电力系统继电保护知识点总结文字部分1

电力系统继电保护知识点总结文字部分1
电力系统继电保护知识点总结文字部分1

第三章电网距离保护

1.距离保护的定义和基本原理【距离保护:是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反映故障点与保护安装处的距离而工作的保护。】【基本原理:按照几点保护选择性的要求,安装在线路两端的距离保护仅在线路MN内部故障时,保护装置才应立即动作,将相应的断路器跳开,而在保护区的反方向或本线路之外的正方向短路时,保护装置不应动作。】【与电流速断保护一样,为了保证在下级线路出口处短路时保护不误动作,在保护区的正方向(对于线路MN的M侧保护来说,正方向就是由M指向N的方向)上设定一个小于线路全长的保护范围,用整定距离Lset表示。】【当系统发生故障时,首先判断故障的方向,若故障位于保护区的正方向上,则设法测出故障点到保护安装处的距离Lk,并将Lk与Lset比较,若Lk小于Lset,说明故障发生在保护范围以内,这时保护应立即动作,跳开相应的断路器;若Lk大于Lset,说明故障发生在保护范围之外,保护不应动作,对应的断路器不会跳开。若故障位于保护区的反方向上,则无需进行比较和测量,直接判断为区外故障而不动作。】

(3.8为什么阻抗继电器动作特性是区域。常用区域)由于互感器误差、过渡电阻等影响,继电器实际测量的Zm不能严格落在Zset同向直线上,而是该直线附近的区域,为保证区内故障情况下阻抗继电器可靠动作,在复平面上,其动作范围是包括Zset对应线段在内,在Zset方向上不超过Zset的区域。【a:偏移圆无死区,不具有完全方向性,反方向出口短路动作,只能作为后备段】【b:方向圆有方向性,只在正向区内故障动作,但动作特性经过原点,在正向/反向出口短路时Zm很小,处在临界动作区域,可能拒动/误动,必须采取专门措施防止出口故障时拒动或误动】【c:上抛圆】【d:全阻抗圆无电压死区,不具有方向性】【e苹果特性与橄榄特性:苹果特性有较高的耐受过渡电阻的能力,耐受过负荷的能力比较差;橄榄特性正好相反。】【f电抗特性:动作情况只与测量阻抗中的阻抗分量有关,因而它有很强的耐受过渡电阻的能力。但是它本身不具方向性,且在负荷阻抗下也可能动作,所以通常它不能独立应用,而是与其它特性复合,形成具有复合特性的阻抗元件。】【g电阻特性:通常也与其它特性复合,形成具有复合特性的阻抗元件。】【h多边形特性:能同时兼顾耐受电阻的能力和躲负荷的能力。】

(3.9测量阻抗、动作阻抗、整定阻抗的含义)a测量阻抗:Zm=Um/Im定义为保护安装处测量电压与测量电流的比值。复平面上任意矢量。b动作阻抗:Zop是阻抗元件处于临界动作状态对应的阻抗。从原点到阻抗动作特性边界上的矢量表示动作阻抗。c整定阻抗:Zset=Z1*Lset是根据被保护电力系统具体情况设定的常数。一般取保护安装点到保护范围末端的阻抗

(3.10最灵敏角)Zset的阻抗角称为最灵敏角。最灵敏角一般取为被保护线路的阻抗角。

(3.1如何区分正常运行与短路)(3.2负荷阻抗与短路阻抗区别)电力系统正常运行时Um=UN,Im=IN,Zm为负荷阻抗。负荷阻抗的量值较大,其阻抗角为较小的功率因数角,阻抗特性以电阻特性为主。短路时,Um=母线残压,Im= Ik,Zm为短路阻抗。短路阻抗量值较小。阻抗角较大,就等于输电线路的阻抗角,阻抗特性以电感特性为主。(3.6为

什么测量阻抗能反映故障距离)忽略影响较小的分布电容与电导,Zk与短路距离Lk成线性正比关系,Zm=Zk=Z1*Lk,能反映故障距离。

(3.3什么是故障环路,相间短路与接地短路的故障环路差别):一、电力系统发生故障时,故障电流流通的通路称为故障环路。测量电压的选取和测量电流的选取:要取故障环路上的电压、电流。////二、①接地短路:为保护接地短路,取接地短路的故障环路为相—地故障环路,测量电压为保护安装处故障相对地电压,测量电流为带有零序电流补偿的故障相电流,由它们算出的测量阻抗能准确反映单相接地故障、两相接地故障和三相接地短路情况下的故障距离,称为接地距离保护接线方式。②相间短路:对于相间短路,故障环路为相相故障环路,取测量电压为保护安装处两故障相的电压差,测量电流为两故障相的电流差,有它们算出的测量阻抗能够准确地反映两相短路、三相短路和两相短路接地情况下的故障距离,称为相见距离保护接线方式。

(3.7距离保护的构成和各部分的作用):距离保护一般有启动、测量、振荡闭锁、电压回路短线闭锁、配合逻辑和出口等几部分组成(*6)。①启动部分:用来判别系统是否发生故障②测量部分:是距离保护的核心,对它的要求是在系统故障的情况下,快速准确地测量出故障的方向和距离,并与预先设定的保护范围相比较,在区内故障时给出动作信号,区外故障时不动作。③振荡闭锁部分:在电力系统发生振荡时,因为不是短路,距离保护不应动作。但是振荡时的电压、电流幅值周期性的变化,有可能导致距离保护误动作。为防止保护误动作,要求该元件准确判别系统振荡,并将保护闭锁。④电压回路断线部分:电压回路断线时,将会造成保护测量的电压消失,从而可能使距离保护的测量部分出现误判断,这种情况下应该要求各部分将保护闭锁,以防止出现不必要的误动作。⑤配合逻辑部分:该部分用来时限距离保护各个部分之间的逻辑配合以及三段式距离保护中各段之间的时限配合。⑥出口部分:包括跳闸出口和信号出口,在保护动作接通跳闸回路并发出相应的信号。

3.14参考电压:用作相位比较的电压

3.15以记忆电压为参考电压:可以消除死区,但是动作特性不能保持。模拟式回路中,LC振荡电路记忆的参考电压衰减。数字式保护中参考电压不衰减,但故障发生一段时间后,电源电动势变化,不等于记忆电压。

3.17最小精确工作电流,最小精确工作电压:通常情况下,在阻抗继电器的最灵敏角方向上,动作阻抗等于整定阻抗,即Zop=Zset,但是当测量电流较小的时候,由于测量阻抗等影响,使动作阻抗变小,使动作阻抗降为0.9Zset对应的测量电流称为最小精确工作电流。当测量电流很大时,由于互感器饱和等因素影响,动作阻抗也减小,使动作阻抗降为0. 9Zset对应的测量电流,称为最大精确工作电流。

(3.21.电力系统的振荡):指并联运行的电力系统或发电厂之间即发电机之间失去同步,出现功率角大范围周期性变化的现象。电力系统的失步振荡属于严重的不正常运行状态,而不是故障状态。

8.振荡与短路的差异:【负序、零序分量:振荡时——三相完全对称,没有负序和零序分量出现;短路时——长时(不对称短路)或瞬间(在三相短路开始时)出现零序或负序分量。】【电气量变化速度:振荡时——电气量呈周期性变化,其变化速度和功角的变化速度一致,比较慢,当两侧功角摆开180°时相当于在振荡中心发生三相短路;短路时——从短路前到短路后其值突然变化,速度很快,而短路后短路电流、各点的残余电压和测量阻抗不计衰减时事不变的。】【保护误动作情况:振荡时——电气量呈现周期性变化,若阻抗测量元件误动作,在一个周期内误动和返回各一次;短路时——阻抗元件可能动作(区内短路),可能不动作(区外短路)。】

9.振荡闭锁的措施:【1) 利用短路时的负序、零序分量或电流突然变化时短时开放保护实现振荡闭锁。选取能够反映系统中负序、零序、突变的元件作为启动元件,启动元件不动作时,闭锁阻抗继电器,启动元件动作后,短时开放阻抗继电器,如果开放后阻抗继电器动作,说明故障在区内,则维持开放直到故障切除。若在开放时间内阻抗继电器不动作,说明故障在区外则进入闭锁。即使阻抗继电器后来再动作,也不会开放】2) 利用阻抗变化率的不同来实现振荡闭锁3) 利用动作的延时来实现振荡比说

(3.24故障选相,相电流差突变量选相)

【目的:实现分相跳闸。】【原理:ΔIAB=(IA-IB)-(IA0-IB0)=(IA-IA0)-(IB-IB0)=ΔIA-ΔIB】【单相接地短路中A相接地,ΔIBC接近0其他二者较大;AB相短路,三者皆较大,ΔIAB最大;三相短路,ΔIXX都较大,接近相等】

10.过渡电阻的性质:当接地短路或相间短路时,短路点电流由经相导线流入大地流回中性点或由一相流入另一相的途径中所通过物质的电阻,包括电弧电阻,中间物质的电阻,相导线与大地之间的接触电阻,金属杆塔的接地电阻等。

(3.25、3.26单,双侧电源过渡电阻的影响)【单电源——(Zm=Zk+Rg)Rg 使继电器的阻抗值增大,阻抗角减小,是保护距离范围缩短(保护装置距离短路点越近,受到过渡电阻影响越大,同时,保护装置的整定阻抗越小,受到过渡电阻的影响越大)】【双电源——(Zm=(Zk+Rg)+(Ik''/Ik')Rg)Rg对测量阻抗的影响,取决于对策电源提供的短路电流大小及(Ik''/Ik')Rg之间的相位关系。若故障前,M端为送端,N侧为受端,Ik'的相位超前Ik'',则(Ik''/Ik')R g表现为容性电抗,则总的测量阻抗变小,严重时可使I段误动;若故障前M端为受端,N侧为送端,Ik'相位滞后于Ik '',则(Ik''/Ik')Rg表现为感性的阻抗,则总的测量阻抗变大,严重时可使II段拒动。】

克服过渡电阻的措施:采用能容许较大的过渡电阻而不至于拒动的测量元件动作特性,是克服过渡电阻的主要措施。

1) 偏移动作特性在+R轴方向上所占的面积比方向阻抗动作特性大,耐受过渡电阻能力强,若在+R方向上偏移一个角度,则面积更大,耐受过渡电阻能力更强。2) 四边形特性测量元件有较好的耐受过渡电阻能力,上边适当的向下倾斜一个角度可有效避免稳态超越问题。3) 利用不同动作特性进行复合,可以获得较好的抗过渡电阻动作特性。4) 工频故障分量。

(3.30.线路串补电容对距离保护的影响):串联补偿电容后,短路阻抗与短路距离之间不再成线性正比关系,此线性关系被破坏,将使距离保护无法正常测量故障距离,对其正常工作产生不利影响。【减小其影响的措施:①采用直线型动作特性克服反方向误动;②用负序功率方向元件闭锁误动的距离保护;③选取故障前的记忆电压作为参考电压克服串联补偿电容的影响;④通过整定计算来减小串联补偿电容的影响。】

12.影响距离保护正常工作的因素:(接地点的过渡电流——影响最大;系统震荡,电流互感器)系统震荡;短路点过渡电阻;线路串联补偿电容;短路电压、电流的非工频分量。

3.28稳态超越:区外故障期间测量阻抗稳定地落入动作去的现象,原因是过度电阻存在导致保护测量阻抗变小,会引起保护误动作。克服方法为采用耐过度电阻不至于拒动的测量元件

3.29暂态超越:线路故障时,由于暂态分量存在而造成的保护超越现象。克服措施:,采用算法消除衰减直流分量与谐波分量影响

14.工频故障分量距离保护又称为工频变化量距离保护,是一种通过反映工频故障分量电压电流而工作的距离保护。

(3.32.工频故障分量的概念)系统发生金属性短路时,可以分解为非故障状态和附加故障状态,系统在非故障状态下运行电压电流中没有故障分量,系统故障时,相当于系统故障附加状态突然接入,出现电压、电流故障分量ΔU、ΔI,二者既包含系统短路引起的工频电压电流的变化量,还包含短路引起的故障暂态分量,称其中工频电压、电流的变化量为工频故障分量。ΔI=ΔEk/(Zs+Zk),ΔU=-ΔI*Zk

(3.31工频故障分量距离保护的优点):①阻抗继电器以电力系统故障引起的故障电压、电流为测量信号,不反应故障前的负荷量和系统震荡,动作特性基本上不受非故障状态的影响,无需加振荡闭锁;②阻抗继电器仅反映故障中的工频稳态量,不反应其中的暂态分量,动作性能较稳定;③阻抗继电器的动作判据简单,因为实现方便,动作速度较快;④阻抗继电器具有明确的方向性,因为既可以作为距离保护又可以作为方向元件使用;⑤阻抗继电器本身具有较好的选相能力。【应用:鉴于以上特点,工频故障分量距离保护可以作为快速距离保护的I段,用来快速地切除I段范围内的故障。此外,它还可以与四边形特性阻抗继电器复合组成复合继电器,作为纵联保护的方向元件。(它不能用于后备保护)】

(3.33工频故障分量继电器工作原理)

ΔI=ΔEk/(Zs+Zk),ΔU=-ΔI*Zk,取工频故障分量距离元件的工作电压为Uop=ΔU-ΔI*Zset=-ΔI(Zs+Zset)

Zset为保护的整定阻抗,一般取为线路正序阻抗的80%到85%,比较工作电压ΔUop与故障附加状态下短路点电压的大小Uk[0],就能区分区内外故障。动作判据:丨ΔUop丨≥Uk[0],满足该式为区内故障,保护动作。

第四章输电线路纵联保护

4.1纵联保护基本原理:

一、包括方向比较式纵联保护、纵联差动保护两大类,利用线路两端电气量在故障与非故障,区内、区外故障时特征差异构成保护。

二、基本原理:通过通信设备将两侧保护装置联系起来,每一层保护装置不仅反应其安装点的电气量,也反应对侧另一保护安装处的电气量,对二者比较、判断,可以快速、可靠区分本线路内任意点短路与外部短路。

三、动作原理:①方向比较式纵联保护:两侧保护装置将本侧的功率方向,测量阻抗是否在规定方向内、区段内的判别结果传到对侧,每侧保护装置根据两侧的判别结果区分是区内还是区外故障。这类保护在通道中传输的是逻辑信号,而不是电气量本身,传送的信息量较少,但对信息可靠性要求很高。按保护判别方向所用的原理分为方向纵联保护和距离纵联保护。②纵联差动保护:利用通道本侧电流的波形或代表电流相位的信号传到对侧,每侧保护根据两侧电流的幅值和相位比较的结果来区分是区内还是区外故障。每侧直接比较两侧电气量,称为纵连电流差动保护。信息传输量大,要求同步采集,对信道要求高

四、(4.2与阶段式保护区别,优缺点):阶段式保护仅采用保护安装处的电气量。①纵连保护优点:可以快速、可靠区分本线路内任意点短路与外部短路。②纵连保护缺点:需要将线路一侧的电气量传输到另一侧去,需要信道与特殊的通信设备,设备复杂,价格昂贵,而且通信设备故障时可能出现保护拒动和误动。

通信方式:导引线通信;电力线载波通信,微波通信,光纤通信。

(4.6电力线载波通信的构成):①输电线路(三相输电线路都可以用来传递高频信号,任意一相与大地间都可以组成相地回路);②阻波器(为了使高频载波信号仅在本线路中传输而不穿越到相邻线路上去,采用了电感线圈与可调电感线圈组成的并联谐振回路。当其谐振频率为载波信号所选定的载波频率时,对载波电流呈现极高的阻抗,从而将高频电流阻挡在本线路以内。而对工频电流,阻波器仅呈现电感线圈的阻抗,工频电力畅通无阻);③耦合电容器(为使工频对地泄漏电流降低到极小,采用耦合电容器,它的容量极小,对工频信号呈现极大的阻抗,同时可以防止工频电压入侵高频收、发机;对高频电流则阻抗很小,与连接滤波器共同组成带通滤波器,只允许此带通频率内的高频电流通过;④连接滤波器(它是一个可调电感的空心变压器和一个接在副边的电容。连接滤波器与耦合电容器共同组成一个“四端口网络”带通滤波器,时所需频带的电流能够顺利通过。同时空心变压器的使用进一步使收、发信机与输电线路的高压部分相隔离,提高了安全性)⑤高频收、发机(高频收发机由继电保护部分控制发出预定频率的高频信号,通常是在电力系统发生故障启动后发出信号,但也有采用长期发信号发生故障启动保护后停止发生信号或改变信号频率的工作方式。发信机发出的高频信号经载波信道传送到对端,被对端和本端的收信机所接受,两端的收信机及接受本侧的高频信号又接受对侧的高频信号,两个信号经比较判断后,作用于继电保护的输出部分)⑥接地开关(当检修连接滤波器时,接通接地开关,使耦合电容器下端可靠接地。//特点:无中继通信距离长;经济、方便使用;工程施工比较简单。//信号频率范围:50~400khz

5.光纤通信的构成:光发射机、光纤、中继器、光接收机。光发射机的作用是把信号转变成光信号,一般由调制器和光调制器组成。光接收机的作用是把光信号转变成电信号,一般有光探测器和电解器组成。、、特点:通信容量大;可以节约大量金属材料;光纤通信保密性好,敷设方便,不怕雷击,不受外界电磁干扰,抗腐蚀和不怕潮等优点;最重要的特性之一就是无感应性能,因此利用光纤可以构成无电磁感应的,极为可靠的通道。

(闭锁式)方向比较式纵连保护

(4.7.闭锁式方向纵联保护的基本原理)(双侧电源单回,1-6,34间短路):假定短路发生在BC线路上,所有保护都启动,但保护2、5功率方向为负,其余保护的功率方向为正。保护2\5启动发信机发痴高频闭锁信号,非故障线路AB\C D上出现该高频信号对应的高频电流,保护12\56收到该闭锁信号,被闭锁;故障线路上保护34功率方向为正,不发闭锁信号,故障线路BC上不出现高频电流,保护3.4判定正方向故障且没有收到闭锁信号,满足跳闸条件,保护跳闸,切除线路。可见闭锁式方向纵连保护的跳闸判据是本端保护方向元件判定为正方向故障且不收到闭锁信号。

(4.8为什么优先采用负序方向或故障分量的元件)一、优点:①正确反应所有类型故障,方向明确,灵敏度高,无死区。②不受负荷影响。③不受系统振荡影响,振荡无故障不误动,振荡再故障不拒动。④基本不受过渡电阻影响。、、二、缺点:①故障分量元件仅在故障初始阶段有效。②负序方向元件受非全相运行影响大。③线路空载合闸时,二元件都可能误动。

(4.9闭锁式保护为什么需要高低定值两个启动元件)KAI为低定值启动发信元件,灵敏度高,发出闭锁信号。KA2为底定值启动停信元件,灵敏度较低,与方向元件配合,停止闭锁信号,启动跳闸回路。设置两个元件的目的是便于两端保护的配合,确保外部故障时可靠闭锁。

纵连电流差动保护

(4.13保护原理优点)原理:利用基尔霍夫电流定律构成纵连电流差动保护。被保护元件两侧电流和在区内短路时,为短路电流,在区外短路时,其值为0①不反应系统振荡②非全相运行不误动(系统振荡、非全相运行线路两侧流过的是同一电流。)③不受线路(串补电容)影响④测量元件仅反应电流量,不需电压量,不受电压回路影响。

(4.14为什么要求测量与计算严格同步)纵连电流差动保护既比较电流大小又比较电流相位,电流相位与采样时刻密切相关。测量和计算不严格同步会产生较大的不平衡电流

(4.15异地同步测量的主要方法)基于数据通道的同步方法和基于GPS同步时钟的同步方法

(4.16为什么采用带制动的差动特性)不带差动特性的继电器动作整定值很大,不误动但灵敏度低。采用制动特性,使动作电流随不平衡电流增大而增大,始终大于不平衡电流。不仅提高灵敏度,也提高保护在外部短路时不动作的可靠性

电流相位差动保护

(4.18保护原理)依据两端电流相位区分区内区外故障。指定母线指向被保护线路为正方向,正常运行、外部故障时,两端流过同一个电流,相位相反。内部故障时,电流为短路电流,相位相同。

(4.20闭锁角)外部故障时高频信号可能出现的最大间断角称为闭锁角,表示为ψb。当高频信号间断对应时间小于闭锁角时,认定为外部故障,当间断角度大于闭锁角时,认为是内部故障,保护跳闸。闭锁角按照躲过区外故障可能出现最大间断角整定。最大间断角由互感器的角度误差,滤序器及发信操作的角度误差,高频信号沿线路传输的延迟等整定。其中电流互感器两侧二次电流最大误差不超过7°,滤序器及发信操作回路角度误差不超过15°,传输线路长度与等值工频角延迟为L/100*6°,区外短路时两侧收到的高频电流间隔角最小为180°±(7+15+L/100)时,保护不应动作。所以闭锁角ψb>=7+15+L/100,即ψb=7+15+L/100+ψy(裕度角),线路越长闭锁角越大。

(4.21相继动作)在继电保护中,一侧保护线动作跳闸后,另一侧保护才动作的现象,称为相继动作。随着被保护线路的不连续间隔缩短,可能进入保护的不动作区。对于滞后的N侧,超前侧M侧的高频信号经过延迟后间断角增大,可以动作,对于超前M侧,N侧的信号间断角变得更小,可能小于闭锁角导致拒动。为解决M端不能跳闸问题,停止发高频信号,M侧只能收自己发出高频信号,间隔180度,满足跳闸条件随之跳闸。

第五章自动重合闸

1. 采用重合闸的目的(作用):其一是保证并列运行系统的稳定性;其二是尽快恢复瞬时故障时元件的供电,从而自动恢复整个系统的正常运行。

(5.1重合闸优缺点)【A自动重合闸的优点可归纳如下:①可大大提高供电可靠性,在线路上发生暂时性故障时,迅速恢复供电,减少线路停电的次数,这对电测电源回路尤为明显;②在高压输电线路上采用重合闸,还可以提高电力系统并列运行的稳定性,还可以提高传输容量;③对断路器本身由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正作用。】【B缺点:重合于永久性故障时,使电力系统再一次受到故障的冲击,对超高压系统还可能降低并列运行的稳定性。使得断路器的工作条件变得更加恶劣。】

(5.2瞬时性故障与永久性故障)①瞬时故障有:表面闪络,大风引起的碰线,鸟类树枝等引起的短路等,断开的线路继电器再合上,可恢复供电。②永久性故障:由于线路倒杆、断线、绝缘子击穿或损坏引起的故障,再合闸,故障依然存在。

(5.10区分单相重合闸期间瞬时性与永久性故障)单相故障切除后,由于耦合电容和电感,断开相存在对地电压。永久性故障接地点长期存在,故障相与地间形成放电回路,断开相两端电压低//瞬时性故障电弧熄灭后,接地点消失,不形成放电回路,断开相两端电压高。

2.重合闸分类:根据重合闸控制的断路器所接通或断开的电力元件不同,可将重合闸分为线路重合闸,变压器重合闸和母线重合闸等。根据重合闸次数不同,可将重合闸分为一次重合闸和多次重合闸。多次重合闸一般使用在配电网中与分段器配合,自动隔离故障区段,是配电自动化的重要组成部分。而一次重合闸主要用于输电线路,提高系统的稳定性。根据重合闸控制相数不同,可将重合闸分为单相重合闸、三相重合闸、综合重合闸和分组重合闸。一般说:1) 一般没有特殊要求的单电源线路,宜采用一般的三相重合闸;2) 凡是选用简单的三相重合闸能满足要求的线路,都应当选用

三相重合闸;3) 当发生单相接地短路时,如果使用三相重合闸不能满足要求,会出现大面积停电活着重要用户停电,应当选用单相重合闸或综合重合闸。

3.无压合闸与同期合闸:①无压合闸:当线路无电压时重合闸重合②同期合闸:检测母线电压与线路电压,满足同期条件时允许重合闸重合。

4.同期与无压的配置关系:在使用检查线路无电压式重合闸的一侧,当该侧断路器在正常运行状况下由于某种原因而跳开时,由于对侧并未动作,线路上有电压,因而就不能实现重合闸,这是一个很大的缺陷。解决方法:(通常都是在检定无电压的一侧也同时投入同步检定继电器,两者经“或门”并联工作。此时如遇上述情况,则同步检定继电器就能够起作用,当符合同步条件时,即可将误跳闸的断路器重新投入。但是,在使用同步检定的另一侧,其无电压检定是绝对不允许同时投入的。)两侧的投入方式可以利用其中的切片定期轮换,这样可使两侧断路器切断故障次数大致相同。

5.同步检测继电器的检测公式和允许误差的相位:ΔU=2Usin(δ/2);当δ大到一定数值以后,电磁吸引力动作舌片,即把继电器的常闭触点打开,将重合闸闭锁,使之不能动作。继电器的δ定值调节范围一般为20°~40°。Δ整定值为+—1 5°

(5.7最小重合闸时间的整定原则):(1)三相重合闸最小重合闸时间 A.单侧电源线路的三相重合闸:最小重合闸时间按下述原则确定:①在断路器跳闸后,负荷电动机向故障点反馈电流的时间;故障点的电弧熄灭并使周围介质恢复绝缘强度所需时间;②在断路器跳闸息弧后,其触头周围绝缘强度的恢复以及消弧室重新填满油、气所需要的时间;同时其操动机构恢复原状态准备好再次动作所需要的时间;③如果重合闸是利用继电保护跳闸出口启动,其动作时限还应该加上断路器的跳闸时间。//B.双侧电源三相重合闸:除满足上述条件外,还应考虑线路两侧切除故障时间差。/// /(2)单相重合闸最小重合闸时间除满足三相重合闸要求外,还应注意:①两侧选相元件与继电保护以不同时限切除故障可能性;②潜供电流对灭弧产生的延迟影响。

(5.8最佳重合闸时间)最后一次操作完成后,对应最终网络拓扑下稳定平衡点的系统暂态能量值最小的时间,最佳重合时间是周期性出现的,最佳时间附近是次最佳。受系统等值惯性影响最大,也受故障前运行方式、状态、故障类型的影响,可由重合闸元件中专门环节捕捉,也可由软件计算。////A:对于联系薄弱依靠重合闸成功才能维持首摆稳定的系统,最佳重合时间就是最小重合时间。B:对于故障切除后不重合首摆稳定的系统,重合闸对系统再次冲击,不同重合时间会造成系统稳定和不稳定后果,最佳重合时间需计算。

(5.9单相重合闸优缺点)一、优点:在超高压电网的双侧电源联络线上采用单向重合闸,就可以在故障时大大加强两个系统之间的联系,提高输电能力。保持电网的暂态稳定性。当三相切除并继之以三相重合闸很难恢复再同步时,采用单向重合闸避免两系统解列。二、缺点:需要有分相操作断路器,需要专门选相元件,重合闸回路接线复杂。由于非全相运行引起系统不对称,可能引起保护误动作。因此保护整定计算复杂。三、单相重合闸具有以上优点,实践证明优越性,因此在220-500KV电网获得广泛应用。

(5.11选相元件要求,选相原理)一、基本要求:①保证选择性,选出故障相,与继保配合,仅跳开故障相。②保证灵敏性,动作于线路末端单相接地短路。二、原理(常用元件)①电流选相元件,在每相上装设过电流继电器,依据故障相电流较非故障相大的特点,启动电流大于最大负荷电流原则进行整定,以保障动作选择性。该元件装设于电源端,使用短路电流大的情况②低电压选相元件:每相上装设低电压继电器启动电压应小于正常运行及非全相运行时最低电压。这种元件适用于小电源侧或单侧电源i安陆的受电端,此处用电流元件不能满足选择性与灵敏性要求。③阻抗选相元件、相电流突变量选相元件,长用于高压输电线路上。

(5.12.为什么采用前加速保护、优缺点):为了加速故障的切除,可在保护3处采用前加速的方式,即当任何一条线路上发生故障时,第一次都由靠近电源端瞬时无选择性动作予以切除,重合闸以后保护第二次动作切除故障是有选择性的。其启动电流还应该躲开相邻变压器低压侧的短路来整定。主要用于35KV以下由发电厂或重要变电所引出的直配线路上,以便快速切除故障,保证母线电压。//优点:①能够快速地切除瞬时性故障②有可能使瞬时性故障来不及发展成永

久性故障,从而提高重合闸成功率;③能保证发电厂和重要变电所的母线电压子在0.6到0.7倍整定电压以上,从而保证厂用电和重要用户的电能质量;④使用设备少,只需装设一套重合闸装置,简单、经济。//缺点:断路器工作条件恶劣,动作次数多。若靠近电源侧断路器、重合闸装置拒动,扩大停电范围。

(5.13为什么采用后加速保护、优缺点):所谓后加速就是当线路第一次故障时,保护有选择性动作,然后进行重合闸。如果重合于永久性故障,则在断路器合闸后,再加速保护动作瞬时切除故障,而与第一次动作是否带有时限无关。广泛应用于35KV以上的网络以及对重要负荷供电的输电线路上。优点1) 第一次是有选择性的切除故障,不会扩大停电范围,特别是在重要的高压电网中,一般不允许保护无选择性地动作而以后重合闸来纠正;2) 保证了永久性故障能瞬时切除,并仍然是有选择性的;3) 和前加速相比,使用中不受网络结构和负荷条件限制,一般来说是有利而无害的。//

缺点:每个断路器上都要安装一套重合闸设备,复杂。第一次切除故障可能有延时

8.使用单侧电源:合闸时间与继保配合;双侧电源送电线路重合闸的主要方式:①快速自动重合闸;②非同期重合闸;③检同期的自动重合闸。////特点:(1)线路上发生故障跳闸以后,常存在着重合闸时两侧电源是否同步,以及是否允许非同步合闸的问题。(2)当线路发生故障时,两侧保护可能以不同实现动作于跳闸,线路两侧的重合闸必须保证在两侧的断路器都跳闸以后,再进行重合。

(5.4什么条件下重合闸不考虑同期问题)①保护线路两侧电源间有多线路相连,断开一条不失同步。②两侧电源交换功率小,两侧电源负荷平衡,断开后两侧保持同步频率不变。③非同期重合闸冲击电流不破坏系统稳定、电气设备④一侧电源容量小,容易拉入同步

(5.5重合闸必须装检同期元件?)电力系统联系紧密,保证两侧不失步(三个以上回路)或两侧电源有双回路联系,可用检查另一线路是否有电流来判断是否失同步。

第六章电力变压器保护

1.变压器的故障类型和保护方式:变压器的故障可以分为油箱外(主要是套管和引出线上发生相间短路及接地短路)和油箱内(包括绕组的相间短路、接地短路、匝间短路以及贴心的损毁等)两种故障。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的,而油箱内发生相间短路的情况比较少。变压器油箱内故障时,除了变压器各侧电流、电压变化外,油箱内的油、气、温度等非电量也会发生变化。因此,变压器的保护分电量保护(纵差动保护,过电流保护等)和非电量保护。

2.影响纵差动保护的因素:

(6.3变压器差动保护的不平衡电流):1 计算变比与实际变比不一致产生的不平衡电流2 由变压器带负荷调节分接头产生的不平衡电流3电流互感器传变误差产生的不平衡电流4变压器励磁电流产生的不平衡电流。(5:变压器1、2次侧接线组别不同产生的不平衡电流)//①测量误差引起:1、3,变压器结构参数造成:2、4(、5)//②稳态:2、3(、5),暂态:1、4/③/暂态不平衡电流含有大量非周期分量,使其偏于时间轴一侧//④减小不平衡电流的措施:(1、用电流互感器不同的接线形式,Y侧接Yd11,d侧Yy12接线来克服变压器接线组别不同产生的不平衡电流)2:用平衡系数、平衡绕组来补偿计算变比与实际变比不一致产生的不平衡电流。3:尽可能使用型号、效能完全相同的D级电流互感器,使得两侧电流互感器的磁化曲线相同减少不平衡电流。4:在差动回路中接入具有速饱和特性的中间变流器,采取其他增加铁芯饱和措施,来减少电流互感器的暂态不平衡电流。

(6.6为什么具有制特性的差动继电器可以提高灵敏度,最大制动比、最小工作电流、拐点电流:)流入差动继电器的不平衡电流与变压器外部故障的穿越电流有关,穿越电流越大,不平衡电流也越大,具有制动特性的差动继电器利用此特点,在差动继电器中引入能反映变压器穿越电流大小的制动电流,继电器的动作电流不再是按躲过最大穿越电流Ik.max整定,而是根据实际的穿越电流自动调整。变压器穿越电流等于最大外部故障电流Ik.max时,差动继电器动作电流Iset. max与制动电流Ires.max之比称为制动特性的最大制动比。在数字式纵差动保护中,常采用一段与坐标轴平行的直线

与一段斜线构成两折线特性。Iset.r的斜线穿过a点,并与Kset*f(Ires)交于g点,g点对应的动作电流Iset.min称为最小动作电流,对应的制动电流Iset.g称为拐点电流。

(6.7励磁涌流的产生、影响因素)励磁电流的大小取决于励磁电感的数字,即取决于变压器铁芯是否饱和。正常运行和外部故障时变压器不饱和,励磁电流不超过额定电流的2%-5%对纵差动保护的影响常常略去不计。当变压器空载投入或外部故障切除后电压恢复时,变压器电压从0上升至运行电压,在暂态过程中变压器严重饱和,产生很大的暂态励磁电流,称其为励磁涌流。其最大值可达额定电流的4-8倍,并与变压器的额定容量、电压幅值、合闸角以及铁芯剩磁有关。

(6.10消除励磁涌流影响的措施、特点)防止励磁涌流引起纵差动保护的误动:

1采用速饱和中间变流器;励磁涌流中含有大量非周期分量,因此可采用速饱和中间变流器防止差动保护的误动。对于Yd11接线的三相变压器,常常有意向是对称性涌流,无非周期分量,中间变流器不能饱和。只能通过差动继电器的动作电流来躲过。

2 二次谐波制动的方法;励磁涌流中含有大量二次谐波分量。检测到二次谐波分量大于整定值时将差动继电器闭锁。原理简单,调试方便,灵敏度高,但在具有静止无功补偿装置等电容分量比较大的系统,若空载合闸前变压器已经存在故障,合闸后故障相位故障电流,非故障相为励磁涌流,采用三相或门制动时,差动保护必然闭锁。由于励磁涌流衰减很慢,保护动作时间可能长达数百毫秒,这是二次谐波制动的主要缺点。

3间断角鉴别的方法。励磁涌流的波形中痴线间断角,而变压器内部故障时流入差动继电器的稳态差电流是正弦波,不会出现间断角。当间断角大于整定值时将差动保护闭锁。由于其采用按相闭锁的方法,在变压器合闸于内部故障时,能够快速动作。这是比二次谐波制动方法优越的地方。对于其他内部故障,暂态高次谐波分量会使电流波形畸变,微分后更严重。波形畸变不产生间断角,但影响电流波宽。若畸变严重导致波宽小鱼整定值,差动保护将暂时闭锁导致动作延缓。这是与二次谐波制动的区别。

励磁涌流的鉴别方法可以分为频域特征鉴别和时域特征鉴别两类,1和2属于前者,3属于后者。

单相变压器励磁涌流有以下特点:(1)在变压器空载合闸时,涌流是否产生以及涌流大小与合闸角有关,合闸角α=0和α=π时励磁涌流最大。(2)波形完全偏离时间轴一侧,并且出现间断。涌流越大,间断角越小。(3)含有很大成分的非周期分量,间断角小,非周期分量大。(4)含有大量高次谐波分量,而以二次谐波为主。间断角越小,二次谐波也越小。

三相变压器励磁涌流有以下特点:(1)由于三相电压之间有120°的相位差,因而三相励磁涌流不会相同,任何情况下空载投入变压器,至少在两相中要出现不同程度的励磁涌流。(2)某相励磁涌流可能不再偏离时间轴的一侧,变成了对称性涌流。其它两相仍为偏离时间轴一侧的非对称性涌流。对称性涌流的数值比较小。非对称性涌流仍含有大量的非周期分量,但对称性涌流中无非周期分量。(3)三相励磁涌流中有一相或两相二次谐波较小,但至少有一相比较大。(4)励磁涌流的波形仍然是间断的,但间断角显著减小,其中又以对称性涌流的间断角最小。但对称性涌流有另外一个特点:励磁涌流的正向最大值与反向最大值之间的相位角差120°。这个相位差称为波宽,先按稳态故障电流的波宽为180°。

(6.13相间短路后备保护配置原则):在作为相邻元件后备时,应该有选择性地只跳开近故障点一侧的断路器,保证另外两侧继续运行,尽可能缩小故障范围,而作为变压器内部故障的后备时,应该跳开三相断路器,使变压器退出运行。

4.变压器的相间短路后备保护:通常采用过电流保护、低电压启动的过电流保护、复合电压启动的过电流保护以及负序过电流保护等,也有采用阻抗保护作为后被保护的情况。

灵敏度级别比较:①过电流保护:按躲过可能出现的最大负荷电流整定。启动电流较大,对升压变压器或容量较大降压变压器,灵敏度往往不能满足→可用低压启动的过电流保护;②低电压启动的过电流保护:对升压变压器,一侧接电压互感器,另一侧故障,不能满足灵敏度的要求,用两组低电压继电器接变压器的电压互感器,接线复杂→已广泛用复合电压启动过电流保护和负序电流保护;③复合电压启动的过电流保护:对大容量变压器和发电机组,额定电流很大,故障电流很小,不能满足作为相邻元件后被保护要求→采用负序电流保护(不对称故障时灵敏度)

(6.14零序电流保护为什么设两个时限):零序电流保护在配置上要考虑缩小故障范围的问题。每段设二时限,以较短的时限动作于缩小故障影响范围,以较长的时限断开变压器各侧断路器。

5.零序电流保护Ⅰ、Ⅱ段动作电流的整定原则:其动作电流按下时整定:Iset=Krel*Kb*Ix.set//Kre1为可靠系数,取1. 2;Kb为零序电流分支系数;为I:相邻元件零序I段动作电流(II:邻相元件零序电流保护后备段的动作电流);动作时限t3=t3'+△t,t4=t3+△t//配合:零序电流保护I段与相邻元件零序电流保护I段相配合;零序电流保护II段与相邻元件零序电流保护后备段配合。

6.零序电流差动保护的动作判据与一般差动保护一样,整定原则为:(1)躲过外部单相接地故障时的不平衡电流。不平衡电流的计算公式与一般电流差动保护类似。(2)躲过励磁涌流情况下和外部三相故障时产生的零序不平衡电流。励磁涌流对零序电流差动保护而言是穿越性电流,理论上不会产生不平衡电流,三相故障时一次侧也无零序电流。实际中产生的零序不平衡电流是由于各个电流互感器传变误差引起的。零序电流差动保护的动作电流比一般电流差动保护小,因此在变压器内部单相接地故障时灵敏度比较高。

7.自耦变压器高中压侧零序电流的测量方法:由于自耦变压器高、中压两侧具有共同的接地中性点,两侧的零序电流保护不能接于中性线的电流互感器上,而应分别接于本侧三相电流骨干器的零序电流滤过器上。

(6.15全绝缘变压器和分级绝缘变压器对接地保护要求的区别)①全绝缘变压器在中性点处能够承受与引出线一样的对地电压,所以系统发生单相接地同时变为中性点不接地时,自身绝缘强度可以承受这种过电压,但此时产生的零序电压会危及其他电力设备的绝缘,必须装设零序电压保护,零序电压保护的动作电压要躲过在部分中性点接地电网发生单相接地时,保护安装处可能出现的最大零序电压;同时在发生单相接地且失去接地中性点时拥有足够灵敏度。②分级绝缘变压器利用设置在变压器中性点放电间隙上的零序电流元件检测,当中性点电压超过允许电压时。间隙放电,检测到放电电流后迅速切除变压器。放电间隙因气象条件、连续放电次数可能出现拒动情况,因此还需装设零序电压元件作为后备,动作于切除变压器。

8.变压器保护(配置原则)包括:瓦斯保护,纵差动保护或电流速断保护,外部相间短路和接地短路时的后备保护,过负荷保护,过励磁保护,其他非电量保护。

9.纵差动保护动作电流的整定原则:①躲过外部短路时的最大不平衡电流;②躲过变压器的最大励磁电流;③躲过电流互感器二次回路断线引起的差电流。

第七章

1.1发电机的故障类型主要有:①定子绕组相间短路;②定子一相绕组内的匝间短路;③定子绕组单相接地;④转子绕组一点接地或两点接地;⑤转子励磁回路励磁电流异常下降或完全消失。

1.2.发电机的不正常运行状态主要有:

①由于外部短路引起的定子绕组过电流;②由于负荷超过发电机额定容量而引起的三相对称过负荷;③由外部不对称短路或不对称负荷(如单相负荷、非全相运行等)而引起的发电机负序过电流和过负荷;④由于突然甩负荷而引起的定子绕组过电压;⑤由于励磁回路故障或强励磁时间过长而引起的转子绕组过负荷;⑥由于汽轮机主汽门突然关闭而引起的发电机逆功率等。

7.1.发电机的故障类型及保护方式主要有:①对1MW以上发电机的定子绕组及其引出线的相间短路,应装设纵差动保护。②对直接连接于母线的发电机定子绕组单相接地故障,当接地故障电流大于规定的允许值时,应装设有选择性的接地保护装置。③对于定子一相绕组内的匝间短路。当定子绕组星形接线、每相有并联分支且中性点侧有分支引出端时,应装设横差保护;200MW及以上的发电机有条件时可装设双重化横差保护。④对于发电机外部短路引起的过电流,可以采用下列保护方式:1)50MW以上发电机——负序过电流及单原件低电压启动过电流保护2)1MW以上发电机——复合电压启动的过电流保护3)1MW及以下小型发电机——过电流保护4)自并励发电机——带电流记忆的低压过流保护⑤对于由不对称符合或外部不对称短路引起的负序过电流,在50MW以上发电机上装设负序过电流保护⑥对于由对称负荷引起的发电机定子绕组过电流,应装设接于一相电流的过负荷保护⑦对于水轮发电机定子绕组过电压,应装设带延时的过电压保护⑧对于发电机励磁回路的一点接地故障,对于1MW及以下的小型发电机可装设定期检测装置;对1MW以上的发电机应装设专用的励磁回路一点接地保护装置。⑨对于发电机励磁消失故障,在发电机不允许失磁运行时,应在自动灭磁开关断开时连锁开发电机的断路器;对采用半导体励磁以及100MW及以上采用电机励磁的发电机,应增设直接反应发电机失磁时电气参数变化的专用失磁保护。⑩对于转子回路的过负荷,在100MW及以上采用半导体励磁系统的发电机上,装设转子过负荷保护(11)对于汽轮发电机主气门突然关闭而出现的发电机变电动机运行的异常运行方式,为了防止破坏汽轮机,对200MW及以上的大容量汽轮发电机宜装设逆功率保护(12)对于300MW以上的发电机,应装设过励磁保护(13)其他保护

7.3标积制动与比率制动原理表达式

①标积制动。令差动电流为:Id=丨I1’+I2’丨;制动电流为:Ires=sqrt(I1’*I2’*cos(180°-θ))当cos(180°-θ)>0//Ir es=0当cos(180°-θ)<0。则标积制动的纵差保护动作判据为:(Id>=Ks*Ires)∩(Id>=Id.min)。式中Ks——标积制动系数,θ——I1’与I2’夹角

②比率制动。Id=丨I1’+I2’丨;Ires=(丨I1’-I2’丨)/2,比率制动保护的动作方程为:Id>[K(Ires-Ires.min)+Id.mi n],Ires>Ires.min,或Id>Id.min,Ires<=Ires.min。式中Id——差动电流,Ires——制动电流,Id.min——启动电流,Ires. min——拐点电流,K——制动线斜率

2.发电机定子相间短路的纵差保护接线方式:

2.1发电机纵差保护的动作逻辑:由于发电机中性点为非直接接地,当发电机内部发生相间短路时,当两相或两相以上差动继电器动作时,可判断为发电机内部发生短路故障;而仅有一相差动继电器动作时,则判为TA断线。为了对付发生一点在区内接地而另外一点在区外接地引起的短路故障,当有一相差动继电器动作且同时有负序电压时也判定为发电机内部短路故障。这种动作逻辑的特点是单相TA断线不会误动,因此可省去专用的TA断线闭锁环节,且保护安全可靠。

2.2.1发电机完全纵差动保护(7.4 完全纵差动保护为何不反应匝间短路故障):常规纵差动保护引入发电机定子机端和中性点的全部相电流I1’和I2’在定子绕组发生同相匝间短路时两电流仍相等,保护不能动作(变压器匝间短路时,变压器变比改变,流入差动继电器电流不再为0,变压器纵差动保护能反映匝间短路故障)

2.2.2发电机不完全纵差保护接线(7.5纵差动保护的特点和不足,中性点分支的选取原则):大型汽轮或水轮发电机每相定子绕组均为两个或者多个并联分支。若仅引入发电机的中性点侧部分分支电流I2'来构成纵差动保护,选择适当的T A变比,也可以保证正常运行及区外故障时没有差流,而在发生发电机相间与匝间短路时均会形成差流,当超过定值时,可切除故障,这种纵差动保护被称为不完全纵差动保护。其可按下列原则选择配置中性点TA的个数:a/2≤N≤a/2 +1; a——发电机每相的并联分支总数,N——中性点侧每相接入纵差动保护的分支数。不足:发电机机端和中性点TA变比不在相等,引起不平衡电流增加

4.发电机定子绕组匝间短路的保护方式:

①横差动保护(发电机裂相横差动保护和单元件差动保护)

横差动保护原理:当同相间非等电位点发生匝间短路时,各绕组电动势不再相等,因而出现因电动势插而在各绕组间产生的环流。利用该环流构成裂相横差动保护。对于有两个以上中性点引出端子的发电机利用中性点连线上电流,构成单元件横差动保护。

②纵向零序电压式定子绕组匝间短路保护。(为防止区外故障时匝间短路保护误动作,可增设负序功率源方向元件)

定子绕组匝间短路有两种:一个分支绕组内部发生匝间短路;同相的两个并联分支绕组间短路。

5.定子绕组单相接地保护方式:

(7.7定子绕组单相接地保护重要性):发电机容易发生绕组线棒和定子铁芯之间绝缘的破坏,因此发生单相接地故障的比例很高,约占70%-80%,由于大型发电机定子绕组对地电容较大,当发电机端附近发生接地故障时,故障点的电容电流比较大,影响发电机的安全运行,同时由于接地故障的存在,会引起接地弧光过电压,可能导致发电机其他位置绝缘的破坏

①利用零序电压构成的发电机定子绕组单相接地保护(常用于发电机——变压器组的接地保护)

②利用三次谐波电压构成的发电机定子绕组单相接地保护(可以反应发电机定子绕组中距离中性点50%范围内的单相接地故障,并且当故障点越靠近中性点时,保护的灵敏性越高;利用基波零序电压构成的接地保护,则可以反应α>0. 15范围内的单相接地故障,且当故障点越靠近发电机机端时,保护的灵敏性就越高。因此,利用三次谐波电压比值和基波零序电压的组合可以构成100%的定子绕组单相接地保护)

③利用零序电压和叠加电源构成的发电机100%定子绕组单相接地保护。

(7.8大容量发电机为什么要采用100%定子接地保护):大容量发电机可能在中性点附近发生接地故障。零序电流电压保护在中性点附近有死区,不能100%保护定子绕组。100%定子接地保护一部分是零序电压保护,保护定子绕组的85%以上;另一部分需要其他原理(如三次谐波原理或叠加电源方式原理)的保护共同构成100%定子接地保护,能消除零序电压保护的死区,从而实现保护100%定子绕组的接地保护。

(7.9负序电流对发电机的影响):不对称短路、三相负荷不平衡—发电机定子绕组中出现负序电流,建立相对于转子而二倍频率的负序旋转磁场,在转子绕组、阻尼绕组、铁芯上感应出倍频电流,产生危险的热效应。同时100HZ的倍频电磁转矩将作用在转子大轴和定子机座上,引起100HZ振动,威胁发电机安全。

(7.10)为什么大型发电机采用反时限负序过电流保护

(7.9)+发电机单机容量越大,A越小。A=I^2*t,I^2越大,允许时间越短。I^2越小,允许时间越长。由于发电机对I ^2这种反时限特性,故采用反时限保护。

第八章母线保护

8.1判别母线故障的基本方法:①全电流差动原理判别母线故障,在正常运行以及母线范围以外故障时,在母线上所有连接元件中,流入的电流和流出的电流相等,或表示为ΣIpi=0;当母线上发生故障时,所有与母线连接的元件都想故障点供给短路电流或者输出残余的符合电流,按基尔霍夫电流定律ΣIpi=Ik。

②电流相位差动原理:如果从每个连接元件中电流的相位来看,在正常运行与外部故障时,至少一个元件的电流相位与其他元件的电流相位相反,当母线故障时,除电流等于零的元件外,其他元件的电流接近同相位。

8.6简述断路器失灵保护:断路器失灵保护,是指当故障线路的继电保护动作发出跳闸脉冲,但其断路器拒绝跳闸时,能以较短的视线切除与其同在一条母线上的其他断路器,以实现快速后备同时又使停电范围限制为最小的一种后备保护。

继电保护心得体会

继电保护心得体会 【篇一:对继电保护故障分析和处理的心得体会】 对继电保护故障分析和处理的心得体会 摘要:随着科技的发展各种类型的电气设施出现在人们日常生活和工 作中,这些电气设施对供电提出了质量和稳定性的要求,这就使如何保 证电网安全稳定成为电力工作的重要环节。在现代化电力事业的规划、经营和管理等各项活动中,继电保护是一项重要的工作,继电保护 是维护供电稳定、维持电网的正常工作、确保用电安全的重要举措。本文从电力工作的经验出发,对继电保护故障的分析和处理进行讨论, 希望对继电保护工作提供参考和借鉴。 关键词:继电保护故障分析和处理 科技的进步和经济的发展,各种类型的电气设施出现在人们日常生活 和工作中,新型电气设施对供电提出了质量和稳定性的要求,这就使如 何保证电网安全稳定成为电力工作的重要环节。在现代化电力事业 的发展规划、经营活动和监督管理等各项工作中,继电保护成为电力 工作的重中之重。 1、继电保护的概述 (1)继电保护的定义。继电保护是研究电力系统故障和危及安全运行 时应对和处理的办法和措施,探讨对电力系统故障和危及安全运行的 对策,通过自动化处理的办法,利用有触点的继电器来保护电力系统及 其元件的安全,使其免遭损害。 (2)继电保护的功能。当电力系统发生故障或异常工况时,继电保护可 以实现的最短时间和最小区域内,将故障设备和元器件断离和整个电 力系统;或及时发出警报信号由电力工作者人工消除异常工况,达到减 轻或避免电力设备和元器件的损坏对相邻地区供电质量的影响。(3) 继电保护的分类。首先,从功能和作用的角度进行划分,继电保护分为:

异常动作保护、短路故障保护。其次,从保护对象的角度进行划分,继 电保护分为:主设备保护、输电线保护等。其三,从动作原理的角度进 行划分,继电保护分为:过电压、过电流、远距离保护等。最后,从装置 结构的角度进行划分,继电保护分为:数字保护、模拟式保护、计算保护、信号保护等。 2、常见的继电保护故障分析 由于新型电力控制设备和继电保护信息系统的使用,目前电力网络继 电保护工作的整体管理水平有了显著的提升,不过,毕竟电网和电力设 施是一个复杂的、庞大的系统,由于主客观各方面的因素影响,在继电 保护工作中仍然存在较多的问题,在日常的电力工作中常见的继电保 护故障主要有如下几种类型: (1)继电保护的运行故障。继电保护的运行故障是电力系统中危害性 最大且最常见的一种故障形式,表现为:主变差动保护、开关拒合的误 动等。例如:在电路网络的长期运行中,局部温度过高有可能导致继电 保护装置失灵。继电保护的运行故障最为常见的是电压互感器的二 次电压回路故障,是电力网络运行和围护中的薄弱环节之一。(2)继电 保护的产源故障。继电保护的产源故障是保护装置本身出现的故障, 在继电保护装置的实际运行中,其元器件的质量高低于继电保护产源 故障出现频率呈反相关。在电网和用电器中,继电保护装置对于零部 件的精度差、材质等都有严格的要求,如果采用质量不合格的零部件 和元器件将会增加继电保护产源故障发生的可能性。(3)继电保护的 隐形故障。继电保护的隐形故障既是又是大规模停电事故和电力保 护系统运行故障出现的根本原因,也是引发电力火灾的主要因素,电力 企业继电保护工作人员必须引起高度的重视。 3、处理继电保护故障的措施 为了实现电力事业又好又快地发展,进一步提高电力行业的经济和社 会效益, 【篇二:电力系统继电保护和自动化专业实习总结范文】

继电保护问答题

1、继电保护的基本任务是什么? 自动迅速有选择性的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证故障部分迅速恢复正常运行。 反应电器元件不正常运行状态,并根据运行维护条件而动作于发出信号或跳闸。 2、电力系统对继电保护的四个基本要求是什么?分别对这四个基本要求进行解释?正确理解”四性”的统一性和矛盾性. 选择性:电力系统发生故障时,保护装饰仅将故障元件切除,而使非故障元件仍能正常运行,以尽量缩小停电范围。 速动性:尽可能快地切除故障 灵敏性:在规定的保护范围内,对故障情况的反应能力。满足灵敏性要求的保护装置应在区内故障时,不论短路点的位置与短路的类型如何,都能灵敏的正确的反映出来。 可靠性:保护装置规定的保护范围内发生了应该动作的故障时,应可靠动作,即不发生拒动;而在其他不改动作的情况下,应可靠不动作,即不发生误动作。 继电保护的科学研究设计制造和运行的绝大部分工作是围绕着如何处理好这四个基本要求之间的辩证统一关系而进行的。 3、继电保护装置的组成包括那几个部分?各部分的功能是什么? 测量部分:测量从被保护对象输入的有关电气量进行计算,并与已给定的整定值进行比较,根据比较的结果,给出“是”“非”“大于”“不大于”等于“0”或“1”性质的一组逻辑符号,从而判断保护是否该启动。 逻辑部分:根据测量部分各输出量大小,性质,输出的状态,出现的顺序或其组合,使保护装置按一定的逻辑关系工作,最后确定时候应该使断路器跳闸货发出信号,并将有关命令传给执行部分。 执行部分:根据逻辑部分输出的信号,完成保护装置所担负的任务,如被保护对象故障时,动作与跳闸,不正常运行时,发出信号,正常运行时,不动作等。 4、何谓主保护、后备保护和辅助保护?远后备和近后备保护有何区别?各有何优、缺点?主保护:反映被保护元件本身的故障,并以尽可能短的时限切除故障的保护。 后备保护:主保护或断路器拒动时用来切除故障的保护,又分为近后备保护和远后备保护。辅助保护:为补充主保护和后备保护的性能或当主保护和后备保护退出运行时而增设的简单保护。 近后备保护:在本元件处装设两套保护,当主保护拒动时,由本元件的另一套保护动作。远后备保护:当主保护或断路器拒动时,由上一级电力设备或线路的保护来实现的后备保护。微机继电保护硬件系统的构成及各模块的作用 数据采集系统:将模拟信号转换为数字信号 微机主系统:对采集到的数据进行分析处理,以完成各种保护功能 输入\输出系统:完成各种保护的出口跳闸,信号报警,外部节点输入及人机对话等功能。微机保护软件的构成和各种算法 保护软件: 主程序:对硬件初始化,自检(定值自检,程序自检,开出检查,开入量监视等) 采样中断系统:采样,气动元件判别等。 故障处理程序:实现保护功能。 全周傅氏算法:计算结果是一个向量的实部和虚部。滤波作用:直流及各次谐波分量。需要一个周期的数据窗,时间是20毫秒。可以提取任何整次谐波分量。受到衰减直流分量影响会产生计算误差,可采取适当的措施减小其影响。 半波傅氏算法:在故障后10ms即可进行计算,因而保护的动作速度减少了半个周期。不能

(完整版)电力系统分析基础知识点总结

一.填空题 1、输电线路的网络参数是指(电阻)、(电抗)、(电纳)、(电导)。 2、所谓“电压降落”是指输电线首端和末端电压的(相量)之差。“电压偏移”是指输电线某点的实际电压和额定 电压的(数值)的差。 3、由无限大的电源供电系统,发生三相短路时,其短路电流包含(强制/周期)分量和(自由/非周期)分量,短路 电流的最大瞬时的值又叫(短路冲击电流),他出现在短路后约(半)个周波左右,当频率等于50HZ时,这个时间应为(0.01)秒左右。 4、标么值是指(有名值/实际值)和(基准值)的比值。 5、所谓“短路”是指(电力系统正常运行情况以外的相与相之间或相与地之间的连接),在三相系统中短路的基本 形式有(三相短路),(两相短路),(单相短路接地),(两相短路接地)。 6、电力系统中的有功功率电源是(各类发电厂的发电机),无功功率电源是(发电机),(电容器和调相机),(并联 电抗器),(静止补偿器和静止调相机)。 7、电力系统的中性点接地方式有(直接接地)(不接地)(经消弧线圈接地)。 8、电力网的接线方式通常按供电可靠性分为(无备用)接线和(有备用)接线。 9、架空线是由(导线)(避雷线)(杆塔)(绝缘子)(金具)构成。 10、电力系统的调压措施有(改变发电机端电压)、(改变变压器变比)、(借并联补偿设备调压)、(改变输电线路参 数)。 11、某变压器铭牌上标么电压为220±2*2.5%,他共有(5)个接头,各分接头电压分别为(220KV)(214.5KV)(209KV) (225.5KV)(231KV)。 二:思考题 1.电力网,电力系统和动力系统的定义是什么?(p2) 答: 电力系统:由发电机、发电厂、输电、变电、配电以及负荷组成的系统。 电力网:由变压器、电力线路、等变换、输送、分配电能的设备组成的部分。 动力系统:电力系统和动力部分的总和。 2.电力系统的电气接线图和地理接线图有何区别?(p4-5) 答:电力系统的地理接线图主要显示该系统中发电厂、变电所的地理位置,电力线路的路径以及它们相互间的连接。但难以表示各主要电机电器间的联系。 电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机电器、线路之间的电气结线。但难以反映各发电厂、变电所、电力线路的相对位置。 3.电力系统运行的特点和要求是什么?(p5) 答:特点:(1)电能与国民经济各部门联系密切。(2)电能不能大量储存。(3)生产、输送、消费电能各环节所组成的统一整体不可分割。(4)电能生产、输送、消费工况的改变十分迅速。(5)对电能质量的要求颇为严格。 要求:(1)保证可靠的持续供电。(2)保证良好的电能质量。(3)保证系统运行的经济性。 4.电网互联的优缺点是什么?(p7) 答:可大大提高供电的可靠性,减少为防止设备事故引起供电中断而设置的备用容量;可更合理的调配用电,降低联合系统的最大负荷,提高发电设备的利用率,减少联合系统中发电设备的总容量;可更合理的利用系统中各类发电厂提高运行经济性。同时,由于个别负荷在系统中所占比重减小,其波动对系统电能质量影响也减小。联合电力系统容量很大,个别机组的开停甚至故障,对系统的影响将减小,从而可采用大容高效率的机组。 5.我国电力网的额定电压等级有哪些?与之对应的平均额定电压是多少?系统各元件的额定电压如何确定? (p8-9) 答:额定电压等级有(kv):3、6、10、35、110、220、330、500 平均额定电压有(kv):3.15、6.3、10.5、37、115、230、345、525 系统各元件的额定电压如何确定:发电机母线比额定电压高5%。变压器接电源侧为额定电压,接负荷侧比额定电压高10%,变压器如果直接接负荷,则这一侧比额定电压高5%。 6.电力系统为什么不采用一个统一的电压等级,而要设置多级电压?(p8) S 。当功率一定时电压越高电流越小,导线答:三相功率S和线电压U、线电流I之间的固定关系为

继电保护知识点的总结

继电保护知识点的总结 电力系统中常见的故障类型和不正常运行状态 1.故障:短路(最常见也最危险);断线;两者同时发生 2.不正常:过负荷;功率缺额而引起的频率降低;发电机突然甩负荷而产生的过电压;振荡 3.继电保护在电力系统发生故障或不正常运行时的基本任务和作用: 迅速切除故障,减小停电时间和停电范围指示不正常状态,并予以控制 4.继电保护的基本原理 利用电力系统正常运行与发生故障或不正常运行状态时,各种物理量的差别来判断故障或异常,并通过断路器将故障切除或者发出告警信号 5.继电保护装置的三个组成部分 1)测量部分:给出“是”、“非”、“大于”等逻辑信号判断保护是否启动 2)逻辑部分:常用逻辑回路有“或”、“与”、“否”、“延时起动”等,确定断路器跳闸或发出信号 3)执行部分 6.保护的四性 1)选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽量减少 2)速动性:继电保护装置应尽可能快的断开故障元件。 3)灵敏性:继电保护装置应尽可能快的断开故障元件。故障的切除时间等于保护装置和断路器动作时间之和 4)可靠性:在保护装置规定的保护范围内发生了它应该反映的故障时,保护装置应可靠地动作(即不拒动,称信赖性)而在不属于该保护装置动作的其他情况下,则不应该动作(即不误动,称安全性)。 7.主保护、后备保护 1)保护:被保护元件发生故障故障,快速动作的保护装置 2)后备保护:在主保护系统失效时,起备用作用的保护装置 3)远后备:后备保护与主保护处于不同变电站 4)近后备:主保护与后备保护在同一个变电站,但不共用同一个一次电路。 8.继电器的相关概念: 1)继电器是测量和起动元件 2)动作电流:使继电器动作的最小电流值 3)返回电流:使继电器返回原位的最大电流值 4)返回系数:返回值/动作值

电力系统继电保护问答

电力系统继电保护问答 05 电力系统继电保护问答 5 56.在大短路电流接地系统中,为什么有时要加装方向继电器组成零序电流方向保护? 答:在大短路电流接地系统中,如线路两端的变压器中性点都接地,当线路上发生接地短路时,在故障点与各变压器中性点之间都有零序电流流过,其情况和两侧电源供电的辐射形电网中的相间故障电流保护一样。为了保证各零序电流保护有选择性动作和降低定值,就必须加装方向继电器,使其动作带有方向性。使得零序方向电流保护在母线向线路输送功率时投入,线路向母线输送功率时退出。 57.零序(或负序)方向继电器的使用原则是什么? 答:零序电流保护既然是作为动作机率较高的基本保护,故应尽量使其回路简化,以提高其动作可靠性。而零序功率方向继电器则是零序电流保护中的薄弱环节。在运行实践中,因方向继电器的原因而造成的保护误动作时有发生。因此,零序(或负序)方向继电器的使用原则如下:(1)除了当采用方向元件后,能使保护性能有较显著改善的情况外,对动作机率最多的零序电流保护的瞬时段,特别是“躲非全相一段”,以及起后备作用的最末一段,应不经方向元件控制。 (2)其他各段,如根据实际选用的定值,不经方向元件也能保证选择性和一定灵敏度时,也不宜经方向元件控制。 (3)对平行双回线,特别是对采用单相重合闸的平行双回线,如果互感较大,其保护有关延时段必要时也包括灵敏一段,一般以经过零序方向元件控制为宜,因为这样可以不必考虑非全相运行情况下双回线路保护之间的配合关系,从而可以改善保护工作性能。 (4)方向继电器的动作功率,应以不限制保护动作灵敏度为原则,一般要求在发生接地故障且当零序电流为保护起动值时,尚应有2以上的灵敏度。 58.大短路电流接地系统中.输电线路接地保护方式主要有哪几种? 答:大短路电流接地系统中,输电线路接地保护方式主要有:纵联保护(相差高频、方向高频等)、零序电流保护和接地距离保护等。 59.什么是零序保护?大短路电流接地系统中为什么要单独装设零序保护? 答:在大短路电流接地系统中发生接地故障后,就有零序电流、零序电

电力系统分析课程总结

电力系统分析课程总结报告 学院(部):电气学院 专业班级:电气工程学生姓名:** 指导教师:**** 2014年6 月28 日

目录 1电力系统概述和基本概念 (1) 1.1电力系统概述 (1) 1.2电力系统中性点的接地方式 (3) 2电力系统元件参数和等值电路 (3) 2.1电力线路参数和等值电路 (4) 2.2变压器、电抗器的参数和等值电路 (4) 2.3发电机和负荷的参数及等值电路 (5) 2.4电力网络的等值电路 (5) 3简单电力网络潮流的分析与计算 (6) 3.1电力线路和变压器的功率损耗和电压降落 (6) 3.2开式网络的潮流计算 (7) 3.3环形网络的潮流分布 (7) 4电力系统潮流的计算机算法 (7) 4.1电力网络的数学模型 (8) 4.2等值变压器模型及其应用 (8) 4.3节点导纳矩阵的形成和修改 (8) 4.4功率方程和变量及节点分类 (9) 4.5高斯-塞德尔法潮流计算 (9) 4.6牛顿-拉夫逊法潮流计算 (9) 4.7P-Q分解法潮流计算 (9) 5电力系统有功功率的平衡和频率调整 (10) 5.1电力系统中有功功率的平衡 (10) 5.2电力系统的频率调整 (11) 6电力系统的无功功率平衡和电压调整 (11) 6.1电力系统中无功功率的平衡 (12) 6.2电力系统的电压管理 (12) 6.3电力系统的几种调压方式 (13) 6.4电力线路导线截面的选择 (13) 7电力系统各元件的序参数和等值电路 (14)

7.1对称分量法 (14) 7.2同步发电机的负序电抗和零序电抗 (14) 7.3异步电动机的参数和等值电路 (15) 7.4变压器的零序参数和等值电路 (15) 7.5电力系统的序网络 (15) 8电力系统故障的分析与实用计算 (15) 8.1由无限大容量电源供电的三相短路的分析与计算 (16) 8.2电力系统三相短路的实用计算 (16) 8.3电力系统不对称短路的分析与计算 (16) 8.4电力系统非全相运行的分析 (17) 9机组的机电特性 (17) 9.1电力系统运行稳定性的基本概念 (17) 9.2同步发电机组的运动方程式 (17) 9.3发电机的功-角特性方程式 (18) 9.4异步电动机的机电特性 (18) 9.5自动调节励磁系统对功-角特性的影响 (18) 10电力系统的静态稳定性 (19) 10.1电力系统静态稳定性的基本概念 (19) 10.2小扰动法的基本原理和分析在电力系统静态稳定性中的应用 (19) 10.3电力系统电压、频率及负荷的稳定性 (20) 10.4调节励磁对电力系统静态稳定性的影响 (20) 10.5保证和提高电力系统静态稳定性的措施 (20) 11电力系统的暂态稳定性 (21) 11.1电力系统暂态稳定性概述 (21) 11.2简单电力系统暂态稳定性的定性分析 (22) 11.3简单电力系统暂态稳定性的定量分析 (22) 11.4发电机转子运动方程的数值解法 (22) 11.5提高电力系统暂态稳定性额措施 (23) 致谢 (23)

电力系统继电保护复习知识点总结材料

第一章、绪论 1、电力系统运行状态概念及对应三种状态: 正常(电力系统以足够的电功率满足符合对电能的需求等)不正常(正常工作遭到破坏但还未形成故障,可继续运行一段时间的情况)故障(电力系统的所有一次设备在运行过程中由于外力、绝缘老化、误操作、设计制造缺陷等原因会发生如短路,断线等故障) 2、电力系统运行控制目的: 通过自动和人工的控制,使电力系统尽快摆脱不正常运行状态和故障状态,能够长时间的在正常状态下运行。 3、电力系统继电保护: 泛指继电保护技术和由各种继电保护装置组成的继电保护系统。 4、事故: 指系统或其中一部分的正常工作遭到破坏,并造成对用户停电或少送电或电能质量变坏到不能允许的地步,甚至造成人身伤亡和电气设备损坏的事件。 5、故障: 电力系统的所有一次设备在运行过程中由于外力、绝缘老化、误操作、设计制造缺陷等原因会发生如短路,断线等。 6、继电保护装置: 指能反应电力系统中电气设备发生故障或不正常运行状态,并动作与断路器跳闸或发出信号的一种自动装置。 7、保护基本任务: 自动、迅速、有选择性的将故障元件从电力系统中切除,使元件免于继续遭到损坏,保障其它非故障部分迅速恢复正常运行;反应电气设备的不正常运行状态,并根据运行维护条件,而动作于发出信号或跳闸。 8、保护装置构成及作用: 测量比较元件(用于测量通过被保护电力元件的物理参量,并与其给定的值进行比较根据比较结果,给出“是”“非”“0”“1”性质的一组逻辑信号,从而判断保护装置是否应启动)、逻辑判断元件(根据测量比较元件输出逻辑信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否该使断路器跳闸、发出信号或不动作,并将对应的指令传给执行输出部分)、执行输出元件(根据逻辑判断部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作) 9、对电力系统继电保护基本要求: 可靠性(包括安全性和信赖性;最根本要求;不拒动,不误动);选择性;速动性;灵敏性 10、保护区件重叠: 为了保证任意处的故障都置于保护区内。区域越小越好,因为在重叠区内发生短路时,会造成两个保护区内所有的断路器跳闸,扩大停电范围。 11、故障切除时间等于保护装置(0.06-0.12s,最快0.01-0.04s)和断路器动作时间(0.06-0.15,最快0.02-0.6)之和。 12、①110kv及以下电网,主要实现“远后备”-一般下级电力元件的后备保护安装在上级(近电源侧)元件的断路器处;②220kv及以上电网,主要实现“近后备”-,“加强主保护,简化后备保护” 13、电力系统二次设备: 对一次设备的运行状态进行监视、测量、控制和保护的设备。

继电保护简答题

1.具有制动特性的差动继电器能够提高灵敏度的原因:流入差动继电器的不平衡电流 与变压器外部故障时的穿越电流有关。穿越电流越大,不平衡电流也越大,具有制动特性的差动继电器正式利用这个特点,在差动继电器中引入一个能够反应变压器穿越电流大小的制动电流,继电器的动作电流不再是按躲过最大穿越电流整定,而是根据实际的穿越电流自动调整。 2.最大制动比:差动继电器动作电流和制动电流之比。 3.三相重合考虑两侧电源同期问题的原因:三相重合时,无论什么故障均要切除三相 故障,当系统网架结构薄弱时,两侧电源在断路器跳闸以后可能失去同步,故需要考虑两侧电源的同期问题。 4.单相重合闸不需要考虑同期问题的原因:单相故障只跳单相,使两侧电源之间仍然 保持两相运行,一般是同步的,故不需考虑同期问题。 5.输电线路纵联电流差动保护在系统振荡、非全相运行期间不会误动的原因:系统振 荡时线路两侧通过同一个电流,与正常运行及外部故障时的情况一样,差动电流为量值较小的不平衡电流,制动电流较大,选取适当的制动特性,就会保证不误动作; 非全相运行时,线路两侧电流也为同一个电流,电流纵联差动保护也不会误动作。 6.负荷阻抗:指电力系统正常运行时,保护安装处的电压(近似为额定电压)与电流 (负荷电流)的比值。正常运行时电压较高、电流较小、功率因数高,负荷阻抗量值较大。 7.短路阻抗:指电力系统发生短路时,保护安装处电压变为母线残余电压,电流变为 短路电流,此时测量电压与测量电流的比值。即保护安装处与短路点之间一段线路的阻抗,其值较小,阻抗角较大。 8.系统等值阻抗:单个电源供电时为保护安装处与背侧电源点之间电力元件的阻抗和; 多个电源供电时为保护安装处断路器断开的情况下,其所连接母线处的戴维南等值阻抗。即系统等值电动势与短路电流的比值,一般通过等值、简化的方法求出。9.继电保护装置及其作用:指能反应电力系统中设备发生故障或不正常运行状态,并 动作于断路器跳闸或发出信号的一种自动装置。其作用:①电力系统正常运行时不动作;②电力系统不正常运行时发出报警信号,通知工作人员处理,使其尽快恢复正常运行;③电力系统故障时,甄别出发生故障的电力设备,并向故障点与电源点之间、最靠近故障点的断路器发出跳闸指令,将故障部分与电网其他部分隔离。10.构成距离保护必须用各种环上的电压、电流作为测量电压和电流的原因:在三相电 力系统中,任何一相的测量电压与测量电流之比都能算出一个测量阻抗,但是只有故障环上的测量电压、电流之间才满足关系U m=I m Z m=I m Z k=I m Z1L k,即由它们算出的测量阻抗才等于短路阻抗,才能够正确反应故障点到保护安装处的距离。用非故障环上的测量电压、电流也可算出一个测量阻抗,但它与故障距离之间没有直接的关系,不能正确反应故障距离,故不能构成距离保护。 11.变压器纵联差动保护中,不平衡电流产生的原因:①变压器两侧电流互感器的计算 变比与实际变比不一致;②变压器带负荷调节分接头;③电流互感器有传变误差; ④变压器的励磁电流。

注册电气工程师专业基础知识点总结材料

注册电气工程师专业基础知识点总结 1、十进制转为几进制:整数部分除以几取余法,小数部分乘以几取整法 2、计数器:环形n 位计数器分频为n ;扭环形n 位计数器分频是2n; n 位二进制分频是n 2;模是n 的行波计数器分频是n. 3、与门:有0则0;或门:有1则1;或门分配律:A+(BC )=(A+B )(A+C ) 摩根定理:A B=A+B A+B=A B 4、若干三态逻辑门输出端连在一起能实现逻辑功能的分时传送数据 5、发电机的额定电压:比用电设备、电网的额定电压高5% ;我国发电机额定:0.4、6.3、10.5、13.8、18、24kV 6、变压器的额定电压:一次绕组(受电端)与电网额定电压相同;二次绕组(送电端)相当于供电电源,比用电设备高出10%,在3、6、10kV 电压时,短路阻抗小于7.5%的配电变压器,则高出用电设备5% 7、工作接地:保护设备可靠工作;保护接地:保证人身安全,把可能带电的金属接地;保护接零:外壳与接地中线(零线)直接相连,保护人身安全;防雷接地:雷击或过电压的电流导入大地;防静电接地:消除静电积累 8、中性点直接接地:110kv 及以上采用;中性点经消弧线圈:60kv 及以下采用不接地或经消弧线圈接地,消弧线圈是为了补偿接地短路电流 9、中性点经消弧线圈接地系统中一般采用(过补偿形式) 10、三相导线的集合均居越大,则导线的电抗(越大) 11、电阻R :反映发热效应;电抗X :反映磁场效应;电纳B :反映电场效应;电导G :反映电晕和电漏现象 12、短路试验的目的是为了测量(铜耗和阻抗电压) 13、电力系统分析计算中功率和阻抗一般指:(三线功率、一相等效阻抗) 14、三绕组变压器数学模型中电抗反映变压器绕组的(等效漏磁通) 15、原件两端电压的相角差主要取决于通过原件的(有功功率),P 越大,相角差越大 16、电压降落:首末端电压(向量差);电压损耗:首末端电压的(数值差) 17、高压电网线路中流过的无功功率主要影响线路两端的(电压幅值) 18、为(抑制空载输电线路末端电压升高),常在线路末端(并联电抗器) 19、对供电距离近,负荷变化不大的变电所常采用(顺调压方式) 20、调整用户端电压的主要措施有(改变变压器电压比) 21、同步调相机可以向系统中(既可发出感性无功,也可吸收感性无功) 22、降低网络损耗的主要措施之一:(减少线路中传输的无功功率) 23、在无功功率不足的电力系统中,首先应该采取的措施是(采用无功补偿装置补偿无功的缺额) 24、在电力系统短路电流计算中,假设各元件的磁路不饱和的目的是(可以应用叠加原理) 25、三相短路的短路电流只包含(正序分量) 26、单相短路的短路电流为30A ,则其正序分量为(10A ) 27、冲击电流是指短路后0.01s 的瞬时值 28、变压器空载合闸时可能产生很大的冲击电流,原因在于(磁路有一定的剩磁,主磁通的暂态变化) 29、电力系统k 点A 相发生单相短路,对称分量以A 相为准,其电流之间的关系为021k k k i i i == 30、在短路的实用计算中,通常只用(周期分量电流)的有效值来计算短路功率 31、高压线末端电压升高常用办法是在线路末端加(串联电容器) 32、异步电动机等效电路中代表轴上机械功率输出的负载性质为(电容器) 33、单相交流绕组产生的磁动势是(脉振磁动势) 34、电机理论中电角度与机械角度的关系(机电θθp =) 35、利用空间对称分布的三项绕组可以产生圆形旋转磁场,三相交流绕组空间分部差(1200 电角度)

《电路分析基础》学习总结

《电路分析基础》学习总结 通过电路基础的学习,我们的科学思维能力,分析计算能力,实验研究能力和科学归纳能力有了很大的提高,为下学期我们学习电子技术打下了基础。 对于我们具体的学习内容,第一到第四章,主要讲了电路分析的基本方法,以及电路等效原理等,而后面的知识主要是建立在这四章的内容上的,可以说,学好前面这四章的内容是我们学习电路基础的关键所在。在这些基础的内容中又有很多是很容易被忽略的。对于第五章的内容,老师让我们自主讲解的方式加深了我们的印象,同时也让我们学会如何去预习,更好的把握重点,很符合自主学习的目的。至于第六章到第十章的内容则完全是建立在前四章的内容上展开的,主要就是学会分析电路图结构的方法,对于一二阶电路的响应问题,就是能分析好换路前后未变量和改变量,以及达到稳态时所求量的值。 对于老师上课方法的感想:首先感谢窦老师和杨老师的辛苦讲课,窦老师声音洪亮,讲课思路清晰,让我们非常受益,杨老师的外语水平让我们大开眼界,在中文教学中,我们有过自主学习的机会,也让大家都自己去讲台上讲课,加深了我们的印象,而且对于我们学习能力有很大提高,再是

老师讲课的思路,让我受益不凡,在这之中感受到学习电路的方法。在双语班的教学中,虽然外语的课堂让我们感觉很有难度,有的时候甚至看不懂ppt上的单词,临时上课的时候去查,但是老师上课时经典的讲解确实很有趣味,不仅外语水平是一定的锻炼,同时也是学习电路知识,感觉比起其他班的同学,估计这应该是一个特色点吧。 对于学习电路感想:学习电路,光上课听老师讲课那是远远不够的,大学的学习都是自主学习,没有老师的强迫,所以必须自己主动去学习,首先每次上完课后的练习,我觉得很有必要,因为每次上完课时都感觉听的很懂,看看书呢,也貌似都能理解,可是一到做题目就愣住了,要么是公式没有记住,要么是知识点不知道如何筛选,所以练习很重要,第二点,应该要反复回顾已经学过的内容,只有反复记忆的东西才能更深入,不然曾经学过的东西等到要用就全都忘记了,不懂得应该多问老师,因为我们是小班,这方面,老师给了我们足够的机会。 另外,我们电路分析基础的课程网站,里面的内容已经比较详实,内容更新也比较快,经常展示一些新的内容,拓宽了我们的视野。

继电保护问答

问答题 1、继电保护装置的作用是什么? 答:当被保护元件发生故障时,自动、迅速、有选择地将故障从电力系统切除,以保证其余部分恢复正常运行,并使故障元件免于继续受损害。 当被保护元件发生异常运行状态时,经一定延时动作于信号,以使值班人员采取措施。2、继电保护按反应故障和按其功用的不同可分为哪些类型? 答:(1)按反应故障可分为:相间短路保护,接地短路保护,匝间短路保护,失磁保护等。 (2)按其功用可分为:主保护、后备保护、辅助保护。 3、何谓主保护、后备保护和辅助保护? 答:(1)能反应整个保护元件上的故障,并能以最短延时有选择地切除故障的保护称为主保护。 (2)主保护或其断路器拒动时,由于切除故障的保护称为后备保护。 (3)为补充主保护和后备保护的不足而增设的比较简单的保护称为辅助保护。 4、继电保护装置由哪些部分组成? 答:继电保护装置由测量部分、逻辑部分和执行部分组成。 5、何谓电流互感器10%误差特性曲线? 答:10%误差曲线是指电流误差10%,角度误差不超过7°时,电流互感器的一次电流倍数和允许负荷阻抗之间的关系曲线。 6、怎样用10%误差曲线校验电流互感器? 答:(1)根据接线方式,确定负荷阻抗计算; (2)根据保护装置类型和相应的一次电流最大值,计算电流倍数; (3)由已知的10%曲线,查出允许负荷阻抗; (4)按允许负荷阻抗与计算阻抗比较,计算值应小于允许值,否则应采用措施,使之满足要求。 7、保护装置常用的变换器有什么作用? 答:(1)按保护的要求进行电气量的变换与综合; (2)将保护设备的强电二次回路与保护的弱电回路隔离; (3)在变换器中设立屏蔽层,提高保护抗干扰能力; (4)用于定值调整。 8、用哪些方法可以调整电磁型电流继电器定值? 答:调整动作电流可采用:(1)改变线圈连接方式;(2)改变弹簧反作用力;(3)改变舌片起始位置。 9、信号继电器有何作用? 答:装置动作的信号指示并接通声光信号回路。 10、电流变换器和电抗变换器最大的区别是什么? 答:(1)电流变换器二次侧接近短路状态,可看成电流源。电抗器二次侧接近开路状态,将电流源变换为电压源; (2)电流变换器对不同频率电流的变换几乎相同,而电抗变换器可抑制直流、放大高频分量电流。 11、何谓继电器的起动? 何谓继电器的动作? 答:继电器的起动部分由正常位置向动作开始运动,使正常位置时的功能产生变化,称为起动。继电器完成所规定的任务,称为动作。 12、为什么电磁型过量继电器的返回系数小于1?影响返回系数的因素有哪些? 答:由于摩擦力矩和剩余力矩的存在,使的返回量小于动作量,根据返回系数的定义返回系数必然小于1。影响返回系数的因素有:(1)剩余力矩的大小;(2)衔铁与铁芯之间的气隙大小; (3)可动部分的摩擦力矩。 13、何谓电磁型过电流继电器的动作电流、返回电流及返回系数? 答: 使继电器动作的最小电流称为动作电流;使继电器返回的最大电流称为返回电流;返回电流与动作电流之比称为返回系数。 14、何谓电磁型低电压继电器的动作电压、返回电压及返回系数? 答: 使继电器返回的最小电压称为返回电压;使继电器动作的最大电压称为动作电压;返回

最新电力系统分析总结(复习资料)

1、有发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成的整体,称为电力系统 2、按电压等级的高低,电力网可分为:1低压电网(<1kv)2中低电网(11000kv) 3、负荷的分类:1.按物理性能分:有功负荷、无功负荷 2.按电力生产与销售过程分:发电负荷、供电负荷、和用电负荷 3.按用户性质分:工业、农业、交通运输业和人民生活用电负荷 4.按负荷对供电的可靠性分:一级、二级、三级负荷 4、我国电力系统常用的4种接地方式:1.中性点接地 2.中性点经消弧线圈接地3.中性点直接接地 4.中性点经电阻的电抗接地小电流接地方式:(1.2)优点:①可靠性能高②单相接地时,不易造成人身或轻微轻微的人身和设备安全事故缺点:经济性差、容易引起谐振,危及电网的安全运行。大接地电流方式:(3.4)优点:①能快速的切除故障、安全性能好②经济性好。缺点:系统供电可靠性差(任何一处故障全跳) 5、消弧线圈的工作原理:在单相接地时,可以线圈的电流Il补偿接地点的容性电流消除接地的不利影响补偿方式:①全补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,Il< Ik时,Ie为纯容性,易产生谐振过电压③过补偿:Il>Ik时,Ie为纯感性,一般都采用过电压法。 6、架空线路的组成:①导线、②避雷线、③杆塔、④绝缘子、⑤金具 7、电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数,如I、V、P等。 8、分裂导线用在什么场合,有什么用处?一般用在大于350kv的架空线路中。可避免电晕的产生和增大传输容量。 9、导线是用来反映的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 10、三绕组变压器的绕组排列方式:①中、高、低②低、中、高排列原则:①高压绕组电压高,故绝缘要求也高,一般在最外层、②升压变压器一般采用:---- 1、标么值:是指实际有名值与基准值得的比值。优点:可以用来简化计算缺点:同一实际值可能对应着多个不同的标么值。基准值的选取:①基准值的单位应与有名值的单位相同、②所选取的基准值物理量之间应符合电路的基本关系、③P33 12、短路:指一切不正常的相与相之间的或相与地面之间的通路。形式: ①三相电路、②单相短路接地、③两相短路、④两相短路接地。 13、短路计算的任务; ①在选择电气设备时,要保证电气设备要有足够的动稳定性和热稳定性,这都要以短路计算为依据。②为了合理地配置各种继电保护装,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含一些电流计算的内容。 14、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出无穷大的功率的电源。特点:①电源频率和电压保持不变、②电源的内阻为零。 15、短路要做的假设:①由无穷大电源供电、②短路前处于稳态、③电路三相对称。16、短路电流实际上包括两个分量:①是周期性分量,即稳态短路电流,它是短路电流中的强迫分量,其幅值Im取决于电源电动势的幅值和电路参数。 ②是非周期分量,它是短路电流中的自由分量,按指数形式衰减。17、 短路冲击电流:是指短路电流中最大可能的瞬时值,同非周期分量有关。18、对称分量法:是将一组不对称的三相量看成三组不同的对称三相量之和。三相量为:①正序分量:各相量的绝对值相等、相互之间有120°的相位,且与系统在正常对称运行下的相序相同。Ib1=Ia1?e-j120、Ic1= Ia1?ej120; ②负序分量:各相量的绝对值相等,相互之间有120°的相位差但与正常运行时的相许相反,以A相为基准相,有Ib2=Ia2?ej120、Ic2=Ia2?ej-120;③零序分量:各相量的绝对值相等,相位相同,也即Ia0=Ib0=Ic0。19、力系统元件的序参数:同步发电机的负序和零序阻抗:正序电抗、负序电抗、零序电抗。20、电网中各发电机之间合并的条件:①发电机的特性(类型、参数等)是否大致相同,②发电机到短路点的电气距离是否大致相等。 21、短路功率主要用来校验断路器的切断能力。22、不对称故障:①纵向故障:指的是网络中的两个相邻节点k和k′之间出现不正常的断开或三相阻抗不相等的情况。②横向故障:23、非全相断线:是指一相断线和两相断线的非全线断线形式。非全相断线的运行是在故障口出现了某种不对称状态,系统的其余某部分的参数还是三相对称的,可以运用对称分量法进行分析。 24、潮流计算的几个量:①电压降落:指供电支路首末端电压的相位差; ②电压损耗:指供电支路首末端两端电压的数量差,即为(U1-U2);③电压偏移:指电网中某点的实际电压U与其额定电压UN之差,有时用百分数表示,即:电压偏移=(U-Un)/Un*100% ; ④电压调整:指线路末端在空载时的电压U20与负载时的电压U2的数量差。由于输电线路的电容效应,特别是超高压输电线路的电容效应,在空载时线路末端电压值上升较大。25、电源输出的功率由两部分组成:①一部分与负荷和线路阻抗有关、②第二部分与负荷无关,只与两端电源的电压差和线路阻抗有关,称为循环功率。 26、通过对负荷节点的功率流向的分析会发现:①有的负荷只需要单方向提供电力就能满足负荷供电的要求,②而有的负荷必须从两个方向或两个以上方向同时同时提供电力才能满足负荷的供电要求。这种必须同时从两个方向或以上提供电力才能满足负荷供电要求的负荷节点,称为功率分点。27、闭式网络中电压最低点的判断:功率分点就是整个电力网电压的最低点。①在较高电压级的电网中,由于X>>R,此时电压最低点往往是无功功率分点。②在较低电压级的电网中,由于R>>X,此时电压最低点往往是有功功率分点。28、潮流计算的主要内容:①电流和分布的计算、②节点电压和电压损耗的计算、③功率损耗的计算。29、对每个节点i来讲,通常有四个变量:①发电机发出的有功功率和无功功率、②电压幅值和相位30、根据电力系统的实际运行条件,一般将节点分为以下三种类型:①PQ节点:这类节点P和Q是给定的,节点电压(幅值、相位)是待求量。电力系统中的绝大多数节点属于这一类型。②PU 节点:这类节点是P和U是给定的,节点的Q和电压的相位待求。③平衡节点:平衡节点只有一个,它的电压幅值U和相位已给定,P和Q为待求量。31、 ①平衡节点:在潮流分布算出之,网络中的功率损耗是未知的。因此网络中至少有一个节点的P不能给定,这个节点承担了系统的有功功率平衡,故称为平衡节点。②基准节点:必须选定一个节点,指定电压相位为0,作为计算各点电压相位的参考。这个节点称为基准节点。习惯上把基准节点和平衡节点选为同一点,称为平衡节点。32、高斯—塞得尔潮流计算步骤:P130 功率因数:cos@=Pmax/Sn 33、每一次选代中,对于PU节点,必须作以下几项计算:①修正节点电压、②计算节点无功功率、③无功功率超限检查。 34、几种常见的无功功率电源:①同步发电机、②同步调相机及同步电动机、③并联电容器、④静止无功功率补偿器svc、⑤高压输电线的充电功率。 35、中枢点电压的调节方式:①逆调压:对于中枢点至各负荷点的供电线路较长,各负荷变化规律大致相同,且负荷波动较大的网络中,在最大负荷时,线路上电压损耗增大,适当提高中枢电压以抵偿增大的电压损耗防止负荷点的电压过低;在最小负荷时,线路上电压损耗减小,适当降低中枢点电压以防止负荷点的电压过高。这种在最大负荷时提高中枢电压,在最负荷时降低中枢点电压的调压方式i,称为逆调压。②顺调压:对于负荷变化较小哦,线路不长的网络,在允许电压偏移范围内,最大负荷时,电压可以低一些;最小负荷时,电压可以搞一些,这种方式称为顺调节。③恒调压:对于负荷变动较小,供电线路上电压损耗也较小的电力网络,无论是最大负荷还是最小负荷,只要中枢点电压维持在允许电压偏移范围内的某一个或较小范围内,就是可以保证各负荷点的电压质量。36、变压器的分接头:一般设在高压和中压绕组上。对于6300kv?A 及以下的变压器中,高压侧有三个分接头。每个分接头可使电压变化5%,各分接头电压分别为:0.95Un、Un、1.05Un。对于容量为8000kv?A 及以上的变压器,高压侧有5个分接头。各分接头电压分别为:0.95Un、0.975Un、Un、1.025Un、1.05Un,记为:Un(+/-)2*2.5% 37绕组变压器:三绕组变压器除高压侧有分接头外,一般中压侧也有分接头可供选择。首先根据低压侧母线的调压要求,在高—低压绕组之间进行计算,选取高压侧的分接头电压,即变比Uth/Un;然后根据中压侧母线的调压要求及选取的高压侧分接头电压Uth在高—中压侧绕组之间进行计算,选取中压侧的分接头电压Utm。确定变比为Uth/Utm/Un1 38、频率的一次调整:当负荷波动时,将引起频率的变化。这时发电机组的出力在调速器的作用下,也将作适当的调整;负荷从系统中吸收的实际功率也将作一定调整,从而在新的频率下,达到新的功率平衡。 39、频率的二次调整:一次调整是由调速器来调节,其结果是发电机增加的输入功率小于实际增加的负荷功率,此时频率仍旧小于fn。为了使系统稳定运行在fn下,此时用自动调频装置去调整,使发电机的静态曲线向上平移,直至系统发电机组的输入功率能符合负荷功率的增长的需要使系统频率运行于fn 上。序参数:对称的三相电路中流过不同序列的电流时,所遇到的阻抗是不同的,然而同一相序的电压和电流间仍符合欧姆定律。40、降低网损的技术措施:①提高用户处的功率因数,避免无功功率还距离传送;②在闭式网络中实行功率经济分布;③组织变压器经济运行; ④合理组织各发电厂经济运行; ⑤合理选择导线的截面积;⑥调整用户的负荷曲线,调峰节电。⑦合理安排检修计划;⑧适当提高电力网的运行电压水平。41、等微增率准则:就是运行的发电机组按微增率相等的原则来分配负荷,这样就是使系统总的燃料消耗 为最小,从而是最经济的。42、提高电力系统静态稳定性的措施:①减小元件 的电抗、②采用自动调节励磁装置、③改善系统的结构和采用中间补偿设备。 1、有发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成 的整体,称为电力系统2、按电压等级的高低,电力网可分为:1低压电网 (<1kv)2中低电网(11000kv)3、负荷的分类:1.按物理性能 分:有功负荷、无功负荷 2.按电力生产与销售过程分:发电负荷、供电负荷、 和用电负荷 3.按用户性质分:工业、农业、交通运输业和人民生活用电负荷 4. 按负荷对供电的可靠性分:一级、二级、三级负荷4、我国电力系统常用 的4种接地方式:1.中性点接地 2.中性点经消弧线圈接地3.中性点直接接地 4. 中性点经电阻的电抗接地小电流接地方式:(1.2)优点:①可靠性能 高②单相接地时,不易造成人身或轻微轻微的人身和设备安全事故缺点:经济 性差、容易引起谐振,危及电网的安全运行。大接地电流方式:(3.4)优 点:①能快速的切除故障、安全性能好②经济性好。缺点:系统供电可靠性 差(任何一处故障全跳)5、消弧线圈的工作原理:在单相接地时,可 以线圈的电流Il补偿接地点的容性电流消除接地的不利影响补偿方式:①全 补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,Il< Ik时,Ie为纯容 性,易产生谐振过电压③过补偿:Il>Ik时,Ie为纯感性,一般都采用过电压法。 6、架空线路的组成:①导线、②避雷线、③杆塔、④绝缘子、⑤金具 7、 电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络 参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数, 如I、V、P等。8、分裂导线用在什么场合,有什么用处?一般用在大于 350kv的架空线路中。可避免电晕的产生和增大传输容量。9、导线是用来反映 的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 10、三绕组变压器的绕组排列方式:①中、高、低②低、中、高排列原 则:①高压绕组电压高,故绝缘要求也高,一般在最外层、②升压变压器一般 采用:---- 1、标么值:是指实际有名值与基准值得的比值。优点:可以用来简 化计算缺点:同一实际值可能对应着多个不同的标么值。基准值的选取:①基 准值的单位应与有名值的单位相同、②所选取的基准值物理量之间应符合电路的 基本关系、③P33 12、短路:指一切不正常的相与相之间的或相与地面之间的通路。形式: ①三相电路、②单相短路接地、③两相短路、④两相短路接地。 13、短路计算的任务; ①在选择电气设备时,要保证电气设备要有足够的动 稳定性和热稳定性,这都要以短路计算为依据。②为了合理地配置各种继电保护 装,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的 主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优 设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含 一些电流计算的内容。 14、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出 无穷大的功率的电源。特点:①电源频率和电压保持不变、②电源的内阻为零。 15、短路要做的假设:①由无穷大电源供电、②短路前处于稳态、③电路三相对 称。16、短路电流实际上包括两个分量:①是周期性分量,即稳态短路电流, 它是短路电流中的强迫分量,其幅值Im取决于电源电动势的幅值和电路参数。 ②是非周期分量,它是短路电流中的自由分量,按指数形式衰减。17、 短路冲击电流:是指短路电流中最大可能的瞬时值,同非周期分量有 关。18、对称分量法:是将一组不对称的三相量看成三组不同的对称三相量之 和。三相量为:①正序分量:各相量的绝对值相等、相互之间有120°的相位, 且与系统在正常对称运行下的相序相同。Ib1=Ia1?e-j120、Ic1= Ia1?ej120; ②负 序分量:各相量的绝对值相等,相互之间有120°的相位差但与正常运行时的相 许相反,以A相为基准相,有Ib2=Ia2?ej120、Ic2=Ia2?ej-120;③零序分量:各 相量的绝对值相等,相位相同,也即Ia0=Ib0=Ic0。19、力系统元件的序参数: 同步发电机的负序和零序阻抗:正序电抗、负序电抗、零序电抗。20、电网中 各发电机之间合并的条件:①发电机的特性(类型、参数等)是否大致相同,② 发电机到短路点的电气距离是否大致相等。 21、短路功率主要用来校验断路器的切断能力。22、不对称故 障:①纵向故障:指的是网络中的两个相邻节点k和k′之间出现不正常的断开 或三相阻抗不相等的情况。②横向故障:23、非全相断线:是指一相断线和两 相断线的非全线断线形式。非全相断线的运行是在故障口出现了某种不对称状 态,系统的其余某部分的参数还是三相对称的,可以运用对称分量法进行分析。 24、潮流计算的几个量:①电压降落:指供电支路首末端电压的相位差; ②电压损耗:指供电支路首末端两端电压的数量差,即为(U1-U2);③电压偏 移:指电网中某点的实际电压U与其额定电压UN之差,有时用百分数表示, 即:电压偏移=(U-Un)/Un*100% ; ④电压调整:指线路末端在空载时的电压 U20与负载时的电压U2的数量差。由于输电线路的电容效应,特别是超高压输 电线路的电容效应,在空载时线路末端电压值上升较大。25、电源输出的 功率由两部分组成:①一部分与负荷和线路阻抗有关、②第二部分与负荷无关, 只与两端电源的电压差和线路阻抗有关,称为循环功率。 26、通过对负荷节点的功率流向的分析会发现:①有的负荷只需要单方向 提供电力就能满足负荷供电的要求,②而有的负荷必须从两个方向或两个以上方 向同时同时提供电力才能满足负荷的供电要求。这种必须同时从两个方向或以上 提供电力才能满足负荷供电要求的负荷节点,称为功率分点。27、闭式网络中 电压最低点的判断:功率分点就是整个电力网电压的最低点。①在较高电压级的 电网中,由于X>>R,此时电压最低点往往是无功功率分点。②在较低电压级的 电网中,由于R>>X,此时电压最低点往往是有功功率分点。28、潮流计算的 主要内容:①电流和分布的计算、②节点电压和电压损耗的计算、③功率损耗的 计算。29、对每个节点i来讲,通常有四个变量:①发电机发出的有功 功率和无功功率、②电压幅值和相位30、根据电力系统的实际运行条件, 一般将节点分为以下三种类型:①PQ节点:这类节点P和Q是给定的,节点电 压(幅值、相位)是待求量。电力系统中的绝大多数节点属于这一类型。②PU 节点:这类节点是P和U是给定的,节点的Q和电压的相位待求。③平衡节点: 平衡节点只有一个,它的电压幅值U和相位已给定,P和Q为待求量。31、 ①平衡节点:在潮流分布算出之,网络中的功率损耗是未知的。因此 网络中至少有一个节点的P不能给定,这个节点承担了系统的有功功率平衡, 故称为平衡节点。②基准节点:必须选定一个节点,指定电压相位为0,作为计 算各点电压相位的参考。这个节点称为基准节点。习惯上把基准节点和平衡节点 选为同一点,称为平衡节点。32、高斯—塞得尔潮流计算步骤:P130 功 率因数:cos@=Pmax/Sn 33、每一次选代中,对于PU节点,必须作以下几项 计算:①修正节点电压、②计算节点无功功率、③无功功率超限检查。 34、几种常见的无功功率电源:①同步发电机、②同步调相机及同步电动 机、③并联电容器、④静止无功功率补偿器svc、⑤高压输电线的充电功率。 35、中枢点电压的调节方式:①逆调压:对于中枢点至各负荷点的供电线 路较长,各负荷变化规律大致相同,且负荷波动较大的网络中,在最大负荷时, 线路上电压损耗增大,适当提高中枢电压以抵偿增大的电压损耗防止负荷点的电 压过低;在最小负荷时,线路上电压损耗减小,适当降低中枢点电压以防止负荷 点的电压过高。这种在最大负荷时提高中枢电压,在最负荷时降低中枢点电压的 调压方式i,称为逆调压。②顺调压:对于负荷变化较小哦,线路不长的网络, 在允许电压偏移范围内,最大负荷时,电压可以低一些;最小负荷时,电压可以 搞一些,这种方式称为顺调节。③恒调压:对于负荷变动较小,供电线路上电压 损耗也较小的电力网络,无论是最大负荷还是最小负荷,只要中枢点电压维持在 允许电压偏移范围内的某一个或较小范围内,就是可以保证各负荷点的电压质 量。36、变压器的分接头:一般设在高压和中压绕组上。对于6300kv?A 及以 下的变压器中,高压侧有三个分接头。每个分接头可使电压变化5%,各分接头 电压分别为:0.95Un、Un、1.05Un。对于容量为8000kv?A 及以上的变压器, 高压侧有5个分接头。各分接头电压分别为:0.95Un、0.975Un、Un、1.025Un、 1.05Un,记为:Un(+/-)2* 2.5% 37绕组变压器:三绕组变压器除高压侧有分 接头外,一般中压侧也有分接头可供选择。首先根据低压侧母线的调压要求,在 高—低压绕组之间进行计算,选取高压侧的分接头电压,即变比Uth/Un;然后根 据中压侧母线的调压要求及选取的高压侧分接头电压Uth在高—中压侧绕组之 间进行计算,选取中压侧的分接头电压Utm。确定变比为Uth/Utm/Un1 38、频率的一次调整:当负荷波动时,将引起频率的变化。这时发电机组 的出力在调速器的作用下,也将作适当的调整;负荷从系统中吸收的实际功率也 将作一定调整,从而在新的频率下,达到新的功率平衡。 39、频率的二次调整:一次调整是由调速器来调节,其结果是发电机增加 的输入功率小于实际增加的负荷功率,此时频率仍旧小于fn。为了使系统稳定 运行在fn下,此时用自动调频装置去调整,使发电机的静态曲线向上平移,直 至系统发电机组的输入功率能符合负荷功率的增长的需要使系统频率运行于fn 上。序参数:对称的三相电路中流过不同序列的电流时,所遇到的阻抗是不 同的,然而同一相序的电压和电流间仍符合欧姆定律。40、降低网损的 技术措施:①提高用户处的功率因数,避免无功功率还距离传送;②在闭式网络 中实行功率经济分布;③组织变压器经济运行; ④合理组织各发电厂经济运行; ⑤合理选择导线的截面积;⑥调整用户的负荷曲线,调峰节电。⑦合理安排检修 计划;⑧适当提高电力网的运行电压水平。41、等微增率准则:就是 运行的发电机组按微增率相等的原则来分配负荷,这样就是使系统总的燃料消耗 为最小,从而是最经济的。42、提高电力系统静态稳定性的措施:①减小元件 的电抗、②采用自动调节励磁装置、③改善系统的结构和采用中间补偿设备。 1、有发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成 的整体,称为电力系统2、按电压等级的高低,电力网可分为:1低压电网 (<1kv)2中低电网(11000kv)3、负荷的分类:1.按物理性能 分:有功负荷、无功负荷 2.按电力生产与销售过程分:发电负荷、供电负荷、 和用电负荷 3.按用户性质分:工业、农业、交通运输业和人民生活用电负荷 4. 按负荷对供电的可靠性分:一级、二级、三级负荷4、我国电力系统常用 的4种接地方式:1.中性点接地 2.中性点经消弧线圈接地3.中性点直接接地 4. 中性点经电阻的电抗接地小电流接地方式:(1.2)优点:①可靠性能 高②单相接地时,不易造成人身或轻微轻微的人身和设备安全事故缺点:经济 性差、容易引起谐振,危及电网的安全运行。大接地电流方式:(3.4)优 点:①能快速的切除故障、安全性能好②经济性好。缺点:系统供电可靠性 差(任何一处故障全跳)5、消弧线圈的工作原理:在单相接地时,可 以线圈的电流Il补偿接地点的容性电流消除接地的不利影响补偿方式:①全 补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,Il< Ik时,Ie为纯容 性,易产生谐振过电压③过补偿:Il>Ik时,Ie为纯感性,一般都采用过电压法。 6、架空线路的组成:①导线、②避雷线、③杆塔、④绝缘子、⑤金具 7、 电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络 参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数, 如I、V、P等。8、分裂导线用在什么场合,有什么用处?一般用在大于 350kv的架空线路中。可避免电晕的产生和增大传输容量。9、导线是用来反映 的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 10、三绕组变压器的绕组排列方式:①中、高、低②低、中、高排列原 则:①高压绕组电压高,故绝缘要求也高,一般在最外层、②升压变压器一般 采用:---- 1、标么值:是指实际有名值与基准值得的比值。优点:可以用来简 化计算缺点:同一实际值可能对应着多个不同的标么值。基准值的选取:①基 准值的单位应与有名值的单位相同、②所选取的基准值物理量之间应符合电路的 基本关系、③P33 12、短路:指一切不正常的相与相之间的或相与地面之间的通路。形式: ①三相电路、②单相短路接地、③两相短路、④两相短路接地。 13、短路计算的任务; ①在选择电气设备时,要保证电气设备要有足够的动 稳定性和热稳定性,这都要以短路计算为依据。②为了合理地配置各种继电保护 装,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的 主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优 设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含 一些电流计算的内容。 14、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出 无穷大的功率的电源。特点:①电源频率和电压保持不变、②电源的内阻为零。 15、短路要做的假设:①由无穷大电源供电、②短路前处于稳态、③电路三相对 称。16、短路电流实际上包括两个分量:①是周期性分量,即稳态短路电流, 它是短路电流中的强迫分量,其幅值Im取决于电源电动势的幅值和电路参数。 ②是非周期分量,它是短路电流中的自由分量,按指数形式衰减。17、 短路冲击电流:是指短路电流中最大可能的瞬时值,同非周期分量有 关。18、对称分量法:是将一组不对称的三相量看成三组不同的对称三相量之 和。三相量为:①正序分量:各相量的绝对值相等、相互之间有120°的相位, 且与系统在正常对称运行下的相序相同。Ib1=Ia1?e-j120、Ic1= Ia1?ej120; ②负 序分量:各相量的绝对值相等,相互之间有120°的相位差但与正常运行时的相 许相反,以A相为基准相,有Ib2=Ia2?ej120、Ic2=Ia2?ej-120;③零序分量:各 相量的绝对值相等,相位相同,也即Ia0=Ib0=Ic0。19、力系统元件的序参数: 同步发电机的负序和零序阻抗:正序电抗、负序电抗、零序电抗。20、电网中 各发电机之间合并的条件:①发电机的特性(类型、参数等)是否大致相同,② 发电机到短路点的电气距离是否大致相等。 21、短路功率主要用来校验断路器的切断能力。22、不对称故 障:①纵向故障:指的是网络中的两个相邻节点k和k′之间出现不正常的断开 或三相阻抗不相等的情况。②横向故障:23、非全相断线:是指一相断线和两 相断线的非全线断线形式。非全相断线的运行是在故障口出现了某种不对称状 态,系统的其余某部分的参数还是三相对称的,可以运用对称分量法进行分析。 24、潮流计算的几个量:①电压降落:指供电支路首末端电压的相位差; ②电压损耗:指供电支路首末端两端电压的数量差,即为(U1-U2);③电压偏 移:指电网中某点的实际电压U与其额定电压UN之差,有时用百分数表示, 即:电压偏移=(U-Un)/Un*100% ; ④电压调整:指线路末端在空载时的电压 U20与负载时的电压U2的数量差。由于输电线路的电容效应,特别是超高压输 电线路的电容效应,在空载时线路末端电压值上升较大。25、电源输出的 功率由两部分组成:①一部分与负荷和线路阻抗有关、②第二部分与负荷无关, 只与两端电源的电压差和线路阻抗有关,称为循环功率。 26、通过对负荷节点的功率流向的分析会发现:①有的负荷只需要单方向 提供电力就能满足负荷供电的要求,②而有的负荷必须从两个方向或两个以上方 向同时同时提供电力才能满足负荷的供电要求。这种必须同时从两个方向或以上 提供电力才能满足负荷供电要求的负荷节点,称为功率分点。27、闭式网络中 电压最低点的判断:功率分点就是整个电力网电压的最低点。①在较高电压级的 电网中,由于X>>R,此时电压最低点往往是无功功率分点。②在较低电压级的 电网中,由于R>>X,此时电压最低点往往是有功功率分点。28、潮流计算的 主要内容:①电流和分布的计算、②节点电压和电压损耗的计算、③功率损耗的 计算。29、对每个节点i来讲,通常有四个变量:①发电机发出的有功 功率和无功功率、②电压幅值和相位30、根据电力系统的实际运行条件, 一般将节点分为以下三种类型:①PQ节点:这类节点P和Q是给定的,节点电 压(幅值、相位)是待求量。电力系统中的绝大多数节点属于这一类型。②PU 节点:这类节点是P和U是给定的,节点的Q和电压的相位待求。③平衡节点: 平衡节点只有一个,它的电压幅值U和相位已给定,P和Q为待求量。31、 ①平衡节点:在潮流分布算出之,网络中的功率损耗是未知的。因此 网络中至少有一个节点的P不能给定,这个节点承担了系统的有功功率平衡, 故称为平衡节点。②基准节点:必须选定一个节点,指定电压相位为0,作为计 算各点电压相位的参考。这个节点称为基准节点。习惯上把基准节点和平衡节点 选为同一点,称为平衡节点。32、高斯—塞得尔潮流计算步骤:P130 功 率因数:cos@=Pmax/Sn 33、每一次选代中,对于PU节点,必须作以下几项 计算:①修正节点电压、②计算节点无功功率、③无功功率超限检查。 34、几种常见的无功功率电源:①同步发电机、②同步调相机及同步电动 机、③并联电容器、④静止无功功率补偿器svc、⑤高压输电线的充电功率。 35、中枢点电压的调节方式:①逆调压:对于中枢点至各负荷点的供电线 路较长,各负荷变化规律大致相同,且负荷波动较大的网络中,在最大负荷时, 线路上电压损耗增大,适当提高中枢电压以抵偿增大的电压损耗防止负荷点的电 压过低;在最小负荷时,线路上电压损耗减小,适当降低中枢点电压以防止负荷 点的电压过高。这种在最大负荷时提高中枢电压,在最负荷时降低中枢点电压的 调压方式i,称为逆调压。②顺调压:对于负荷变化较小哦,线路不长的网络, 在允许电压偏移范围内,最大负荷时,电压可以低一些;最小负荷时,电压可以 精品文档

相关文档
最新文档