2、同一零件的不同状态:如需要开模的零件。模具是一个配置,加工后是一个配置 3、相同产品的不同系列的需要:如同一产品中,对某零件、部件使用不同的方案。 4、特定的应用需要:可以简化模型,应用于零件的有限元分析(FEM);另外,可能需要特殊的模型用于快速成型(RP) 5、改善系统性能:对于很复杂的零件,可以考虑压缩一些特征,以便于其他特征的建立。 6、装配方面的考虑:当装配零件很多,文件很大时,可以考虑压缩一些特征,便于装配 配置的生成方法:要生成一个配置,先指定名称与属性,然后再根据您的需要来修改模型以生成不同的设计变化 1、在零件文件中,配置使您可以生成具有不同尺寸、特征和属性的零件系列。 2、在装配体文件中,配置使您可以生成 ●通过压缩或隐藏零部件来生成简化的设计 ●使用不同的零部件配置、不同的装配体特征参数或不同的尺寸来生成装配体系列

1.手工生成: 2.采用系列零件设计表: 配置的有关术语: ●压缩/解除压缩:不要某特征或不要某零部件(装配中)。当一个特征或零件不压缩时,系统把它当作不存在来处理,并非真的删除。 ●设计表:利用设计表来控制系列零件的尺寸值。同时,可以定义特征的显示状态(压缩/不压缩) ●使用配置:在零件或装配中可以使用配置,显示不同的配置。而工程图不可以建立配置,但可以使用零件或装配的不同配置 §5.1 手工生成配置-改变尺寸值 我们利用下面的零件生成2个配置,简单说明以下制作过程。 1、单击设计树底部的配置标签:

SolidWorks模具设计,很简单

第四章.SolidWorks模具设计应用 在SolidWorks软件的各个版本中都具有一定的模具设计功能,到了2003版,这种功能进一步得到增强,特别就是在一些分模线比较直观的零件分模设计中,型腔与型芯的创建只需要几步就可以完成,对一些较复杂的产品零件,也可以通过系统提供的功能逐步完成。本章中我们以两个产品模型为例来说明SolidWorks软件在分模设计过程中的应用。 4.1安装盖的模块设计 下面我们对图4、1显示的零件进行模具型腔模块的设计,通过说明了解在SolidWorks 中设计型芯与型腔的基本方法。 图4、1 本节中的设计步骤大致如下: ?对零件进行比例缩放 ?建立外分模面并在装配体中建立型芯与型腔模块 ?缝合得到完整分模面 ?通过拉伸完成成形型腔创建 4.1.1 建立分模面 首先,需要对调入的模型进行收缩率的设定,通过比例缩放功能来实现,它可以按照零件沿三个坐标轴方向指定相同的或不同的缩放系数,来对零件进行收缩处理,在本例中我们通过比例缩放功能将零件放大2%来抵消零件成型时的收缩尺寸。 接着通过使用延展曲面功能从零件的分模线向外创建分模面,使用一个零件上的平面或基准面作为参考平面,通常参考平面与零件成形时的开模方向垂直。 最后,通过缝合曲面功能将外分模面与模型表面提取出的面缝合在一起成为完整的分模面。 具体创建步骤如下。 1.打开零件 单击主菜单中的文件→打开命令,设置打开的文件类型为Parasolid(*、x_t)格式,选中midpan、x_t文件打开,然后保存为同名的SolidWorks文件格式,模型如图4、1所示。 2.零件放大 单击主菜单中的插入→特征→比例缩放命令或直接从工具条中单击图标,进

利用Solidworks建构企业规范标准库

2009年第12期福建电脑 利用Solidworks建构企业规范标准库 朱春华,叶建华,朱聪玲,贾敏忠 (福建工程学院机电及自动化工程系,福建福州350108) 【摘要】:SolidWorks中建立企业规范标准库的方法进行研究探讨,提出利用设计库、系列产品设计表、智能零部件等功能来建构企业开发的规范标准库,以规范企业结构设计和提高产品设计效率。 【关键词】:SolidWorks;企业规范标准库;设计库 当前市场竞争日趋激烈,产品生命周期缩短,新产品的设计手段、效率成为企业提高竞争力的重要条件。伴随着计算机辅助设计技术(CAD)的不断发展,通用的CAD软件成为产品开发的主要工具。企业一般是进行系列产品的设计生产。新产品的设计大部分都是在原来产品的基础上进行的,如何很好的规范产品的设计细节、统一产品的设计过程并利用原来的设计基础提高设计效率,避免重复工作,而又不受原来产品结构的限制,成为新产品设计的关键。为了实现这一规范化、标准化的高效设计目标,需要依托于CAD设计软件配置一个企业级的规范标准参考、设计库。 以往在SolidWorks中主要是通过二次开发来建立企业级的设计参考标准库。SolidWorks的二次开发在很多文献[1-3]中都有探讨,这种方法难度大、周期长、开发成本高。而随着SolidWorks 新版本的推出借助其提供强大、易用的开发和扩展功能,如设计库[4]、系列产品设计表、智能零部件等,就可以很方便快捷地进行设计参考标准库的建立。本文主要结合实际应用经验,探讨在SolidWorks中如何利用这些功能实现规范和标准库的建立,从而更好的规范产品设计过程提高企业产品的设计效率。1、SolidWorks简介 SolidWorks[5]无疑是当前三维实体建模领域中的佼佼者。它是第一个完全基于Windows平台的CAD/CAE/CAM/PDM集成系统。具有Windows图像用户界面,以灵活自由的草图为基础,利用特征和装配控制能力进行产品模型的开发和详细工程图的设计。采用了全参数化特征造型技术,具有基于特征、全数据相关、尺寸驱动设计修改的特点。并且具有低廉的价格优势。在业界得到广泛的应用。对于标准零件,SolidWorks有强大的ToolBox的标准件库,并且对于在装配体中有大小规格并可接受标准器件的孔、孔系列、或孔阵列,通过智能扣件功能可自动的为装配体添加配合扣件,实现智能的自动装配。而对于企业级的规范标准参考、设计库的建立,SolidWorks也提供了强大并方便易用的开发和扩展功能。主要有设计库、系列产品设计表、智能零部件等。 2、设计库的应用 SolidWorks的设计库为用户提供了存储、调用常用设计数据和资源的空间。借助设计库可以总体规划与配置企业自己的规范标准库,从而统一设计规范、实现协同设计,方便数据管理和减少重复劳动。如根据企业的不同要求,建立类似图1的设计库目录,并通过"工具->选项->设计库"设置到企业共享服务器上。库中包括常用零部件库、特征库、注释库、装配体库和图快库等等。常用零部件库存放企业级的通用系列件,特征库则统一放置零部件中局部相似的特征组,注释库为工程图中的一些常用注释如尺寸公差、粗糙度等提供企业规范库,而图快库则为一些特定的符号提供规范格式。 在SolidWorks中可以方便地把常用的特征、草图、块、零件、装配体加入到已经建立的库中的相应目录下。并且可以很智能化的把库中元素应用到正在建构的模型中。以库特征的应用为例对设计库具体项目的建立和使用进行说明。在SolidWorks中零件是由特征组成的,SolidWorks提供了强大的基础特征功能,如拉伸、扫描、拔模等等。而在实际产品设计时,有很多结构相同而尺寸形状不一致的部位,如键槽、端盖上的阵列螺栓孔等。这些功能结构可以通过基础特征组进行建构完成。然后把这些基础特征组定义成用户的库特征,以.sldlfp格式进行保存。在下一次遇到具有相同结构的位置就可以直接通过设计库把库特征加入到当前零件中,作为当前零件的组成部分。其中可以利用草图编辑或者通过选择不同的配置调整模型的大小、形状,并通过参考定位到所要放置的位置处。如图3的减速器箱体中,存在很多相似的螺栓孔,则可以采用上述方法进行设计。首先设计如图2所示的包含基体特征和阵列孔特征的零件模型,接着选取阵列孔特征存储成.sldlfp格式,并存放到规划好的设计库的相应目录下。在进行箱体零件设计的时候,展开设计库的目录树,在预览区直接通过鼠标拖放到零件的相应位置,再进行修改、定位,则可完成如图3中的阵列螺栓孔特征的建构。 图1企业规范标准库图2库特征零件模型 图3减速器与库特征 示意图 *基金项目:福建省教育厅科技项目资助(编号:JA09182)福建工程学院科研发展基金项目资助(编号:GY-Z0883) 19

基于SolidWorks的参数化设计

基于SolidWorks的参数化设计 □李轩斌单红梅韩玲 【摘要】论述了SolidWorks环境中,通过产品、部件和零件三者之间参数关联,用一种基于装配约束的参数化设计方法实现部件的参数化建模,阐述了这种参数化设计方法中的关键技术,包括产品结构的划分、尺寸分析、关联设计、基于布局草图的装配体设计和方程式的添加;运用部件参数化设计方法构建SolidWorks部件库。采用这种方法,有利于产品的修改和系列化,提高设计效率。 【关键词】SolidWorks;装配约束;参数化设计;零部件库 【作者简介】李轩斌(1972 ),男,长春轨道客车股份有限公司工程师;研究方向:夹具设计与焊接数控编程 单红梅,女,吉林大学交通学院助工,博士;研究方向:车辆智能化检测 韩玲,女,吉林大学交通学院载运工具运用工程专业在读博士 一、引言 机械制造业的设计制造水平,在很大程度上反映出企业工艺技术水平和制造能力的高低,直接影响着机械产品的加工质量、工人的劳动强度、生产效率和生产成本。 为了提高设计质量和设计效率,提高企业市场竞争力,多年来,许多企业一直致力于参数化设计的研究。大量三维实体造型软件崛起,推动了设计领域的新革命,SolidWorks就是优秀的三维参数化设计软件之一。这些三维软件,不仅仅可创建三维实体模型,还可利用设计出的三维模型来进行模拟装配和静态干涉检查、机构分析、动态干涉检查、动力学分析、强度分析等,产品设计也由原先的二维平面设计向着三维化、集成化、智能化和网络化方向发展,三维CAD的开发受到了普遍关注,并取得了较快的进展。SolidWorks是完全基于Windows的三维CAD/CAE/CAM软件。它采用与UG相同的底层图形核心Parasolid,具有强大的基于特征的参数化实体建模能力,然而要使SolidWorks软件真正为我国企业带来经济效益,必须使其国产化、专业化。 采用参数化设计技术,可以大大提高产品的设计速度。在大多数工程设计中,一个产品往往是多个零件的组合。将零件参数化的思想扩展到部件参数化设计中,实现部件整体参数化设计,无疑会更大程度地提高设计效率,为企业创造经济效益。部件参数化设计的实现以各组成零件的参数化设计为基础,但又不是组成部件的各零件的参数化的简单累加。部件的参数化问题除需解决各组成零件的参数化设计以外,还必须解决参数化时的同步更新问题。所谓的同步更新,是指当进行部件的参数化设计时,对其中某一个零件进行了更改,要求能够引起与之关联的一个或者多个零件的同步更新。同步更新主要有两方面要求,一是部件参数化设计中,各零件的相对位置关系要始终保持正确,二是各零件之间有配合关系的尺寸参数始终保持正确。 二、部件参数化设计方法 本文采用了一种基于装配体的参数化设计方法,来实现部件的参数化。其基本思想是:在参数化零件的基础上,引入零件装配关系作为约束,合理地建立零件之间的装配约束关系,以确保零件之间的相对位置关系;同时建立零部件相互关联的参数之间的关系,以保证参数之间能够联动。这样就可以实现同步更新,在此基础上建立部件的装配布局图,最终实现整个部件的参数化设计。 (一)产品结构的划分。复杂的产品按照功能和企业的生产组织特点分解为一系列的部件,而每个部件可能还会进一步划分为子部件和零件,尤其在民用飞机、汽车等产品中,产品构成十分复杂,涉及到机械、电气、液压、附件(如座椅、 原理都与之不符。现在迈克尔逊-莫雷实验同样被证明是没有说服力的,看来,相对论理论是站不住脚的。由此引发的直接效果就是量子理论失去了理论基础,同样是不科学的。 那么是不是就证明了牛顿力学的绝对正确性呢?起码目前不能这样讲,因为在近代毕竟发现了经典理论不能解释的物理现象。但可以肯定的是,这些现象肯定不能由相对论理论或现有的量子理论来科学解释,需要利用全新的科学方法重新研究和解决。 由此看来,惯性系变换引发的高速粒子的动力学问题是一项十分复杂的物理学课题,目前物理学界对于该问题的认知是不准确的,也是远远不够的,因此非常有必要进行科学细致地研究。 【参考文献】 1.郭硕鸿.电动力学[M].北京:高等教育出版社(第2版),1997 2.周世勋.量子力学教程[M].北京:高等教育出版社(第1版),1979 · 94 ·

给solidworks模具设计的初学者

给solidworks模具设计的初学者(详细讲解篇1) 献给solidworks模具设计的初学者(详细讲解篇1) 此处发表过几张关于模具设计的贴,可能有过于笼统,今天再开贴,详细介绍SW模具设计的最精简的步骤!绝对在无任何外挂,全部在SW铸模工具条里完成模仁的分模步骤!希望能对初学者有帮助! 下面是所要讲解的产品图! 希望通过此篇的讲解,能够让新人对SW模具设计有更新的认识!好好努力吧,SW模具设计不会差于油鸡,破衣的! 1 产品分析 分析工具查看产品的出模状况,是否有倒扣,斜孔等等,以确定产品是否以具有足够的出模斜度,以及是否要做滑块(也叫侧抽芯)或!讲解题的产品已做拔模处理,故可以直接进行模具设计!(分析结果:分型面为阶梯面,后模以侧孔可以做内斜顶块,四个扣子在后模 仁中须做镶件!) 第一步,根据产品原材料的缩水,对产品做比例缩放,此题以ABS为例,按原点放1.005! 2 上视基准面,用分型线工具,分析前后模分型的位置!注意分型的方向箭头,它直接关系产生的型腔,型心曲面所在的文件夹位置! 已做处理,故可以做到自动找出分型线,如果有必要,可以手动选取自己想要的分型线的位置,但是切记,分型线必须是单一的封闭的 环! 3 然后用关闭曲面,分割你想要的前后模仁内部的分割位置,此产品已做好足够的拔模,故可以自动找出! 4

的位置选取填充方式为相切,此时你发现圆孔的填充非你所要的关闭方式,你可以点圆弧上的红色箭头,以改变相切的方向,同理改变4个扣子的相切方向,你会发现SW真的很聪明,原来的插破现在已经变成了碰穿,有利于加长模具的寿命! 5 按现在的情况,侧孔的闭合状态只可做滑块,与原来做斜顶的想法不对头,那么你可以取消现在侧孔上的闭合边线,再在外侧重新选上你想要的闭合边线,这样产生的闭合状态,完全OK了,点确定吧! 6

SOLIDWORK教程功能简介及参数化草图绘制

第1 章Solidworks设计基础 【教学提示】 SolidWork是由美国SolidWorks公司(该公司是法国Dassult System公司的子公司)于1995年推出的三维机械CAD软件,它具有基于特征、单一数据库、参数化设计及全相关性等特点。本章主要对Solidworks做个概略性的介绍,使学生对SolidWorks的基本知识有一定的了解,为以后的学习打好基础。 【教学要求】 了解SolidWorks 软件的特点 熟悉SolidWorks 工作环境 掌握在SolidWorks 工作环境中文件的打开、保存等基本操作,掌握三维建模的流程。 1.1 CAD 技术的发展及SolidWorks 概述 CAD(Computer Aided Design)就是设计者利用以计算机为主的一整套系统在产品的全生命周期内帮助设计者进行产品的概念设计、方案设计、结构设计、工程分析、模拟仿真、工程绘图、文档整理等方面的工作。CAD既是一门多学科的交叉学科,它涉及计算机学科、数学学科、信息学科、工程技术等;CAD也是一项高新技术,它对企业产品质量的提高、产品设计及制造周期的缩短、提高企业对动态多变市场的响应能力及企业竞争能力都具有重要的作用。CAD技术在各行各业都得到了广泛的推广应用。SolidWorks 正是优秀CAD软件的典型代表之一。SolidWorks 作为Windows 平台下的机械设计软件,完全融入了Windows 软件使用方便和操作简单的特点,其强大的设计功能可以满足一般机械产品的设计需要 1.1.1 CAD技术的产生与发展 20世纪60年代初,美国麻省理工学院MIT开发了名为Sketchpad的计算机交互处理系统,并描述了人机对话设计和制造的全过程,这就是CAD/CAM的雏形,形成了最初的CAD 概念:科学计算、绘图。计算机在设计过程中的应用,形成了CAD 系统。 从20世纪60年代初到70年代中期,CAD从封闭的专用系统走向开放式的商品化软件系统,主要技术特点是二维、三维线框造型,其软件系统只能表达基本的几何信息,不能有效表达几何数据间的拓扑关系;且系统需配备大型计算机系统,价格昂贵。此时期有代表性的产品是:美国通用汽车公司的DAC-1,洛克希德公司的CADAM系统。在此时期CAD开始进入应用阶段。 20世纪70年代后期,CAD系统进入发展时期。一方面CAD系统硬件价格下降;同时,飞机和汽车工业蓬勃正值发展时期,飞机和汽车制造中遇到了大量的自由曲面问题,法国达索飞机制造公司率先开发出以表面模型为特点的曲面建模方法,推出了三维曲面造型系统CATIA,该系统采用多截面视图、特征纬线的方式来近似表达自由曲面。该阶段的主要技术特点是自由曲面造型。曲面造型系统为人类带来了第一次CAD技术革命。此后一些军用工业相继开发了CAD 软件,如美国洛克希德公司的CADAM、美国通用电气公司的CADAM、美国通用电气公司的CALMA、美国波音公司的CV、美国国家航空及宇航局(NASA)支持开发的I-DEAS、美国麦道公司开发的UG等。

SolidWorks中系列零件库的创建及调用方法

SolidWorks中系列零件库的创建及调用方法 在使用SolidWorks进行产品设计时,常用的标准件(如螺栓、螺母、垫圈等)通常可以在安装了SolidWorksToolbox插件后调出使用,而许多标准件在Toolbox并不存在,不能从插件中直接调用。在用到这些零件时,设计人员常常因其尺寸、规格不同而进行重复设计,效率低、工作量大。针对这一问题,本文以“外六角螺塞”为例,详细介绍系列零件库的创建及使用方法。 1.创建默认零件 按照重型机械标准JB/ZQ4450-1997的“外六角螺塞M20×1.5”设计默认零件。 (1)新建一个零件文件,进入草图绘制状态。 (2)以“前视基准面”为草绘基准面,绘制草图。选择下拉菜单“视图/尺寸名称”,在绘图区草图中改变尺寸名称,如图1所示。

(3)选择特征工具栏上的“旋转”命令,建立“旋转1”特征(见图2)。

(3)以图2左端面为基准,绘制草图,选择特征工具栏上的“拉伸”命令,建立“凸台-拉伸1”特征,双击设计树中的“凸台-拉伸1”特征,在绘图区零件上修改尺寸名称,如图3所示。将文件保存为“外六角螺塞JB4450-1997.SLDPR T”(螺纹特征创建略)。

2.创建系列零件设计表 (1)新建MicrosoftExcel工作表,在单元格A1中输入“规格”,分别双击SolidWorks 设计树中的“旋转1”,“凸台-拉伸1”特征,在绘图区中选择零件尺寸,在弹出的对话框中将 主要值分别复制、粘贴到B1K1单元格。 (2)按国标输入每种规格的螺塞所对应的参数值,将文件保存为“外六角螺塞设计 表.xls”,如图4所示。

用Solidworks建模的冲压模具设计(含图片预览

目录 1.零件工艺性分析 (2) 2.冲压工艺方案的确定 (2) 3.排样方式及材料利用率 (2) 4.模具结构形式合理性分析 (3) 5.模具主要零件形式、材料的选择、公差配合、技术要求的说明 (5) 6.凸、凹模工作部分尺寸与公差 (9) 7.压力中心计算、弹性元件的选用及计算 (13) 8.冲裁力计算、设备类型及吨位的确定 (14) 9.小结 (16) 10.参考文献 (16)

1.零件工艺性分析: 该零件为连接片,材料较薄,主要用于零件之间的连接作用。零件外形轴对称,有圆弧段,系典型的板料冲裁件,材料为15钢,板厚1mm。 冲裁件孔与孔、或孔与边缘的间距b、b1,符合b>1.5t,b1>t。根据设计图纸可知,采用典型的冲孔模和落料模工艺,来达到一定的精度要求。 根据要求,采用冲裁落料复合模的正装形式。 2.冲压工艺方案的确定 冲压性质:冲孔落料 工序组合方式:采用冲孔落料模。 3.排样方式及材料利用率

材料利用率为η=(A0/A)×100% =(8860.63/11386.32)×100% =77.82% 4.模具结构形式合理性分析 (1)滑动导向模架结构型式[3]图2-73 a 中间导柱的模架规格:单位:mm表1-286 L B H MAX H MINh1h2200 200 240 200 45 50 (2)复合模矩形薄凹模典型组合[3]图1-79

复合模矩形薄凹模典型组合尺寸:单位:mm表1-304 凹模周界 L 200 件 号 和 名 称5 卸料板厚度 件 数 1 16 B 200 6 固定板厚度 1 22 凸凹模长度61 7 垫板厚度 1 8 配用模架闭合高度H 最小200 8 螺钉 6 M12×65 最大240 9 圆柱销 2 12×70 孔距 S 164 10 卸料螺钉 6 12×55 S1 90 12 螺钉 6 M12×90 S2 164 13 圆柱销 2 12×90 S3 90 14 2 12×60 1 垫板厚度 件 数 1 8 2 固定板厚度 1 20 3 空心垫板厚 度 1 18 4 凹模厚度 1 18

SOLIDWORK教程-功能简介及参数化草图绘制

第 1 章Solidworks设计基础 【教学提示】 SolidWork是由美国SolidWorks公司(该公司是法国Dassult System公司的子公司)于 1995年推出的三维机械CAD软件,它具有基于特征、单一数据库、参数化设计及全相关性等特点。本章主要对Solidworks做个概略性的介绍,使学生对SolidWorks的基本知识有一定的了解,为以后的学习打好基础。 【教学要求】 了解SolidWorks 软件的特点 熟悉SolidWorks 工作环境 掌握在SolidWorks 工作环境中文件的打开、保存等基本操作,掌握三维建模的流程。 1.1 CAD 技术的发展及SolidWorks 概述 CAD(Computer Aided Design)就是设计者利用以计算机为主的一整套系统在产品的全生命周期内帮助设计者进行产品的概念设计、方案设计、结构设计、工程分析、模拟仿真、工程绘图、文档整理等方面的工作。CAD既是一门多学科的交叉学科,它涉及计算机学科、数学学科、信息学科、工程技术等;CAD也是一项高新技术,它对企业产品质量的提高、产品设计及制造周期的缩短、提高企业对动态多变市场的响应能力及企业竞争能力都具有重要的作用。CAD技术在各行各业都得到了广泛的推广应用。SolidWorks 正是优秀CAD软件的典型代表之一。SolidWorks 作为Windows 平台下的机械设计软件,完全融入了Windows 软件使用方便和操作简单的特点,其强大的设计功能可以满足一般机械产品的设计需要 1.1.1 CAD技术的产生与发展 20世纪60年代初,美国麻省理工学院MIT开发了名为Sketchpad的计算机交互处理系统,并描述了人机对话设计和制造的全过程,这就是CAD/CAM的雏形,形成了最初的CAD 概念:科学计算、绘图。计算机在设计过程中的应用,形成了CAD 系统。 从20世纪60年代初到70年代中期,CAD从封闭的专用系统走向开放式的商品化软件系统,主要技术特点是二维、三维线框造型,其软件系统只能表达基本的几何信息,不能有效表达几何数据间的拓扑关系;且系统需配备大型计算机系统,价格昂贵。此时期有代表性的产品是:美国通用汽车公司的DAC-1,洛克希德公司的CADAM系统。在此时期CAD开始进入应用阶段。 20世纪70年代后期,CAD系统进入发展时期。一方面CAD系统硬件价格下降;同时,飞机和汽车工业蓬勃正值发展时期,飞机和汽车制造中遇到了大量的自由曲面问题,法国达索飞机制造公司率先开发出以表面模型为特点的曲面建模方法,推出了三维曲面造型系统CATIA,该系统采用多截面视图、特征纬线的方式来近似表达自由曲面。该阶段的主要技术特点是自由曲面造型。曲面造型系统为人类带来了第一次CAD技术革命。此后一些军用工业相继开发了CAD 软件,如美国洛克希德公司的CADAM、美国通用电气公司的CADAM、美国通用电气公司的CALMA、美国波音公司的CV、美国国家航空及宇航局(NASA)支持开发的I-DEAS、美国麦道公司开发的UG等。 -可编辑-

SolidWorks模具设计教程

SolidWorks模具设计教程 作者:无维网gaoch 参考文献:SolidWorks 高级教程:模具设计 SolidWorks模具设计教程之内容提要: ●型心和型腔 通过检测面的拔模角度对模型进行分析; 利用收缩率调整塑料产品的大小; 修复塑料产品中的未拔模面; 明确分型线和创建分型线曲面; 创建关闭曲面; 创建分型面; 创建连锁曲面; 创建切削分割。 ●修复和曲面 在输入几何体上修复未拔模面 使用直纹曲面创建拔模面 创建复杂关闭曲面 手工创建连锁曲面 使用放样曲面添加曲面 ●多个分型方向 利用底切检查; 创建侧抽芯,斜顶杆和型芯销。 ●改变方法进行模 SolidWorks模具设计教程之具体步骤: 型心和型腔 模具设计是由多个步骤组成。一旦你想为创建的模型设计模具,你就需要遵循几个步骤去创建型心和型腔。下面用一个实例示范了怎样为塑料畚箕零件创建一副简单的两板模。

1. 拔模分析 为了创建可以实现注塑的模具, 塑料产品必须被设计和拔模正确才能从围绕在周围的模具中顶出。要对模型产品进行拔模分析,使用拔模分析命令有助于发现拔模和设计的错误。对前视面进行向上拔模分析。 来看看各分析面的含义: 跨立面:是横跨分型线的面。用户必须把跨立面分割成两块以分开模具的表面。跨立面可以通过跨立面命令手工处理或者通过单击分型线命令中的分割面选项自动完成。 正陡面:这些表面中包含部分拔模量不够的区域。如果整个面的拔模量都不够,它将被归类为【需要拔模】。这些面能在模具中的正侧找到。 负陡面:这些表面包含部分拔模量不够的区域。这些面能在模具中的负侧找到。 2. 调整收缩率 模具上产品型腔部分的加工要略微比从模具中生产出来的塑料件大些。这样做是为了补偿高温的被顶出的塑料件冷却后的收缩率。在通过塑料产品创建模具之前,模具设计者需要放大塑料产品来解决收缩率。不同的材料,收缩率也是不同

Solidworks2014标准件设计树及明细表的中文显示方法

Solidworks2014标准件设计树及明细表的中文显示方法(没有替代文件名及修改失败看这里) 作为solidworks应用家族的新晋小白,学习软件得到了网上各位大神的大力帮助,也想为本圈做点贡献,给后来者铺铺路。 最近一直为软件的标准件中文显示问题烦恼,参考了网上大神的方法,但都遇到了问题。一是2014的Toolbox没有“替代文件名”这一栏,直接改“文件名”又遇到保存失败;二是输出Excel文件没有反应,名都起好了,却什么文件都没有。通过学习各路大神的文章,加上自己的一点小努力,终于完成了标准件中文化工作,经历艰辛,必须分享一下。 首先,我们知道,装配体设计树里显示的都是文件名,所以“文件名”是必须要改的,看着设计树里那一堆长串英文,我的头就嗡嗡大。现在揭晓为什么修改“文件名”老失败,那是因为Toolbox库是只读的。所以,第一步,打开C盘(或者你安装的什么盘)找到SolidWorks Data文件夹(这就是标准件库所在的文件夹),为了防止改烂,先备份一个,复制“SolidWorks Data”,就在本盘粘贴就行,其实一般用不到。然后在“SolidWorks Data”文件点右键“属性”,把只读去勾,然后不是点确定,而是一定要先点“应用”,弹出对话框,选“应用到所有子文件”什么的,最后确定。 接下来就可以大胆改了,点电脑的“开始”,“所有程序”,找到“SolidWorks2014”,“SolidWorks工具”下的“Toolbox2014设定”,打开,先选“3”如图

将最下面“标识”那三项都去勾,省得捣乱。(弯路一:图省事在这里勾选第二项,明细表里倒是显示中文了,可是一大堆中文有用没用全写进去,格都占不下了)。 接下来选“2”,左面栏里找到“GB”,找到你想改的标准件,

基于Solidworks的零件参数化设计

基于Solidworks的零件参数化设计摘要:论述了利用Visual C++ 6.0对Solidworks进行二次开发的基本原理和一些关键技术,开发了可以与Solidworks无缝集成的动态链接库DLL,并且介绍了一个简单的应用实例的实现。 0 引言 Solidworks是一款非常优秀的三维机械软件,其易学易用、全中文界面等特点深受广大工程技术人员喜欢。随着学习和使用Solidwork的人员越来越多,企业为了提高效率和市场竞争力,必然有快速开发新产品、形成自身产品特色的需求,而且对于一些存在着许多重复性的劳动的产品设计需要缩短产品的开发周期。因此有必要对SolidWorks进行二次开发,使其能够在输入少量变化参数的情况下迅速生成所有产品模型并装配,最终生成工程图。 SolidWorks二次开发分两种,一种是基于OLE Automation的IDispatch技术,一般常用于Visual Basic、Delphi编程语言的接口,通过IDispatch接口暴露对象的属性和方法,以便在客户程序中使用这些属性并调用它所支持的方法,此种技术只能开发EXE 形式的程序,所开发的软件不能直接加挂在SolidWorks 系统下,无法实现与SolidWorks 的集成;另一种开发方式是基于COM的,这种技术可以使用最多的SolidWorks API(Application Programming Interface,应用程序接口) 函数。实际上SolidWorks 本身就是用Visual C++编写的,所以使用Visual C++通过COM接口

开发,可以实现对SolidWorks底层的开发并且代码的执行效率高。因为本文开发的是SolidWorks DLL(Dynamic Link Library,动态链接库) 插件,故采用基于COM的开发方式。 1 SolidWorks二次开发原理 1.1 SolidWorks API中的术语 COM(Component Object Model,组件对象模型)技术是SolidWorks API的基础,COM对象是一种包含接口、属性和事件以对象形式封装的实体,它以接口的方式提供服务,这种接口是COM 对象与使用COM对象的客户程序进行通信的唯一通道。 OLE (Object Linking and Embedding,对象的链接和嵌入)可以使应用程序之间能够通过数据嵌入或链接的方式共享数据。它是SolidWorks API构造的基础,是深入理解SolidWorks API的关键。SolidWorks API是SolidWorks作为OLE自动化服务器提供的属性和方法,我们开发的插件就是使用这些接口的OLE客户。 1.2 开发工具Visual C++ 6.0 SolidWorks API是基于COM组件技术构造的,SolidWorks通过COM技术为开发人员提供了强大的二次开发接口,因此Visual C++ 6.0作为当今最流行的软件开发工具之一,是程序员的首选编程利器。它提供了强大的集成开发环境,用以方便、有效地管理、编写、编译、跟踪C++程序,大大加速了程序员的工作,提高了程序代码

SolidWorks模具设计教程

SolidWorks 模具设计 1. 拔模分析 为了创建可以实现注塑的模具, 塑料产品必须被设计和拔模正确才能从围绕在周围的模具中顶出。要对模型产品进行拔模分析,使用拔模分析命令有助于发现拔模和设计的错误。对前视面进行向上拔模分析。 来看看各分析面的含义:跨立面:是横跨分型线的面。用户必须把跨立面分割成 两块以分开模具的表面。 跨立面可以通过跨立面命令手工处理或者通过单击分型线命令中的分割面选项自动完成。 正陡面:这些表面中包含部分拔模量不够的区域。如果整个面的拔模量都不够,它将被归类为【需要拔模】。这些面能在模具中的正侧找到。负陡面:这些表面包含部分拔模量不够的区域。这些面能在模具中的负侧找到。 2. 调整收缩率 模具上产品型腔部分的加工要略微比从模具中生产出来的塑料件大些。这样做是为了补偿高温的被顶出的塑料件冷却后的收缩率。在通过塑料产品创建模具之前,模具设计者需要放大塑料产品来解决收缩率。不同的材料,收缩率也是不同

的,SolidWorks 用比例缩放命令在解决这个问题。这个零件我们以ABS 材料来做,5%的收缩率。 3. 确定分型线分型线是注塑类塑料产品中型腔与型心曲面中相互接触的边界。分型线是那些用来分割型心和型腔曲面的边界。它们也构成了分型面的内部边界。 型腔面(正拔模)是绿色的,型心面(负拔模)是红色的。任何一条被红色和绿色面共用的边都是分型线边界。 当拔模分析完成后,所有的被绿色和红色边共用的边被自动选中并被添加到分型线列表中。单击确定。 手动添加分型线:在这个例子中,当分型线命令运行时,分型线边被自动的选中。因为这是一个简单的分型线边界,这些边界被自动添加到位于分型线PropertyManager 的边线列表中。有时分型线可能会更复杂以致于软件无法自动搜索到分型线。当这种情况发生时,使用位于边线列表框下方的边线选择按钮去选择分型线。 4. 关闭孔和开口 在分型线建立后,下一步是决定塑料产品上哪些开放的成型区域需要关闭曲面。一个开放的成型区域或者是一个孔或者是一个开口,在注塑产品上就是模具型心型腔完全吻合形成的孔。如图所示一个简单的关闭曲面。它创建在拔模后开口较小的一侧。关闭曲面命令自动关闭塑料产品中的开放孔。

相关文档
最新文档