基于单片机的超声波测距仪-课程设计(毕业设计)完整版

基于单片机的超声波测距仪-课程设计(毕业设计)完整版
基于单片机的超声波测距仪-课程设计(毕业设计)完整版

电子与信息工程学院综合实验课程报告

课题名称超声波测距仪

专业电子信息工程

班级 07级一、二班

学生姓名王利伟、魏丽丽、齐斯超

学号 07205010122王利伟

07205010205魏丽丽

07205010241齐斯超

指导教师丁刚、严辉

2010年 7 月 4日

摘要

随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌一新的测距仪将发挥更大的作用。

本设计采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。整个电路采用模块化设计,由主程序、中断程序、发射子程序、接收子程序、显示子程序等模块组成。各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。

1.总体方案设计介绍

本文所研究的超声波测距仪利用超声波指向性强、能量消耗缓慢、传播距离较远等优点,即用超声波发射器向某一方向发送超声波,同时在发射的时候开始计时,在超声波遇到障碍物的时候反射回来,超声波接收器在接收到反射回来的超声波时,停止计时。设超声波在空气中的传播速度为V,在空气中的传播时间为T,汽车与障碍物的距离为S,S=VT/2,这样可以测出汽车与障碍物之间的距离,然后在LED显示屏上显示出来。

其工作机理是依据压电材料的正逆压电效应,利用逆压电效应产生超声波,即逆压电效应是在压电材料上加上某种特定频率的交变正弦信号,材料就会产生随所加电压的变化规律而变化的机械形变,这种机械形变推动周围介质振动,产生疏密相间的机械波,如果其振动频率在超声范围内,这种机械波就是超声波。

本文所设计的超声波测距仪主要由AT89C52单片机、超声波发射电路、超声波接收放大电路、显示电路.

首先由单片机驱动产生12MHZ晶振,由超声波发射探头发送出去,在遇到障碍物反射回来时由超声波接收探头检测到信号,然后经过滤波、放大、整形之后送入单片机进行计算,把计算结果输出到LED液晶显示屏上。超声波发生器可以分为两大类:一类是用电气方式产生超声波;另一类是用机械方式。产生超声波。电气方式包括压电型、电动型等;机械方式有加尔统笛、液和气流旋笛等。它们所产生的超声波的频率,功率和声波特性各不相同,因而用途也各不相同。目前在近距离测量方面较为常用的是压电式超声波换能器。

根据设计要求并综合各方面因素,本例决定采用AT89C51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成。超声波测距器系统设计如图 3.1所示。

图3.1 超声波测距器系统设计框图

2.硬件电路设计

硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。单片机采用AT89C51或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的4位共阳LED数码管,段码用

74LS244驱动,位码用PNP三极管9012驱动。

主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对超声波模组进行控制,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

2.1超声波发射和接收模组(V2.0)

本文采用的超声波测距模组集发射和接受为一体,内部超声波传感器谐振频率40KHz,模组传感器工作电压4.5V~9V,模组接口电压4.5V~5.5V。提供三种测距模式,选择跳线可以选择短距、中距和可调距。本实验采用短距(20~100cm)精度1cm。模组结构示意图如下:

应用时只需要用J5的第1个口与单片机Vcc连接,最后一个口与单片机GND 连接,第4个接口与单片机的INT0口相连接,J4的第3个接口与单片机1.0口连接,同时将J1跳线设置为短距模式,J2跳线设置为非外部电源供电方式(此时开发板通过10PIN排线为模组供电,板上J5选择5V,要把J2跳接到5v的一端)。这就完成了模组硬件的连接。超声波谐振频率调理电路图如下:

由单片机产生40KHz的方波由P1.0口送出,连接模组接口J4到模组的CD4049,而后面的CD4049则对40KHz频率信号进行调理,以使超声波传感器产生谐振。

上图为超声波回波接收处理电路,超声波接受处理部分电路前级采用NE5532构成10000倍放大器,对接收信号进行放大;后级采用LM311比较器对接收信号进行调整,比较电压为LM311的3管脚的输入。

接收回路中测得的超声波信号共有两个波束,第一个为余波信号,即超声波接收头在发射头发射信号(一组40KHz的脉冲)后,马上就接收到了超声波信号,并持续一段时间。另一个波束为有效信号,即经过被测物表面反射的回波信号。超声波测距时,需要测的是开始发射到接收到信号的时间差,要尽量避免检测到余波信号,这也是检测中存在最小测量盲区的主要原因。

单片机控制模组每次发生若干完整的40KHz的脉冲信号,发射信号前打开计数器T0,进行计时,等计时到达一定值后再开启检测回波信号,以避免余波信号的干扰。采用外部中断INT0对回波信号进行检测,接收到回波信号后马上读取计数器中的数值,此数据即为需要测量的时间差数据。

2.2数据显示模块

显示电路采用简单实用的4位共阳LED数码管,断码用74LS244驱动,位码用PNP三极管9012驱动。由P0口输出显示数据,P2.0~P2.3用来位选。显示电路如下图:

3.系统程序的设计

超声波测距器的软件设计主要由主程序,超声波发生子程序,超声波接收中断程序及显示子程序组成,由于C语言程序有利于实现较复杂的算法,汇编语言程序则具有较高的效率并且容易精确计算程序行动的时间,而超声波测距器的程序既有较复杂的计算(计算距离时),又要求精确计算程序运行时间(超声波测距时),所以控制程序可采用C语言和汇编语言混合编程。下面对超声波测距器的算法,主程序,超声波发生子程序和超声波接收中断程序逐一介绍。

3.1 超声波测距器的算法设计

图3.6示意了超声波测距的原理,既超声波发生器T在某一时刻发出一个超声波信号,当这个超声波遇到被测物体后反射回来,就会被超声波接收器R接收到。这样,只要计算出从发出超声波信号到接收到返回信号所用的时间,就可算出超声波发生器于反射物体的距离。该距离的计算公式如下:

d=s/2(v×t)/2

其中:d为被测物于测距器的距离;s为声波的来回路程;v为声速;t为声波来回所用的时间。

超声波也是一种声波,其声速v于温度有关。表3.1列出了几种不同温度下的超声波声速。在使用时,如果温度变化不大,则可认为声速基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。表 3.1不同温度下超声波声速表

3.2 主程序

主程序首先要对系统环境初始化,设置定时器T0工作模式为16位定时/计数器模式,置位总中断允许位EA并对显示端口P0和P2清0;然后调用超声波发生子程序送出一个超声波脉冲。为了避免超声波从发射器直接传到接收器引起的直射波,需要延时约0.1ms(这也就是超声波测距器会有一个最小可测距离的原因)后才可打开外中断0接收返回的超声波信号。由于采用的是12MHz的晶振,计数器每计一个数就是1us,所以当主程序检测到接收成功的标志位后,将计数器T0中的数(即超声波来回所用的时间)按式(3—2)计算,即可得被测物体与测距器之间的距离。设计时取20℃时的声速为344m/s,则有

d=(v×t)/2=(172T/10000)cm (3—2)

其中:T为计数器T0的计数值。

测出距离后,结果将以十进制BCD码方式送往LED显示约为0.5s,然后再发超声波脉冲重复测量过程。图3.7所示为主程序流程图。

※※※※※※主程序※※※※※※

START: MOV SP, #4FH

MOV R0, #40H ;40H~43H为显示数据存放单元(40H为最高位) MOV R7, #0BH

CLEARDISP: MOV @R0, #00H

INC R0

DJNZ R7, CLEARDISP

MOV 20H, #00H

MOV TMOD, #21H ;T1为8位自动重装模式,T0为16位定时器 MOV TH0, #00H ;65ms初值

MOV TL0, #00H

MOV TH1, #0F2H ;40kHz初值

MOV TL1, #0F2H

MOV P0, #0FFH

MOV P1, #0FFH

MOV P3, #0FFH

MOV R4, #04H ;超声波脉冲个数控制(为赋值的一半) SETB PX0

SETB ET0

SETB EA

SETB TR0 ;开启测试定时器

START1: LCALL DISPLAY

JNB 00H, START1 ;收到反射信号时标志位为1

CLR EA

LCALL WORK

SETB EA

CLR 00H

SETB TR0 ;重新开启测试定时器

MOV R2, #64H ;测量间隙控制(约4ms×100=400ms)LOOP: LCALL DISPLAY

DJNZ R2,LOOP

SJMP START1

3.3 超声波发生子程序和超声波接收中断程序

超声波发生子程序的作用是通过P1.0端口发送两个左右的超声波脉冲信号(频率40KHz的方波),脉冲宽度为12us左右,同时把计数器T0打开进行时。超声波发生子程序较简单,但要求程序运行时间准确,所以采用汇编语言编程。

ORG 0000H

LJMP START

ORG 0003H

LJMP PINT0

ORG 000BH

LJMP INTT0

ORG 0013H

RETI

ORG 001BH

LJMP INTT1

ORG 0023H

RETI

ORG 002BH

RETI

超声波测距器主程序利用外中断0检测返回超声波信号,一旦接收到返回超声波信号(即INT0引脚出现低电平),立即进入超声波接收中断程序。进入该中断后,就立即关闭计时器T0,停止计时,并将测距成功标志字赋值1.

※※※※※※中断程序※※※※※※

;T0中断,65ms中断一次

INTT0: CLR EA

CLR TR0

MOV TH0,#00H

SETB ET1

SETB EA

SETB TR0 ;启动计数器T0,用以计算超声来回时间

SETB TR1 ;开启发超声波用定时器T1 OUT: RETI

;T1中断,发超声波用

INTT1: CPL VOUT

DJNZ R4,RETOUT

CLR TR1 ;超声波发完毕,关T1

CLR ET1

MOV R4,#04H

SETB EX0 ;开启接收回波中断

RETIOUT: RETI

;外中断0,收到回波时进入

PINT0: CLR TR0 ;关计数器

CLR TR1

CLR ET1

CLR EA

CLR EX0

MOV 44H,TL0 ;将计数值移入处理单元

MOV 45H,TH0

SETB 00H ;接收成功标志

RETI

如果当计时器溢出时还未检测到超声波返回信号,则定时器T0溢出中断将外中断0关闭,并将测距成功标志字赋值2,以表示本次测距不成功。

4.调试及性能分析

4.1 调试

超声波测距器的制作和调试都较为简单,其中超声波发射和接收采用?15的超声波换能器TCT40—10F1(T发射)和TCT40—10S1(R接收),中心频率为40KHz,安装时应保持两换能器中心轴线平行并相距4~8cm,其余元件无特殊要求。若能将超声接收电路用金属壳屏蔽起来,则可提高抗干扰性能。根据测量范围要求不同,可适当地调整与接收换能器并接的滤波电容C4的大小,以获得合适的接收灵敏度和抗干扰能力。

硬件电路制作完成并调整好后,便可将程序编译好下载到单片机试运行。根据实际情况,可以修改超声波子程序每次发送的脉冲个数和两次测量的间隔时间,以适应不同距离的测量需要。

4.2 性能指示

根据文中电路参数和程序,测距器可测量的范围为0.07~5.50m。实验中,对测量范围为0.07~2.50m的平面物体做了多次测试,测距器的最大误差不超过

1cm,重复性很好。

5.设计总结

在本次设计中,我们广泛借鉴了各种设计的优点,充分考虑了整个设计中的各个环节。包括产生40KHz的方波,在接收电路中,对所接收方波进行滤波、放大、整形等步骤。但由于条件和技术所限,对于很多以上所分析的在发射和接收过程中所产生的误差没有得到有效的校正。比如温度误差、硬件电路误差等。

在我们为期一个学期的设计中,我们用到了以前学到的很多知识,比如电工、

单片机、和汇编语言等。这使我们意识到,任何一件产品的产生,都不是单一知

识所能实现的。而且在电路的设计和程序的编制过程中,出现了很多意想不到的

错误,让我们措手不及,有些甚至是一些非常低级的错误,但是这些错误也同样

让我们获益非浅,它使我们意识到,研究是一个非常严肃的过程,来不得半点马

虎。必须有一个严谨的态度,加上100%的努力才有可能获得成功的喜悦。

总之,在本课题的设计过程中尽管走了很多的弯路,但是还是学到了不少知

识,从中受益匪浅。了解了超声波传感器的原理,学会了各种放大电路的分析、

设计,也掌握了单片机的开发过程中所用到的开发方法和工具。动手能力与自学

能力得到了锻炼与提高,对待事物的态度也发生了变化。理论总是离不开实践的,

设计制作过程中,盲目地追寻理论知识根本不足以解决任何问题,一味的死研究

课本是不会真正掌握单片机的。只有真正动手去做才能发现问题,解决问题,提

高能力。

6.附件

6.1控制源程序

单片机汇编源程序

超声波测距器

采用AT89C51 12MHz晶振

采用共阳LED显示器

测试范围为0.07~4m,堆栈在4FH以上,20H用于标志

显示缓冲单元在40H~43H,内存44H~46H用于计算距离

VOUT EQU P1.0 ;脉冲输出端口

※※※※※※中断入口程序※※※※※※

ORG 0000H

LJMP START

ORG 0003H

LJMP PINT0

ORG 000BH

LJMP INTT0

ORG 0013H

RETI

ORG 001BH

LJMP INTT1

ORG 0023H

RETI

ORG 002BH

RETI

※※※※※※主程序※※※※※※

START: MOV SP, #4FH

MOV R0, #40H ;40H~43H为显示数据存放单元(40H为最高位)

MOV R7, #0BH

CLEARDISP: MOV @R0, #00H

INC R0

DJNZ R7, CLEARDISP

MOV 20H, #00H

MOV TMOD, #21H ;T1为8位自动重装模式,T0为16位定时器

MOV TH0, #00H ;65ms初值

MOV TL0, #00H

MOV TH1, #0F2H ;40kHz初值

MOV TL1, #0F2H

MOV P0, #0FFH

MOV P1, #0FFH

MOV P2, #0FFH

MOV P3, #0FFH

MOV R4, #04H ;超声波脉冲个数控制(为赋值的一半)

SETB PX0

SETB ET0

SETB EA

SETB TR0 ;开启测试定时器

START1: LCALL DISPLAY

JNB 00H, START1 ;收到反射信号时标志位为1

CLR EA

LCALL WORK

SETB EA

CLR 00H

SETB TR0 ;重新开启测试定时器

MOV R2, #64H ;测量间隙控制(约4ms×100=400ms)LOOP: LCALL DISPLAY

DJNZ R2,LOOP

SJMP START1

※※※※※※中断程序※※※※※※

;T0中断,65ms中断一次

INTT0: CLR EA

CLR TR0

MOV TH0,#00H

MOV TL0,#00H

SETB ET1

SETB EA

SETB TR0 ;启动计数器T0,用以计算超声来回时间

SETB TR1 ;开启发超声波用定时器T1 OUT: RETI

;T1中断,发超声波用

INTT1: CPL VOUT

DJNZ R4,RETOUT

CLR TR1 ;超声波发完毕,关T1

CLR ET1

MOV R4,#04H

SETB EX0 ;开启接收回波中断RETIOUT: RETI

;外中断0,收到回波时进入

PINT0: CLR TR0 ;关计数器

CLR TR1

CLR ET1

CLR EA

CLR EX0

MOV 44H,TL0 ;将计数值移入处理单元

MOV 45H,TH0

SETB 00H ;接收成功标志

RETI

※※※※※※显示程序※※※※※※

;40H为最高位,43H为最低位,先扫描高位

DISPLAY: MOV R1,#40H;G

MOV R5,#0E7H;G

PLAY: MOV A,R5

MOV P0,#0FEH

MOV P2,A

MOV @R1

MOV DPTR,#TAB

MOVC A,@A+DPTR

MOV P0,A

LCALL DL1MS

INC R1

MOV A,R5

JNB ACC.0,ENDOUT;G

RR A

MOV R5,A

AJMP PLAY

ENDOUT: MOV P2,#0FEH

MOV P0,#0FEH

RET

TAB: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,

0FEH,88H,0BFH

;共阳段码表“0”,“1”,“2”,“3”,“4”,“5”,“6”,“7”,

“8”,“9”,

“不亮”,“A”,“-”

※※※※※※延时程序※※※※※※

DL1MS: MOV R6, #14H

DL1: MOV R7, #19H

DL2: DJNZ R7, DL2

DJNZ R6, DL1

RET

※※※※※※距离计算程序※※※※※※

Work: PUSH ACC

PUSH PSW

PUSH B

MOV PSW, #18h

MOV R3, 45H

MOV R2, 44H

MOV R1, #00D

MOV R0, #17D

LCALL MUL2BY2

MOV R3, #03H

MOV R2, #0E8H

LCALL DIV4BY2

LCALL DIV4Y2

MOV 400H, R4

JNZ JJ0

MOV 40H,#0AH ;最高位为0,不点亮

JJ0: MOV A, R0

MOV R4, A

MOV A, R1

MOV R5, A

MOV R3, #00D

MOV R2, #100D

LCALL DIV4BY2

MOV 41H, R4

MOV A, 41H

JNZ JJ1

MOV A, 40H ;次高位为0,先看最高位是否为不亮

SUBB A, #0AH

JNZ JJ1

MOV 41H, #0AH ;最高位不亮,次高位也不亮

JJ1: M0V A, R0

MOV R4, A

MOV A, R1

MOV R5, A

MOV R3, #00D

MOV R2, #10D

LCALL DIV4BY2

MOV 42H, R4

MOV A, 42H

JNZ JJ2

MOV A, 41H ;次次高位为0,先看次高位是否为不亮

SUBB A, #0AH

JNZ JJ2

MOV 42H, #0AH ;次高位不亮,次次高位也不亮

JJ2: MOV 43H, R0

POP B

POP PSW

POP ACC

RET

※※※※※※2字节无符号数乘法程序※※※※※※

R7R6R5R4≦R3R2×R1R0

MUL2BY2: CLR A

MOV R7,A

MOV R5,A

MOV R4,A

MOV 46H,#10H

MULLOOP1: CLR C

MOV A,R4

RLC A

MOV R4,A

MOV A,R5

RLC A

MOV R5,A

MOV A,R6

RLC A

MOV R6,A

MOV A,R7

RLC A

MOV R7,A

MOV A,R0

RLC A

MOV R0,A

MOV A,R1

RLC A

MOV R1,A

JNC MULLOOP2

MOV A,R4

ADD A,R2

MOV R4,A

MOV A,R5

ADDC A,R3

MOV R5,A

MOV A,R6

ADDC A,#00H

MOV R6,A

MOV A,R7

ADDC A,#00H

MOV R7,A

MULLOOP2: DJNZ 46H,MULLOOP1

RET

※※※※※※4字节/2字节无符号数除法程序※※※※※※

;R7R6R5R4/R3R2=R7R6R5R4(商)…R1R0(余数)

DIV4BY2: MOV 46H,#20H

MOV R0,#00H

MOV R1,#00H

DIVLOOP1: MOV A,R4

RLC A

MOV R4,A

MOV A,R5

RLC A

MOV R5,A

MOV A,R6

RLC A

MOV R6,A

MOV A,R7

RLC A

MOV R7,A

MOV A,R0

RLC R0

MOV R0,A

MOV A,R1

RLC A

MOV R1,A

CLR C

MOV A,R0

SUBB A,R2

MOV B,A

MOV A,R1

SUBB A,R3

JC DIVLOOP2

MOV R0,B

MOV R1,A

DIVLOOP2: CPL C

DJNZ 46H,DIVLOOP1

MOV A,R4

RLC A

MOV R4,A

MOV A,R5

RLC A

MOV R5,A

MOV A,R6

RLC A

MOV R6,A

MOV A,R7

RLC A

MOV R7,A

RET

END ;程序结束

6.2电路图

超声波发射电路

超声波接收电路

单片机及显示电路

超声波测距仪硬件电路的设计

超声波测距仪电路设计实验报告 轮机系楼宇071 周钰泉2007212117 实验目的:了解超声波测距仪的原理,掌握焊接方法,掌握电路串接方法,熟悉电路元件。 实验设备及器材:电烙铁,锡线,电路元件 实验步骤:1,学习keil软件编写程序2、焊接电路板3、运行调试 超声波测距程序: #include unsigned char code dispbitcode[]={0x31,0x32,0x34,0x38,0x30,0x30, 0x30,0x30}; unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x77,0x7c,0x 39}; unsigned char dispbuf[8]={10,10,10,10,10,10,0,0}; unsigned char dispcount; unsigned char getdata; unsigned int temp; unsigned int temp1;

unsigned char i; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^4; sbit CLK=P3^5; sbit M1=P3^6; sbit M2=P3^7; sbit SPK=P2^6; sbit LA=P3^3; sbit LB=P3^2; sbit LC=P2^7; sbit K1=P2^4; sbit K2=P2^5; bit wd; bit yw; bit shuid; bit shuig; unsigned int cnta; unsigned int cntb; bit alarmflag; void delay10ms(void) { unsigned char i,j; for(i=20;i>0;i--) for(j=248;j>0;j--); } void main(void) { M1=0; M2=0; yw=1; wd=0; SPK=0; ST=0; OE=0; TMOD=0x12; TH0=0x216; TL0=0x216; TH1=(65536-500)/256; TL1=(65536-500)%256; TR1=1; TR0=1; ET0=1; ET1=1; EA=1; ST=1; ST=0; while(1) { if(K1==0) { delay10ms(); if(K1==0) { yw=1; wd=0; } } else if(K2==0) { delay10ms(); if(K2==0) { wd=1; yw=0; } } else if(LC==1) { delay10ms(); if(LC==1) { M1=0; M2=1; temp1=13; shuid=0; shuig=1; LB=0; } } else if((LC==0) && (LB==1)) { delay10ms(); if((LC==0) && (LB==1)) { M1=0; M2=0; temp1=12; shuig=0; shuid=0; LB=0; }

单片机应用_超声波测距器

单片机课程设计 一、需求分析: 超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量围在1m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 本文旨在设计一种能对中近距离障碍物进行实时测量的测距装置,它能对障碍物进行适时、适量的测量,起到智能操作,实时监控的作用。 关键词单片机AT82S51 超声波传感器测量距离 二、硬件设计方案 设计思路 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。 根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图所示: 超声波测距器系统设计框图 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

超声波测距仪外文翻译

H8/300L超声波测距仪 (原文出处:https://www.360docs.net/doc/726098666.html,第1页-第15页) 介绍 该应用说明介绍了一种使用H8/38024 SLP MCU的测距仪。由单片机产生40KHz 方波,通过超声波传感器发射出去。反射的超声波被另外一个传感器接收。有效距离为6cm到200cm。 1.理论 1.1概况 在这篇应用说明中,H8/38024F微处理器是作为目标设备被使用的。由于简单的可移植性,超声波测距仪使用的软件为C语言。 超声波是频率高于可听音的一切高于20kHz的声波。用于医疗诊断和影像的超声波,频率延长和超过了10兆赫兹,高的频率有短的波长,这使得超声波从物体反射回来更容易。不幸的是,极高的频率难以产生和测量。对超声波的检测与测量主要是通过压电式接收机进行的。 超音波普遍应用于防盗系统、运动探测器和车载测距仪。其他应用包括医疗诊断(人体成像),清洁(去除油脂和污垢),流量计(利用多普勒效应),非破坏性试验(检测材料缺陷),焊接等各个方面。 1.2软件实施 距离的计算要测量超声波传感器接收到回波的时间。理想的被测对象应该有一个大的面积而且不吸收超声波。 在这个应用说明中使用了38024f的CPU电路板。图1展示超声波测距仪的工作原理,tmofh (脚63 )是用来传送0.5ms的40kHz的超声波,irq0 ( pin72 ) 是用来探测 - 1 -

反射波的。发送超声波后,计时器C开始追踪Timer Counter C (TCC)的计数数目,以计算物体的距离。 图1.测距仪工作原理 1.2.1 发射超声波 定时器F是一个具有内置式输出比较功能16位计数器,它还可以用来作为两个独立的8位定时器FH和FL,这里,定时器F是作为两个独立的8位定时器使用。计时器的FL被初始化为产生中断,而FH在比较匹配发生时触发了tmofh的输出电平。 表1 计时器F的时钟选择 对于为定时器的FL,选定内部时钟?/32。输出比较寄存器FL装载数据初值为 - 2 -

基于单片机的超声波测距系统设计实验报告 - 重

指导教师评定成绩: 审定成绩: 自动化学院 计算机控制技术课程设计报告设计题目:基于单片机的超声波测距系统设计 单位(二级学院): 学生姓名: 专业: 班级: 学号: 指导教师: 负责项目: 设计时间:二〇一四年五月 自动化学院制

目录 一、设计题目 (1) 基于51单片机的超声波测距系统设计 (1) 设计要求 (1) 摘要 (2) 二、设计报告正文 (3) 2.1 超声波测距原理 (3) 2.2系统总体方案设计 (4) 2.3主要元件选型及其结构 (5) 2.4硬件实现及单元电路设计 (9) 2.5系统的软件设计 (13) 三、设计总结 (17) 四、参考文献 (17) 五、附录 (18) 附录一:总体电路图 (18) 附录二:系统源代码 (18)

一、设计题目 基于51单片机的超声波测距系统设计 设计要求 1、以51系列单片机为核心,控制超声波测距系统; 2、测量范围为:2cm~4m,测量精度:1cm; 3、通过键盘电路设置报警距离,测出的距离通过显示电路显示出来; 4、当所测距离小于报警距离时,声光报警装置报警加以提示; 5、设计出相应的电子电路和控制软件流程及源代码,并制作实物。

摘要 超声波具有传播距离远、能量耗散少、指向性强等特点,在实际应用中常利用这些特点进行距离测量。超声波测距具有非接触式、测量快速、计算简单、应用性强的特点,在汽车倒车雷达系统、液位测量等方面应用广泛。本次课设利用超声波传播中距离与时间的关系为基本原理,以STC89C52单片机为核心进行控制及数据处理,通过外围电源、显示、键盘、声光报警等电路实现系统供电、测距显示、报警值设置及报警提示的功能。软件部分采用了模块化的设计,由系统主程序及各功能部分的子程序组成。超声波回波信号输入单片机,经单片机综合分析处理后实现其预定功能。 关键词:STC89C52单片机; HC-SR04;超声波测距

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

超声波测距仪外文资料翻译

Ultrasonic distance meter Document Type and Number:United States Patent 5442592 Abstract:An ultrasonic distance meter cancels out the effects of temperature and humidity variations by including a measuring unit and a reference unit. In each of the units, a repetitive series of pulses is generated, each having a repetition rate directly related to the respective distance between an electroacoustic transmitter and an electroacoustic receiver. The pulse trains are provided to respective counters, and the ratio of the counter outputs is utilized to determine the distance being measured. A.BACKGROUND OF THE INVENTION This invention relates to apparatus for the measurement of distance and, more particularly, to such apparatus which transmits ultrasonic waves between two points. Precision machine tools must be calibrated. In the past, this has been accomplished utilizing mechanical devices such as calipers, micrometers, and the like. However, the use of such devices does not readily lend itself to automation techniques. It is known that the distance between two points can be determined by measuring the propagation time of a wave travelling between those two points. One such type of wave is an ultrasonic, or acoustic, wave. When an ultrasonic wave travels between two points, the distance between the two points can be measured by multiplying the transit time of the wave by the wave velocity in the medium separating the two

PLC超声波测距实验报告082039140程稳

利用plc的高速计数模块进行超声波测距实验 ―――――微型控制计算机暑期设计实验报告 082039140程稳 利用51单片机来驱动超声波模块测距,是一件很容易的事,只需要结合定时中断和外部中断,利用12M或更高的晶振频率即可精确获取从发射到接收到超声波之间的时间,平均1ms对应 3.4cm的行程,本GE比赛设计需要物位测量的最大距离是30cm,即需要30*2/3.4=17.64ms,而GE PAC RX3i的PME软件梯形图程序得扫描周期2ms以上,就算是最快的定时节点也有1ms,所以若直接用PLC的普通离散量输入模块IC694MDL654输入节点来测量接收到超声波回波的时间的误差为1ms,误差距离3.4/2=1.7cm,结果自然不理想,更严重的问题在于PLC该模块无硬件中断响应功能,是不能测电平宽度的。总之PLC的IO口工作在低速模式下是难以胜任高速测量任务的,但可喜的是GE PLC 的高速计数模块HSC304能处理2MHZ的信号,但仍无硬件中断功能。于是想能否干脆把单片机测出的电平时间数据通过串口发送给PLC,我也试着这样连线测试,不过PLC串口的使用不像单片机这么简单,没有相关资料,PLC内部寄存器找不到PLC从单片机接收的数据。于是仍决定放弃此方案,回到高速计数模块。再认真阅读此模块配置信息和实验调试后,发现其可以测量出外部信号频率,于是想既然PLC无法直接测电平宽度,那干嘛不测量频率,有了频率自然有周期,有周期自然有电平宽度!

利用plc的高速计数模块检测超声波测距仪的信号接收端的频率,正常情况下应使用频率直接求得周期接而来计算时间,但由于实际测得这样根本很难实现,所以直接测频率,并利用示波器查看该频率的波形,并修改程序使得在所测距离变化的情况下,一周期内的低电平保持不变(高电平所持续的时间表示超声波从发出到接收到所经历的时间,低电平是延时,为了使得波形正常),然后测出频率及其所对应的距离。 以下是用虚拟示波器测出的超声波模块在不同距离测量回波接收脚电压波形:

简易超声波测距仪的设计

摘要 超声波具有指向性强,能量消耗缓慢,传播距离较远等优点,所以,在利用传感器技术和自动控制技术相结合的测距方案中,超声波测距是目前应用最普遍的一种,它广泛应用于防盗、倒车雷达、水位测量、建筑施工工地以及一些工业现场。 本课题详细介绍了超声波传感器的原理和特性,以及Atmel公司的AT89C51单片机的性能和特点,并在分析了超声波测距的原理的基础上,指出了设计测距系统的思路和所需考虑的问题,给出了以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。整个电路采用模块化设计,由主程序、预置子程序、发射子程序、接收子程序、显示子程序等模块组成。各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。 经实验证明,这套系统软硬件设计合理、抗干扰能力强、实时性良好,经过系统扩展和升级,可以有效地解决汽车倒车、建筑施工工地以及一些工业现场的位置监控。 关键词AT89C51;超声波;测距

Abstract Ultrasonic wave has strong pointing to nature ,slowly energy consumption ,propagating distance farther ,so, in utilizing the scheme of distance finding that sensor technology and automatic control technology combine together ,ultrasonic wave finds range to use the most general one at present ,it applies to guard against theft , move backward the radar , water level measuring,building construction site and some industrial scenes extensively. This subject has introduced principle and characteristic of the ultrasonic sensor in detail ,and the performance and characteristic of one-chip computer AT89C51 of Atmel Company ,and on the basis of analyzing principle that ultrasonic wave finds range ,the systematic thinking and questions needed to consider that have pointed out that designs and finds range ,provide low cost , the hardware circuit of high accuracy , ultrasonic range finder of miniature digital display and software design method taking AT89C51 as the core. Modular design of the whole circuit from the main program, pre subroutine fired subroutine receive subroutine. display subroutine modules form. SCM comprehensive analysis of the probe signal processing, and the ultrasonic range finder function. On the basis of the overall system design, hardware and software by the end of each module. The research has led to the discovery that the software and hardware designing is justified, the anti-disturbance competence is powerful and the real-time capability is satisfactory and by extension and upgrade, this system can resolve the problem of the car availably, building construction the position of the workplace and some industries spot supervision. Key words AT89C51; Ultrasonic Wave; Measure Distance

基于51单片机的超声波测距仪之倒车雷达作品设计毕业论文

基于51单片机的超声波测距仪之倒车雷达作品设计毕业论文

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告

一、实验目的 1.了解超声波测距原理; 2.根据超声波测距原理,设计超声波测距器的硬件结构电路; 3.对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用 超声波方法测量物体间的距离; 4.以数字的形式显示所测量的距离; 5.用蜂鸣器和发光二极管实现报警功能。 二、实验容 1.认真研究有关理论知识并大量查阅相关资料,确定系统的总体设计方案,设计出系 统框图; 2.决定各项参数所需要的硬件设施,完成电路的理论分析和电路模型构造。 3.对各单元模块进行调试与验证; 4.对单元模块进行整合,整体调试; 5.完成原理图设计和硬件制作; 6.编写程序和整体调试电路; 7.写出实验报告并交于老师验收。 三、实验原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理,单片机(AT89C51)发出短暂的40kHz信号,经放大后通过超声波换能器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,得出时间t,再由系统软件对其进行计算、判别后,相应的计算结果被送至LED显示电路进行显示。 (一)超声波模块原理: 超声波模块采用现成的HC-SR04超声波模块,该模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm。模块包括超声波发射器、接收器与控制电路。基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。实物如下图1。其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

超声波测距课程设计样本

目录 前言 1课题设计目及意义----------------------------------------------- 1 1.1设计目----------------------------------------------------- 1 1.2设计意义----------------------------------------------------- 1 1.3课题设计任务和规定------------------------------------------- 1 正文 1 课程方案设计------------------------------------------------- 2 1.1系统整体方案--------------------------------------------------- 2 1.2系统整体方案论证-------------------------------------------- 2 2系统硬件构造设计------------------------------------- 2 2.1 51系列单片机功能特点及测距原理------------------------------ 3 2.1.1 51系列单片机功能特点------------------------------------- 3 2.1.2 单片机实现测距原理 ----------------------------------------- 3 2.2 超声波电路构造------------------------------------------------ 4 2.3 超声波测距系统硬件电路设计---------------------------------- 4 2.4 PCB版图设计---------------------------------------------------- 5 3 系统软件设计----------------------------------------- 6 3.1 超声波测距仪算法设计---------------------------------------- 7 3.2 主程序流程图--------------------------------------------------- 7 3.3单片机某些C语言程序-------------------------------------------- 8 3.4超声波测距某些C语言程序-------------------------------------- 11

激光测距仪外文翻译

Laser rangefinder A long range laser rangefinder is capable of measuring distance up to 20 km; mounted on a tripod with an angular mount. The resulting system also provides azimuth and elevation measurements. A laser rangefinder is a device which uses a laser beam to determine the distance to an object. The most common form of laser rangefinder operates on the time of flight principle by sending a laser pulse in a narrow beam towards the object and measuring the time taken by the pulse to be reflected off the target and returned to the sender. Due to the high speed of light, this technique is not appropriate for high precision sub-millimeter measurements, where triangulation and other techniques are often used. Pulse The pulse may be coded to reduce the chance that the rangefinder can be jammed. It is possible to use Doppler effect techniques to judge whether the object is moving towards or away from the rangefinder, and if so how fast. Precision The precision of the instrument is determined by the rise or fall time of the laser pulse and the speed of the receiver. One that uses very sharp laser pulses and has a very fast detector can range an object to within a few millimeters. Range Despite the beam being narrow, it will eventually spread over long distances due to the divergence of the laser beam, as well as due to scintillation and beam wander effects, caused by the presence of air bubbles in the air acting as lenses ranging in size from microscopic to roughly half the height of the laser beam's path above the earth. These atmospheric distortions coupled with the divergence of the laser itself and with transverse winds that serve to push the atmospheric heat bubbles laterally may combine to make it difficult to get an accurate reading of the distance of an object, say, beneath some trees or behind bushes, or even over long distances of more than 1 km in open and unobscured desert terrain. Some of the laser light might reflect off leaves or branches which are closer than

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

超声波测距器课程设计

《微机原理及应用》课程设计 超声波测距器的设计 学生姓名郝强 学号20110611113 学院名称机电工程学院 专业名称机械电子工程 指导教师王前 2013年12月27日

摘要 随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。本文对超声波传感器测距的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。就超声波的传播特性,超声波换能器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明。 关键词:超声波;传感器;测量距离;控制

目录 摘要 (2) 目录 (3) 1.设计目的 (4) 2.总体方案 (4) 3.硬件设计 (5) 3.1 超声波测距器硬件电路设计 (5) 3.2.1单片机芯片的选择 (6) 3.2.2AT89C51定时计数应用电路 (6) 3.3超声波发射电路设计 (6) 3.3.1选择超声波发生器类型 (6) 3.3.2 超声波发射电路设计 (7) 3.4超声波接收电路设计 (8) 3.5超声波显示电路设计 (9) 4.软件设计 (9) 4.1波测距器的算法设计 (10) 4.2系统的主控制程序设计 (11) 4.3发生子程序设计 (12) 4.4接收中断程序设计 (13) 4.5显示程序设计 (14) 4.6距离计算程序 (15) 5.结论 (17) 参考文献 (18)

外文文献及翻译_Ultrasonic distance meter

毕业设计(论文)外文资料翻译 系 (院 ):电子与电气工程学院 专 业:测控技术与仪器 姓 名: 学 号: 外文出处:United States Patent 5442592 (用外文写) 附件:1.外文资料翻译译文; 2.外文原文。

指导教师评语: 所选内容与课题相关,对课题设计参考具有一定价值;翻译具有一定难度,工作量适中;译文基本正确,语句通顺,但也存在部分错误。 总体评价:良 签名: 2012 年 3 月 15 日注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 超声波测距仪 文件类型和数目:美国专利5442592 摘要:提出了一种可以抵消温度的影响和湿度的变化的新型超声波测距仪,包括测量单元和参考资料。在每一个单位,重复的一系列脉冲的产生,每有一个重复率,直接关系到各自之间的距离,发射机和接收机。该脉冲序列提供给各自的计数器,计数器的产出的比率,是用来确定被测量的距离。 出版日期:1995年8月15日 主审查员:罗保.伊恩j. 一、背景发明 本发明涉及到仪器的测量距离,最主要的是,这种仪器,其中两点之间传输超声波。精密机床必须校准。在过去,这已经利用机械设备来完成,如卡钳,微米尺等。不过,使用这种装置并不利于本身的自动化技术发展。据了解,两点之间的距离可以通过测量两点之间的行波传播时间的决定。这样的一个波浪型是一种超声波,或声波。当超声波在两点之间通过时,两点之间的距离可以由波的速度乘以测量得到的在分离的两点中波中转的时间。因此,本发明提供仪器利用超声波来精确测量两点之间的距离对象。 当任意两点之间的介质是空气时,声音的速度取决于温度和空气的相对湿度。因此,它是进一步的研究对象,本次的发明,提供的是独立于温度和湿度的变化的新型仪器。 二、综述发明 这项距离测量仪器发明是根据上述的一些条件和额外的一些基础原则完成的,其中包括一个参考单位和测量单位。参考和测量单位是相同的,每个包括一个超声波发射机和一个接收机。间隔发射器和接收器的参考值是一个固定的参考距离,而间距之间的发射机和接收机的测量单位是有最小距离来衡量的。在每一个单位,发射器和接收器耦合的一个反馈回路,它会导致发射器产生超声脉冲,这是由接收器和接收到一个电脉冲然后被反馈到发射机转换,从而使重复系列脉冲的结果。重复

相关文档
最新文档