新型纳米吸波涂层材料的研究进展

新型纳米吸波涂层材料的研究进展
新型纳米吸波涂层材料的研究进展

新型纳米吸波涂层材料的研究进展

1引言

随着现代军事技术的迅猛发展,世界各国的防御体系被敌方探测、跟踪和攻击的可能性越来越大,军事目标的生存能力和武器系统的突防能力受到了严重威胁。隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最重要、最有效的突防战术技术手段,并受到世界各国的高度重视。现代化战争对吸波材料的吸波性能要求越来越高,一般传统的吸波材料很难满足需要。由于结构和组成的特殊性,使得纳米吸波涂料成为隐身技术的新亮点。纳米材料是指三维尺寸中至少有一维为纳米尺寸的材料,如薄膜、纤维、超细粒子、多层膜、粒子膜及纳米微晶材料等,一

般是由尺寸在1~100nm的物质组成的微粉体系。

2纳米吸波涂层的吸波原理和结构特性

吸波材料的吸波实质是吸收或衰减入射的电磁

波,并通过材料的介质损耗使电磁波能量转变成热能或其它形式的能量而耗散掉。吸波材料一般由基体材料与吸收介质复合而成。吸波材料可以分为电损耗型和磁损耗型2类。电损耗型材料主要靠介质的电子极化、离子极化、分子极化或界面极化来吸收、衰减电磁波。磁损耗型材料主要是靠磁滞损耗、畴壁共振和后效损耗等磁激化机制来引起电磁波的吸收和衰减。由于纳米晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,使纳米材料有许多不同

于一般粗晶材料的性能。纳米微粒具有小尺寸效应、表面与界面效应、量子尺寸效应、介电效应和宏观量子隧道效应等。纳米材料之所以具有非常优良的吸波性能,主要是以下原因:首先,纳米材料具有高浓度晶界,晶界面原子的比表面积大、悬空键多、界面极化强,容易产生多重散射,在电磁场辐射作用下,由于纳米粒子的表面效应造成原子、电子运动的加剧而磁化,使电磁能更加有效地转化为热能,产生了强烈的吸波效应;其次,量子尺寸效应的存在使纳米粒子的电子能级发生分裂,分裂的能级间隔正处于微波的能级范围,从而成为纳米材料新的吸波通道;此外纳米离子具有较大的饱和磁感、高的磁滞损耗和矫顽力,使得纳米材料具有涡流损耗高、居里点及使用温度高、吸波频率宽等性能。纳米材料的这种结构特征使得纳米吸波材料具有吸收频带宽、兼容性好、质量轻和厚度薄等特点,易满足雷达吸波材料薄、轻、宽、强的要求,是一种非常有发展前景的高性能、多功能吸收剂。

3新型纳米吸波材料的种类和主要研制方法

纳米技术的迅速发展及纳米微粉优良的电磁吸波性能使得纳米吸收剂成为国内外研究的方向和热点。

3.1纳米金属与合金吸收剂

纳米金属和合金吸波材料主要是通过磁滞损耗、涡流损耗等机制吸收损耗电磁波的。纳米金属粉吸波材料主要包括纳米羰基金属粉吸波材料和纳米磁性金属粉吸波材料两大类。纳米羰基金属粉主要包括羰基Fe、羰基Ni和羰基Co等,其中纳米羰基Fe最为常用。将羰基Fe与DC805型硅橡胶均匀掺和,吸波剂用量为90%,反射率在2~10GHz频率范围内低于-10dB。纳米磁性金属粉包括Co、Ni、CoNi、FeNi等,它们的

电磁参数与组分、粒度有关。纳米金属磁性材料具有很高的饱和磁化强度,一般比铁氧体高4倍以上[5],可获得较高的磁导率和磁损耗,且磁性能具有高的热稳定性。金属纳米粉体对电磁波特别是高频至光波频率范围内的电磁波具有优良的衰减性能,但其吸收机制目前尚不十分清楚。一般认为,它对电磁波能量的吸收由晶格电场热振动引起的电子散射、杂质和品格缺陷引起的电子散射以及电子与电子间的相互作用3种效应决定。纳米金属和合金吸收剂,主要以Fe、Co、Ni、Cr、Cu等纳米金属粉体为主。纳米合金采取多相复合的方式,其吸波性能优于单相纳米金属粉体,吸收率大于10dB的带宽可达3.2GHz,谐振频率点的吸收率均大于20dB,复合体中各组元的比例、粒径、合金粉的显微结构是其吸波性能的主要影响因素。纳米合金中以铁系纳米合金的研究为最多,由于铁-镍纳米合金粉体尺寸达到纳米量级时,具有很高的磁能积、剩磁对温度的依赖关系小和良好的磁化性能。目前制备纳米铁基磁粉或氧化物及合金微粒的方法主

要有软化学法、超声分解法、LB膜技术组装、原位高分子修饰复合技术、溶胶-凝胶电沉积法、溶胶-微乳液化学剪裁法、化学热还原法和机械合金化法等。

3.2纳米铁氧体及其复合物吸收剂

纳米铁氧体是一种双复介质,既具有一般介质材料的欧姆损耗、极化损耗、离子和电子共振损耗,又有铁氧体特有的畴壁共振损耗、磁矩自然共振损耗和粒子共振损耗,因此至今仍是微波吸收材料的主要组成之一。纳米氧化物吸收剂有单一氧化物和复合氧化物两类,单一氧化物纳米吸收剂主要有Fe2O3、Fe3O4、TiO2、Co3O4、NiO、MoO2、WO3等纳米微粉。单一铁氧体制成的吸波材料,难以满足吸收频带宽、质量轻、厚度薄的要求,因此通常在铁氧体微粉中加入一些添加剂组成复合吸收剂,可使电磁参数得到较好匹配。所以,实际使用的铁氧体吸波涂

层往往不是单一的铁氧体涂层,而是通过复合组成复合铁氧体吸波涂层。如铁氧体与羰基铁粉、铁粉、镍粉、炭黑、石墨、碳化硅、树脂等复合形成复合铁氧体纳米微粉吸波材料。铁氧体纳米复合材料多层膜在7~17GHz频率段的峰值吸收为-40dB,小于-10dB的频宽为2GHz。复合氧化物纳米吸收剂不仅吸波性能优异,而且还兼有抑制红外辐射等多种功能。铁氧体纳米颗粒与聚合物制成的复合材料能有效吸收和衰减电磁波及声波,减小反射和散射,因此铁氧体吸波材料是研究较多且比较成熟的吸波材料。其作用机理可概括为铁氧体对电磁波的磁损耗和介电损耗。铁氧体吸波材料的纳米化是很有前途的新兴隐身材料研究领域。国内外对此均进行了一定的研究,并取得了一定的研究成果。美国已研制出一系列薄层状铁氧体吸波材料,并成功应用于F-117A战斗机。在对纳米铁氧体吸波材料进行研究的同时,研究者也从各方面探索了超细铁氧体与其它材料复合形成的复合吸波材料。解家英研究了NdO3掺杂对纳米锂铁氧体微波吸收特

性的影响,他们采用机械合金化方法制备了纳米晶LiFe5O8和LiFe4.994Nd0.006O8材料,并研究了它们的吸波性能。

3.3纳米陶瓷吸收剂

纳米陶瓷粉体是纳米陶瓷吸波材料的一种新类型,主要有SiC、Si3N4及复合物Si/C/N,Si/C/N/O等,其主要成分为碳化硅、氮化硅和无定型碳,具有耐高温、质量轻、强度大、吸波性能好等优点。尤其是Si/C/N 吸波材料,不仅具有以上优点,还具有使用温度范围宽、用量小、介电性能可调、可以有效地减弱红外辐射信号的优良特性。例如:Si/C/N和Si/C/N/O纳米吸波材料在厘米波段和毫米波段均有很好的吸收性能;纳米SiC和磁性纳米吸收剂复合后,吸波效果大幅度提高。纳米Si3N4在102~106Hz范围内有比较大的介电损耗。这种强介电损耗是由于界面极化引起的,界面极化则是由悬挂键

所形成的电偶极矩产生的。纳米陶瓷类吸收剂的特点是在高温下抗氧化性较强,吸波性能稳定。

3.4纳米石墨吸收剂

纳米陶瓷吸收剂最早的应用可以追溯到二战期间,德国把炭黑加入到飞机蒙皮的夹层中用来吸收雷达波,由于密度小,常被用来填充在蜂窝的夹层结构中。导电炭黑还常用来与高分子材料复合,调节高分子复合材料的导电率,以达到良好的吸波效果。石墨现已经应用于结构吸波材料。美国在石墨-热塑性树脂基复合材料和石墨-环氧树脂基复合材料的研究方面取得了很大进展,这些复合材料在低温下仍保持韧性,只是对高温和高湿度环境比金属稍微敏感。美国研制出的超黑粉纳米吸波材料,对雷达波的吸收率高达99%,并在B-2隐形轰炸机上成功应用,目前正在研究覆盖厘米波、毫米波、红外、

可见光等波段的纳米复合材料。这种超黑粉纳米吸波材料实质上就是用纳米石墨作吸收剂制成的石墨-热塑性复合材料和石墨-环氧树脂复合材料,不仅吸收率高,而且在低温下仍能保持很好的韧性。另外石墨和炭黑也被用在掺杂高损物吸波涂料中,这类吸波涂料由导电纤维与高损物和树脂组成,其中导电纤维的长度是雷达波波长的一半,高损物的厚度最好是雷达波波长的1/4的奇数倍。石墨、乙炔炭黑作为高温吸收剂的缺点是高温抗氧化性差。

3.5纳米碳化硅吸收剂

单纯纳米SiC并不能够吸收雷达波,需要对其进行一定的掺杂,以提高SiC的电导率,通常在SiC中能够进行掺杂的元素有B、P、N等。西北工业大学通过对纳米SiC进行掺杂,得到了纳米Si/C/N吸收剂,具有很好的吸波性能。Si/C/N纳米复合吸收剂能够吸波

的主要原因是在吸收剂中形成的SiC晶格中固溶了N原子,固溶的N原子在晶格中取代C原子的位置,形成晶格缺陷。在正常的SiC晶格中,每一个C原子和每一个Si原子分别与周围4个相邻的硅原子以共价键相连接,同样每一个硅原子也与周围4个相邻的Si原子和C原子以共价键相连接。当N原子取代C原子进入SiC中后,由于N原子只有三价,只能与3个Si原子成键,而另外1个Si原子将剩余1个不能成键的价电子,形成1个带负电的缺陷。由于原子的热运动,这个电子可以在N原子周围的4个Si原子上运动,从一个Si原子上跃迁到另一个Si原子上,在跃迁过程中要克服一定的势垒,但不能脱离这4个硅原子组成的小区域,因此,这个电子也可以称为准自由电子。在电磁场中,这种准自由电子的位置随着电磁场的方向而变化,导致电子位移,准自由电子从一个平衡位置跃迁到另一个平衡位置,要克服一定的势垒,从而运动滞后于电场,出现强烈的极化弛豫,这种极化弛豫是损耗电磁波能量的主要原因。

研究表明,Si/C/N,它不仅具有耐高温、质量轻、韧性好、强度大、吸波性能好的优点,而且热稳定性好、使用温度范围宽、用量少、介电性能可调,还可以有效地减弱红外辐射信号。Si/C/N和Si/C/N/O纳米吸收剂不仅在厘米波段,而且在毫米波段都有很好的吸收性能。

这种纳米Si/C/N吸收剂具有以下优点。

⑴介电性能可调,可以控制的范围分别为:1~32;〃:0~25;〃/:0~2。

⑵高温稳定,在700℃高温下热处理10h,微观结构和性能无任何变化。

⑶使用温度范围宽,在室温和高温下均可

使用,最高使用温度可达l000℃。

⑷高温反射率稳定,经实际测试,吸波材料在300℃、500℃、700℃时的反射率曲线与室温时的反射率曲线几乎完全一致,反射率随温度的变化很小。

⑸用量少,在基体中掺入3%~10%的吸收剂即可达到好的吸波效果。

⑹介电常数随频率的升高有一定程度的降低,有利于增加吸收频带的宽度。

3.6纳米导电高分子吸波材料

导电聚合物是一类电损耗型吸波材料,主要有聚乙炔、聚吡咯、聚噻吩和聚苯胺等,

其吸波性能与导电聚合物的介电常数、电导率等密切相关,结构特点是具有共轭大键体系。这类化合物的电磁参量主要依赖于高聚物的主链结构、室温电导率、掺杂剂性质、掺杂度和合成方法等因素。导电高聚物的电导率可在绝缘体、半导体和金属态范围内变化,不同的电导率呈现不同的吸波性能,导电高分子经掺杂后,由于在共轭链与掺杂剂之间发生电子转移而产生新的载流子,如孤子、极子或双极子,这类偶极子的存在和跃迁使其电导率剧增,故呈现出较好的吸波性能。而其电导率的大小取决于导电高分子的分子链长及分子结构对偶极子的约束力,通常高分子链越长,结构规整性越高,导电性就越好。研究结果表明,导电高分子的电导率在10-5~10-3S/cm范围即呈半导体态时,有较好的吸波效果。研究发现,纳米导电聚合物的磁损耗较非纳米导电聚合物的磁损耗有了较大的提高。纯的共轭高聚物电导率并不高,最高不超过10-3S/cm,且大部分小于10-7S/cm,但是与无机吸收剂复合后,却能获得较好的导电与吸波性能;复合型导电

高分子吸波材料是由高分子材料与导电物质以均匀复合、层叠复合或形成表面膜等方式制得。主要由以下几部分组成:有机高分子物质主要有橡胶类、树脂类、乳液类、聚乙炔、聚吡咯、聚苯胺和聚噻吩等;导电物质主要有金属、非金属类及氧化物类等填料;掺杂剂有盐酸、浓硫酸、三氯化铁及其它有机物等。由于导电高分子吸波材料具有密度小、电磁参数可调、兼容性好、成本低、可选择的品种多,故有望发展成为一种新型的轻质、宽频带吸波材料。美国已研制出一种由导电高聚物与氰酸盐晶须复合而成的吸波材料,其具有光学透明特性,可以喷涂在飞机座舱盖、精确制导武器和巡航导弹的光学透明窗口上。导电高分子密__度较小,一般为1.0~2.0g/cm3,机械加工性能良好,中低温稳定性较好,在电损耗型吸波材料中具有广阔的发展前景。

综上所述,纳米吸波材料具有优异的吸波性能,兼有频带宽、多功能、质量轻及厚度

热障涂层的制备及其失效的研究现状

收稿日期:2009206201; 修订日期:2009206225 作者简介:邢亚哲(19762 ),陕西岐山人,讲师,博士.研究方向:材料表 面强化及器件制造. Email:x ingyazhe@gm https://www.360docs.net/doc/736088519.html, 热障涂层的制备及其失效的研究现状 邢亚哲,郝建民 (长安大学材料科学与工程学院,陕西西安710064) 摘要:热障涂层作为航空发动机和燃气轮机高温部件的保护涂层,其抗高温失效能力直接决定了部件的工作效率和寿命。回顾热障涂层的发展历史及研究现状,着重介绍了热障涂层的主要制备方法及其相应涂层的结构特征,综述了各类热障涂层失效的影响因素和失效机理。 关键词:热障涂层;电子束物理气相沉积;等离子喷涂;失效机理 中图分类号:TG174.44 文献标识码:A 文章编号:100028365(2009)0720922204 Re se a rc h Stat us in Fa bric at ion and Fa ilure of The rmal Barrie r Co atings XING Ya 2zhe,HAO Jian 2min (School of Mater ials Science and Engineering,Chang p an University,Xi p an 710064,China) Abst ract:Thermal barrier coatings are widely used to protect the components in aircraft and industrial gas 2turbine engines against high temperature damage.The e ne rgy efficiency and lifetime of these components are mainly dominated by the failure resistance of thermal barrier coatings in the high te mperature atmosphere.In this paper,the development and research status of thermal barrie r coatings are reviewe d.Especially,the main fabricating methods and the microstructure fe ature of the coatings,as well as the factors re sulting in the failure of thermal barrier coatings and its failure mechanisms,are summarized in detail. K e y words:Thermal barrier coatings;Electron beam physical vapor deposition;Plasma Spraying; Fa ilure mechanism 随着现代工业的发展,数以百计种类型的涂层被用在各种结构材料表面,以使这些材料表面免受腐蚀、磨损、侵蚀和高温氧化等危害。热障涂层(T BCs:Thermal Barrier Coatings)就是其中的一种,其具有最复杂的结构且工作在高温环境下,常作为航空发动机和燃气轮机受高温零件的保护涂层,以提高设备的工作温度和效能,同时减少温室气体的排放量。典型的TBCs 在结构上包含四个部分 [1] :1基体,即被保护的 零件;o金属结合层(BC:Bond Coat),通常为高温合金MCrA lY(M 代表Ni 、Co 或NiCo 合金);?热生长氧化物层(T GO:Thermally Grown Oxide),TGO 是在高温条件下外部氧通过T C 层到达BC 层表面并使其氧化而形成的,通常为一致密的Al 2O 3薄膜,在随后的工作过程中能够阻止外部氧向BC 层内部和基体的扩散,起到保护基体(零件)的作用;?陶瓷顶层(TC:Top Coat),一般为6%~8%Y 2O 32Zr O 2(YSZ), 正是由于YSZ 低的热传导率和相对较高的热膨胀系数,使其具有优越的热障和耐热冲击性能。目前,TBCs 研究的难点和重点主要为对其失效的控制[1~4]。为此,对TBCs 微观结构的研究显得尤为重要。而作为控制其微观结构的主要因素,即TBCs 的制备工艺就成了国内外学者们关注的热点。1 基于制备工艺的T BCs 的发展历程 早期在航空航天发动机中应用的TBCs(又称第一代T BCs),其BC 层和TC 层均采用大气等离子喷涂(APS:Atmospheric Plasma Spr aying)制备。对于APS BC 层,涂层含氧量较高,特别是有一定量的氧化镍生成,而氧化镍的存在致使难以形成在高温下具有保护性能的致密TGO 氧化膜,BC 层使用过程中容易在其内部也发生显著氧化而使层内结合弱化,裂纹易在BC 层内扩展而造成涂层剥落失效,使得该类T BCs 寿命较低。 随着低压(又称真空)等离子喷涂(LPPS:Low Pressur e Plasma Spraying)技术的进步和发展,逐步采用VPS 制备BC 层,避免了喷涂过程中高温合金BC 层的氧化,并通过热扩散处理,从根本上强化了BC

碳纤维吸波材料的研究进展_吴红焕

碳纤维吸波材料的研究进展 吴红焕,王晓艳,张 玲,朱冬梅,周万城 (西北工业大学凝固技术国家重点实验室,西安710072) 摘要 通过对碳纤维在复合材料中吸波性能的研究,得出通过控制碳纤维的长度和含量,以及采用化学掺杂或异型截面是得到频带宽、厚度薄、质量轻、吸收强结构吸波材料的有效方法,同时大力开展螺旋碳纤维和碳纳米管的研究是加快进展的新方向。 关键词 碳纤维 吸波材料 碳纳米管 化学掺杂 中图分类号:TQ342+.742 文献标识码:A Present Development of Absorbing Composites Containing C arbon Fibers WU Honghuan,WAN G Xiaoyan,ZHAN G Ling,ZHU Dongmei,ZHOU Wancheng (State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an710072) Abstract The characteristic and transforming methods of short carbon fibers are discussed in this paper,in2 cluding additive lengths,contents,adulteration and non2circular section.Controlling the length and content of carbon fibers and exploiting adulteration and non2circular section are effective methods to get“wide,thin,light,strong”structure absorbing materials.At the same time,coiled carbon fibers and carbon nano2pipes are the new direction to ac2 celerate development. K ey w ords carbon fiber,absorbing material,CN Ts,chemical adulteration   0 前言 雷达吸波材料是指能吸收、衰减入射的电磁波,并将电磁能转换成热能而耗散掉,或使电磁波因干涉相消的一类材料。它由吸收剂与能透过雷达波的基体材料复合而成,经历了由单一纤维到混杂纤维、由次承力件到主承力件、由热固性树脂到热塑性树脂的发展过程[1~3]。除一般的吸波材料外,隐身用的特种碳纤维是制造吸波材料的关键。碳纤维结构吸波材料具有承载和减少雷达比反射面的双重功能,是功能与结构一体化的优良微波吸收材料。与其它吸波材料相比,它不仅具有硬度高、高温强度大、热膨胀系数小、热传导率高、耐蚀、抗氧化等特点,还具有质轻、吸收频带宽的优点。通过研究碳纤维的吸波性能和吸波机理,并对纤维吸收剂进行改性和结构设计,研制出高性能的碳纤维复合材料是现在研究的热点课题[4,5]。但目前国内对碳纤维吸波材料的理论研究与实际应用之间仍存在一定差距,亟需进一步突破。由于连续碳纤维对雷达波易产生强反射作用,而短切碳纤维在材料中随机分布,改善了这方面的性能,对雷达波有较好的吸收性能。本文从短切碳纤维的吸波性能出发,总结了碳纤维的吸波特性及改性措施。 1 短切碳纤维的吸波机理及影响因素 1.1 短切碳纤维的吸波性能及频响机理 连续碳纤维对雷达波产生强反射作用,主要是因为电磁场在碳纤维中形成了较大的连续传导电流。而短碳纤维在基体当中的吸波机理目前基本存在两种解释[6],一是认为短切碳纤维在吸波材料中起半波谐振子的作用。在短切碳纤维的近区存在似稳感应场,此感应场激起耗散电流,在周围基体作用下,耗散电流被衰减,从而使雷达波能量转换为其他形式的能量,主要为热能。另一说法认为在含短切碳纤维的吸波材料中,可以把短切碳纤维作为偶极子。短切碳纤维偶极子在电磁场的作用下会产生极化耗散电流,在周围基体作用下,耗散电流被衰减,从而使雷达波能量转换为其它形式的能量。 碳纤维吸波材料是一种介电型吸波材料,与磁性吸收剂相比,介电常数控制是吸收剂研究的重点和难点,而介电常数频散效应的控制则是宽频带吸收所必须追求的目标。因此,研究碳纤维吸波材料频响效应的机理至关重要。频响效应就是随着频率的增加,介电参数的实部、虚部下降,损耗增加的现象。其本质是在频率变化的过程中,电极化出现了极化的惯性或滞后性,以至于在不同频率电场中极化来不及响应电场的变化而出现的现象。根据电磁波理论,随着频率的增加,当电磁波在碳纤维导体表面产生涡流时,在导线截面上的电流分布将越来越向导线表面集中,即产生趋肤效应现象。趋肤效应越明显,产生的涡流损耗越相应地增加,从而导致电磁波的消耗。电磁波在碳纤维之间传播时,除了涡流损耗外,在每束碳纤维之间的部分电磁波还会经散射发生类似相位对消现象引起损耗增加[7]。 1.2 添加最佳长度和含量的探索 邢丽英等[8]研究了掺混短碳纤维的复合材料在电磁波作用下某些宏观物理量的响应特性。结果表明,调整纤维长度及含量可在很宽范围内改变材料的电磁参数与衰减量;不同长度的短碳纤维在介质中的最佳填充量不同,当纤维的长度接近传输  吴红焕:女,1982年生,硕士,主要从事碳纤维结构吸波材料研究 Tel:029********* E2mail:whh—8278@https://www.360docs.net/doc/736088519.html,

吸波材料

吸波材料 姓名:王丽君 学院:纺织与材料工程学院 专业:材料工程 科目:材料表面与界面工程技术学号:13208520403408

吸波材料 摘要:介绍了吸波材料的吸波原理和吸波材料的分类,以及几种新型吸波材料,如铁氧体吸波材料,纳米吸波材料、手性材料、导电高分子吸波材料,耐高温陶瓷材料,并简单介绍了纳米复合材料的制备方法。 关键词:吸波材料;吸波原理;新型吸波材料;纳米复合材料的制备 信息化战争中,武器平台的高度信息化和电子化,使飞机、坦克、舰艇等所处的环境日益复杂。它们除受地面或空中的火力威胁和电子干扰外,其一举一动还处于红外、雷达、激光等探测器的严密监视之下,使其生存能力和战斗能力面临极大挑战,这样其隐身性能就显得尤为重要。 隐身技术主要涉及材料隐身和结构隐身两大方面。前者是使用吸波材料或涂料;后者是合理地设计武器外形,以提高隐蔽性。再此,不得不提及吸波材料。 1、吸波材料的吸波原理 吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 2、吸波材料的分类 目前吸波材料分类较多,现大致分成下面4种: (1) 按材料成型工艺和承载能力,可分为涂覆型吸波材料和结构型吸波材料。前者是将吸收剂(金属或合金粉末、铁氧体、导电纤维等)与粘合剂混合后,涂覆于目标表面形成吸波涂层;后者是具有承载和吸波的双重功能,通常是将吸收剂分散在层状结构材料中,或是采用强度高、透波性能好的高聚物复合材料(如玻璃钢、芳纶纤维复合材料等)为面板,蜂窝状、波纹体或角锥体为夹芯的复合结构。 (2) 按吸波原理,吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 (3) 按材料的损耗机理,吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 (4) 按研究时期,可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

(完整版)纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛

热障涂层材料研究进展_周洪

*2005民口配套项目  周洪:男,1972年生,博士生,讲师,主要从事材料表面技术的研究工作 E -mail :zhouhong @https://www.360docs.net/doc/736088519.html, 热障涂层材料研究进展* 周 洪,李 飞,何 博,王 俊,孙宝德 (上海交通大学金属基复合材料国家重点实验室,上海200030) 摘要 简要概述了热障涂层材料的基本要求,介绍了国内外热障涂层材料近年来的研究状况和发展趋势。目前 广泛使用的是Y 2O 3稳定Z rO 2热障陶瓷材料及其粘结层材料,而稀土锆酸盐和稀土氧化物是非常有前景的隔热材料。 关键词 热障涂层 M C rAlY 二氧化锆  Research Progresses in Materials for Thermal Barrier Coatings ZHO U Hong ,LI Fei ,HE Bo ,WANG Jun ,SUN Baode (T he Sta te K ey Labor atory of M e ta l M at rix Co mpo sitio ns ,Shanghai Jiao tong U niver sity ,Shanghai 200030) A bstract T he rmal bar rie r coating s (T BCs )o ffer the po tential to significantly improve efficiencies of aero en -g ines a s w ell as g as turbine engines fo r po wer generatio n.State -of -the -ar t T BCs ,ty pica lly consisting of an y ttria -stabi -lized zir co nia top coat and a metallic bo nd co at ,hav e bee n widely used to prolong lifetime now adays.In the pape r ,re -sear ch status a nd prog resses o f materials for the rmal bar rie r coating s a re briefly rev iew ed.Except y ttria stabilized zir -co nia ,o ther materials such a s lanthanum zirconate and rar e ear th o xides a re also promising materials for thermal bar rie r co ating s. Key words ther mal bar rier co atings ,M CrA lY ,zir co nia 0 引言 热障涂层(T hermal bar rier coating s ,简称T BCs )通常是指沉积在金属表面、具有良好隔热效果的陶瓷涂层,主要用来降低 基体的工作温度,免受高温氧化、腐蚀、磨损。美国N AS A -Lew is 研究中心为了提高燃气涡轮叶片、火箭发动机的抗高温和耐腐蚀性能,早在20世纪50年代就提出了热障涂层概念。在涂层材料选择和制备工艺上进行较长时间的探索后,80年代初取得了重大突破,为热障涂层的应用奠定了坚实基础。文献表明,目前先进陶瓷热障涂层能在工作环境下降低零件温度170℃左右[1~3]。随着热障涂层在高温发动机热端部件上的应用,人们认识到热障涂层的应用不仅可以达到提高基体抗高温腐蚀能力,进一步提高发动机工作温度的目的,而且可以减少燃油消耗、提高效率、延长热端部件的使用寿命。与开发新型高温合金材料相比,热障涂层的研究成本要低得多,工艺也现实可行[2,4]。 1 热障涂层系统材料体系 高温隔热涂层的研究发展经历了数十年。20世纪60年代研制出β-NiA l 基铝化物涂层,但其脆性大,A l 元素向基体扩散 快,寿命短;之后出现了加入Cr 、Ti 、Si 、Y 、T a 、Pt 等元素改进的铝化物涂层,其中镀Pt 渗Al 形成的铂铝涂层具有较长的寿命。目前普遍使用的热障涂层系统是以M Cr AlY (M =N i ,Co ,Fe ,N i +Co )高温抗氧化合金为中间粘结层,表面覆盖Y 2O 3稳定的Z rO 2陶瓷隔热涂层[5,6]。 1.1 热障涂层陶瓷材料 热障涂层材料需要具有难熔、化学惰性、相稳定和低热导、低密度、高热反射率等重要物理化学特征,同时要考虑其热膨胀 系数与基体材料相匹配。另外,针对高温部件氧化腐蚀的问题,应当考虑低烧结率、界面反应和抗高温氧化腐蚀等因素。 陶瓷材料具有离子键或共价键结构,键能高,因此熔点高、硬度高、化学性能稳定,是热障涂层的理想材料。但韧性、抗疲劳性和抗热震性较差,对应力集中和裂纹敏感。目前使用的热障涂层陶瓷材料多为金属氧化物,这是因为金属氧化物陶瓷的导热以声子传导和光子传导机理为主,热导率较低且其涂层在富氧环境中具有良好的高温稳定性[7]。常用氧化物陶瓷的导热顺序为[8]: BeO >M g O >Al 2O 3>CaO >Z rO 2 常用热障涂层陶瓷材料有Al 2O 3、Z rO 2、SiO 2等,主要性能如表1所示[6,8~10]。 研究表明[1,2,4,9~12],Z rO 2是目前应用广泛、综合性能最好的热障涂层材料。它具有高熔点、耐高温氧化、良好的高温化学稳定性、较低且稳定的热传导率和优良的抗热震性等特性,并且热膨胀系数接近金属材料。纯Zr O 2具有同素异晶转变,常温下稳定相为单斜结构;高温下稳定相则为立方结构: 单斜相(m ) 1170℃950℃ 正方相(t )2370℃ 立方相(c ) 单斜相与四方相间转化因伴有3%~6%的体积分数变化而导致热应力产生,因此,使用纯Z rO 2制备的热障涂层不稳定。为避免这个缺点,可采用M gO 、CaO 、CeO 2、Sc 2O 3、In 2O 3、Y 2O 3等氧化物来稳定Z rO 2,起到相变增韧的效果[8]。最早使用的是22%M gO 完全稳定的Zr O 2,在热循环过程中M gO 会从固溶体中析出,使涂层热导率提高,降低了涂层的隔热性能。CaO 对Zr O 2的稳定也不好,在燃气的硫化作用下,CaO 从涂层

吸波材料简介

吸波材料简介 1、定义 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 2、吸波原理分类 吸波材料的损耗机制大致可以分为以下几类: 其一,电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。 其二,电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。 其三,磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。 3、材料种类 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 吸波材料按材料分类主要分为: 铁氧体吸波材料,是利用磁性材料的高频下损耗和磁导率的散射来吸收电磁波的能力。 金属超微粉吸波材料,金属材料因居里点高(770K)而耐高温,Ms可达铁氧体的3-4倍,金属自然共振频率比铁氧体高得多,有更好的吸收性能,但是块

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

先进热障涂层的综述

关于先进热障涂层的综述 摘要:在过去的几十年中,许多陶瓷材料都被作为新型的热障涂层材料,其中很大一部分都是氧化物。由于它独特的性能,这些新型化合物很难与最先进的热障涂层材料YSZ相媲美。另一方面,由于YSZ有一些缺点,尤其是在1200℃以上时它有限的高温性能使得在先进的燃气轮机中YSZ被其他材料所取代。 本篇文献是对不同新型涂层材料的综述,尤其是参杂氧化锆、烧绿石、钙钛矿和氯酸盐等材料。文献的结果还有由我们的研究调查得出的结果都将同我们的要求相比较。最终,我们将讨论双层结构这个概念。它是一种克服新型热障涂层材料冲击韧性的方法 关键词:热障涂层、氧化锆、烧绿石、钙钛矿、氯酸盐、热导率 一、简介 TBC系统是典型的双层式结构,它包括金属粘结层和陶瓷顶层。粘结层是保护基层氧化和腐蚀的并有改善陶瓷层和基层之间结合强度的作用。陶瓷顶层相比金属机体而言拥有很低的热传导率,通过内冷发陶瓷层可以实现一个很大的温差度(几百K)。因此,它既可以降低金属基体的温度以提高部件的使用寿命又可以提高涡轮发动机的点火温度来提高它的工作效率。 自19世纪50年代第一个军用发动机搪瓷涂层的制造起热障涂层开始了工业化发展。在19世纪60年代,第一个带有NiAl粘结层的火焰喷涂陶瓷涂层应用于商业航空发动机上。接下来的几十年中,热障涂层材料和喷涂技术持续的发展。19世纪80年代热障涂层迅猛发展。在这十年中,氧化钇稳定的氧化锆(YSZ)被认为是一种特殊的陶瓷顶层材料,因为它作为一个近30年来的标准而被确立。 根据沉积工艺的不同,已经确立了两种不同的方法。一种是电子束物理气相沉积(EB-PVD),另一种是大气等离子喷涂(APS)。电子束物理气相沉积法制备的涂层拥有柱状显微结构并被广泛应用于航空发动机的高热机械载荷叶片中。同电子束物理气相沉积法相比,大气等离子喷涂以它的操作粗放度及经济可行性为傲,因此现在更多的TBC 采用这种方法。典型静态部件,像燃烧器罐和叶片平台都是用APS进行喷涂。在固定的燃气轮机中,其叶片也常使用热喷涂的方法进行喷涂。 燃气涡轮机效率的进一步提升有赖于燃烧及冷却技术的进步与更高的涡轮机入口温度相结合。这意味着由于在高温下烧结和相转变,标准材料YSZ必然会接近它的极限。 由EB-PVD和APS方法加工的YSZ包含亚稳态的T`相。长时间处于高温下,它能够

吸波材料现状和应用——整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

半导体纳米材料研究进展与应用

半导体纳米材料研究进展与应用 摘要: 介绍了半导体纳米材料的研究进展、制备方法的若干进展和应用前景。 关键词: 半导体纳米材料研究进展应用 1引言 20 世纪是物理学推动高新技术飞速发展的世纪, 人类已从控制与利用大量微观粒子系统的时代进入了控制与利用单个微观粒子的时代。纳米技术是世纪之交发展起来的新技术, 是在0.1~100nm 尺度空间内, 研究电子、原子和分子运动规律和特性的崭新的高技术科学Z。它的目标是人类按照自己的意志直接操纵单个电子、原子等粒子, 制造出具有特定功能的产品.目前, 人们已制造了各种各样的纳米材料, 例如: 纳米金属材料、纳米半导体材料、纳米氧化物材料、纳米陶瓷材料、纳米有机材料等. 其中半导体纳米材料对未来社会信息化的产生有至关重要的影响. 2半导体纳米材料 相对于金属材料而言, 半导体中的电子动能较低, 有较长的德布罗意波长, 因而对空间的限制比较敏感. 电子的德布罗意波长入与其动能 E 的关系为入=h^2/在纸上(其中m*是半导体中电子的有效质量, h 是普朗克常量) 。当空间某一方向的尺度限制与电子的德布罗意波长可比拟时, 电子的运动就会受限, 而被量子化地限制在离散的本征态, 从而失去一个空间自由度或者说减少了一维。因此, 通常在体材料中适用的电子的粒子行为在此材料中不再适用, 这种新型的材料称为半导体低维结构, 也称为半导体纳米材料【1】。 1966 年, Fuou ler 等人[2]首次令人们信服地证实了在Si/S iO 2 界面处存在二维电子气,从此拉开了半导体低维结构研究的序幕. Si-MO SFET[3]可以认为是对载流子实现一个维度方向限制最早的固体结构.在这个系统中, 由于Si 和SiO 2 界面导带的不连续, 形成一个三角势阱, 将电子限制在其中, 使其既不能穿过氧化层, 也不能进入Si 的体内, 电子的运动被限制在二维界面内. 随着微加工技术的发展和分子束外延技术(MBE )、金属有机物化学气相沉积技术(MOCVD)、液相外延(L PE)、气相外延(V PE)等技术的应用, 人们可以制造出更多的二维电子气系统Z 它是由两种具有不同带隙的半导体材料构成, 一般要求这两种材料结构相同, 并且晶格常量接近, 以获得原子级光滑的界面。MBE 和MOCVD 的一个重要特征是可以制备量子尺寸的多层结构, 其控制精度可达单原子层量级〔4〕。这些结构可分为量子阱(QW ) 和超晶格(SL ) 。1970 年, Esak i 和T su 〔5〕在寻找具有负微分电阻的新器件时, 提出了全新的“半导体超晶格”概念Z 如果势垒层厚度足够宽, 使得相邻阱内电子波函数没有相互作用, 即被称为量子阱.反之, 如果相邻阱内电子波函数有较强的相互作用, 即相当于在晶格周期场上叠加一个多层结构的超晶格周期场, 则被称为超晶格。从此, 对半导体量子阱和超晶格等半导体微结构的材料和器件的研究成为近20 多年来半导体物理学中最重要、最活跃的研究领域之一。 1978 年D ingle〔6〕等人对异质结中二维电子气沿平行于界面的输运进行了研究, 发现了电子迁

陶瓷吸波材料的研究进展_范跃农

《陶瓷学报》 JOURNAL OF CERAMICS 第31卷第1期2010年3月 Vol.31,No.1Mar.2010 文章编号:1000-2278(2010)01-0538-04 陶瓷吸波材料的研究进展 范跃农1, 2 龚荣洲2 (1.景德镇陶瓷学院,景德镇:333403,2.华中科技大学,武汉:430074) 摘要 简述了在当今世界能提高各类武器在战争中的生存能力、防卫能力和攻击能力的隐身技术,对其在现代高技术武器装备中的重要作用进行了肯定。对隐身技术中占重要地位的电磁波吸收材料的种类、吸波原理及吸波方式做了进一步阐述。重点讨论了陶瓷吸波材料的吸波原理、组成结构和方式,并着重介绍了几种最近几年陶瓷吸波材料的最新研究成果,列举了它们的吸波性能参数。最后,对陶瓷吸波材料发展方向进行了展望。关键词隐身技术,陶瓷,吸波材料,研究进展中图分类号:TQ174文献标识码:A 1引言 随着电子技术的发展,新型雷达、探测器及精密制导武器相继问世,军事空中防御能力和反导弹能力日益增强,使得武器系统,特别是大型作战武器,如飞机、导弹、舰艇、坦克等所面临的威胁越来越大,作为提高战争中的生存能力、 防卫能力和攻击能力的隐身技术,普遍受到世界各国的高度重视。 隐身技术是指降低目标的雷达、红外、激光、磁信号等特征,使其在一定范围内难以被探测,从而提高其生存能力的技术。 已经成为现代电子战争的重要组成部分,它伴随着武器攻击、防卫技术的发展而产生,其最终目的是使武器系统能在多个的频率范围,进行多方位的隐身。隐身技术发展的关键在于材料技术的发展,要求材料具有质量轻、适应性强的特点。为了适应未来战争的需要,世界各发达国家都在积极致力于开发新型高效的吸波材料,并对其吸波机理进行更进一步的研究[1]。 吸波材料是隐身技术中不可缺少的组成部分,隐身兵器主要依靠吸波材料来吸收和衰减雷达波以达到隐身的目的。 2吸波材料的分类 按照吸波材料的结构,可将其分为涂料型吸波材 料、贴片型吸波材料、吸波腻子、吸波复合材料等[2]。 按照吸波机理可以将吸波材料分为磁损耗型吸波材料、介电损耗型吸波材料和“双复”型吸波材料三类。 陶瓷吸波材料属于介电损耗型吸波材料,主要包括碳化硅、Si 3N 4、莫来石、钛酸钡、Al 2O 3、AlN 、堇青石、硼硅酸铝、粘土和炭黑等一类陶瓷材料,同铁氧体、复合金属粉末等比较,这一类材料的吸波性能好,而且还可以有效地减弱红外辐射信号,能有效损耗雷达波的能量。由于它们比重小、耐高温、介电常数随烧结温度有较大的变化范围,是制作多波段吸波材料的主要成分,有可能通过对显微结构和电磁参数的控制,来获得所希望的吸波效果。此外,由金属微粉和陶瓷微粉共烧而成的以金属为分散相,陶瓷为连续相的金属陶瓷也属于这一类。这一类材料对雷达波能量的吸收、转移主要以热能形式散发[3]。 要达到良好的吸波效果,必须具备以下两个条件:(l)入射来的电磁波要尽可能多地进入吸波材料而不被反射;(2)材料要能将电磁波损耗吸收掉[4]。因此, 收稿日期:2009-10-11通讯联系人:范跃农 DOI:10.13957/https://www.360docs.net/doc/736088519.html,ki.tcxb.2009.04.022

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

相关文档
最新文档