浅议量子化条件

浅议量子化条件
浅议量子化条件

能量量子化

17.1 能量量子化 高二物理组韦瑜教材分析、学情分析 本节由黑体和黑体辐射、黑体辐射的实验规律和能量子三部分内容组成。对黑体辐射的研究及由此引发的“紫外灾难”是19世纪初物理学天空中的“第三朵乌云”,然而正是在拨开“第二朵乌云”的过程中,物理学终于迎来了量子物理的曙光。本节的重点是对黑体辐射能量在不同温度下与波长关系的研究,难点是如何让学生理解能量量子化假说。对这部分内容,教材是按物理学史的发展展开的,目的是使学生能从前辈大师的工作中体会科学探究的真实过程。 教学目标 (一)知识与技能 1.了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射 2.了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系 3.了解能量子的概念 (二)过程与方法 了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。 (三)情感、态度与价值观 领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 教学重点 能量子的概念 教学难点 黑体辐射的实验规律 教学方法 教师启发、引导,学生讨论、交流。 教学用具: 投影片,多媒体辅助教学设备 课时安排 1 课时

教学过程 (一)引入新课 教师:介绍能量量子化发现的背景:(多媒体投影,见课件。) 19世纪末页,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的Maxwell方程。另外还找到了力、电、光、声----等都遵循的规律---能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。 1900年,在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。” 也就是说:物理学已经没有什么新东西了,后一辈只要把做过的实验再做一做,在实验数据的小数点后面在加几位罢了! 但开尔文毕竟是一位重视现实和有眼力的科学家,就在上面提到的文章中他还讲到: “但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云,----” 这两朵乌云是指什么呢? 一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。 然而,事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路,柳暗花明又一村”。 点出课题:我们这节课就来体验物理学新纪元的到来――能量量子化的发现(二)进行新课 1.黑体与黑体辐射 教师:在了解什么是黑体与黑体辐射之前,请同学们先阅读教材,了解一下什么是热辐射。 学生:阅读教材关于热辐射的描述。 教师:通过课件展示,加深学生对热辐射的理解。并通过课件展示,使学生进一步了解热辐射的特点,为黑体概念的提出准备知识。 (1)热辐射现象

第15章量子物理指导

第15章 量子物理基础 内容提要 1.黑体辐射基本定律和普朗克量子假设 黑体:能完全吸收入射辐射的物体,有最大的发射本领。 黑体辐射的两条实验规律: (1) 斯忒藩一玻尔兹曼定律:4 )(T T M σ= 式中4 2 8 1067.5---???=k m W σ称为斯忒藩一玻尔兹曼常数。 (2) 维思位移定律: b T m =λ 式中k m b ??=-310898.2,称为维恩常数,公式表明峰值波长λm 随温度升高向短波方向移动 (3) 普朗克量子假设 黑体是由带电谐振子组成,这些谐振子辐射电磁波并和周围的电磁场交换能量;谐振子的能量是最小能量νεh =的整数倍。νεh =称为能量子,s J h ??=-34 1063.6称 为普朗克常量。 2.光电效应的实验规律 实验发现,光电效应表现出四条规律: (1) 入射光的频率一定时,饱和光电流与光强成正比; (2) 光电子的最大初动能与入射光的频率成线性关系,与入射光的强度无关; (3) 光电效应存在一个红限0ν,如果入射光的频率0νν<,便不会产生光电效应 (4) 光电流与光照射几乎是同时发生的,延迟时间在10-9s 以下。 3.光量子假设与爱因斯坦方程 (1) 爱因斯坦认为:光是由以光速运动的光量子组成,在频率为ν的光波中,光子的能量

νεh = 光子的静质量为零,动量为 λ h p = (2) 入射的光子被电子吸收使电子能量增加νh ,电子把一部分能量用于脱离金属表面时所需要的逸出功,另一部分为逸出电子的初动能。即 A mv h m +=2 2 1ν 4.康普顿效应 康普顿效应的实验规律 (1) 散射线中除了和原波长0λ相同的谱线外,还有一种波长0λλ>。 (2) 波长差0λλλ-=?随散射角θ的增大而增加。其增加量为 2 sin 2200θλλλc m h = -=? (3) 0λλλ-=?与散射物质无关,但散射光中原波长0λ的强度随散射物的原子序数 增加而增大,而λ的光强则相对减小。 利用光量子理论对康普顿效应能给予很好的解释。康普顿效应进一步证实了光的量子性。 4.光的波粒二象性 光既具有波动性又具有粒子性。光的波动性可以用波长λ和频率ν描述,光的粒子性可以光子的质量、能量和动量描述,其关系可以表示为: 光子能量νεh = 光子动量 λ h P = 光子质量 2 c h m ν = 光子的静质量为零。 5.玻尔的氢原子理论 (1) 氢原子光谱的实验规律 实验发现,氢原子光谱系的波数可以写成 )1 1( 1 ~22n m R -==λ ν

二次量子化

二次量子化 二次量子化又叫正则量子化,是对量子力学的一种新的数学表述。普通的量子力学方法只能处理粒子数守恒的系统。但在相对论量子力学中,粒子可以产生和湮灭,普通量子力学的数学表述方法不再适用。二次量子化通过引入产生算符和湮灭算符处理粒子的产生和湮灭,是建立相对论量子力学和量子场论的必要数学手段。相比普通量子力学表述方式,二次量子化方法能够自然而简洁的处理全同粒子的对称性和反对称性,所以即使在粒子数守恒的非相对论多体问题中,也被广泛应用。 然而,现在的二次量子化理论反映物质埸的特征是不够全面的。其一:只用作为埸的自由度的广义坐标,是一维的无穷多个指标的广义坐标,也就是说尽管是多个指标,它在空间的自由度却仅有一维。无穷多个指标的广义坐标,只分别对应无穷多个光量子,描写它们一维的状态。为了描写物质埸的矢量性,物质埸 的自由度的广义坐标也应该是多维的广义坐标,必须把推广成,对应物质埸在处的振动的动量,对应物质波的几率密度,即传统的二次量子化理论中的态函数。 在各类物理文献(包括科普)中,我们都能经常看到一个术语,即二次量子化,一般指场量子化或从量子力学到量子场论的这个“提升”过程。然而,所谓的二次量子化其实是一个错误的概念,至少是一个应该被摒弃的不恰当的概念,其产生及仍被使用有着一定的历史根源。但这并不仅仅是历史错误被认识后人们懒得改变的习惯用法,否

则也没有特别说明的必要了,而是依然存在于物理文献中的误解,它还在误导着更多的人。 量子场论的产生是这样一个过程。物理学家们首先建立了基于平直时空点粒子的量子力学,以薛定谔方程来描述,然后为了统一量子力学和狭义相对论,或者说为了找到符合狭义相对性原理的量子力学,他们认为有必要“推广”薛定谔方程,从而找到了克莱恩-戈登方程和狄拉克方程等等并认为他们就是“推广”的薛定谔方程,进一步研究发现这些方程的变量并不是描述点粒子的动力学量,而是所谓的场,一类在时空每一点都有取值的函数,对这类场进行量子化最终促成了量子场论—同时满足狭义相对论和量子力学的新理论的诞生。可是把诸如克莱恩-戈登之类的方程看成薛定谔方程的推广是错误的,正是当年人们这一错误认识导致了二次量子化的提出和使用,并且把量子力学称为经典力学的一次量子化。下面我们简单分析一下。 先从经典点粒子力学说起。经典点粒子力学的研究对象是点粒子,点粒子在空间(即位形空间)中的位置由空间坐标表示,其动力学,即其位置随时间的演化由一个或一组动力学方程所描述,方程的变量是坐标及其时间导数。人们又发现点粒子的动力学也可以等价地通过其位置和动量来描述,一个粒子的位置和动量所构成的空间成为该粒子的相空间,粒子在位形空间中的可能轨迹等价于其相空间中的一条曲线。二十世纪初,一些我们现在已经熟知的原因引发了量子力学革命,物理学家们发现微观世界很大程度上不能为经典相空间所描

量子力学(周世勋)课后答案-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 νc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(| |5 2-?=?===kT hc v v e hc c d c d d dv λνλ λ πλλρλ λλρλ ρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

WKB近似及在一维势阱量子化条件推导的应用

WKB 近似推导一维势阱量子化条件 摘要:在量子力学里,WKB 近似是一种半经典计算方法,可以用来解析薛定谔方程。WKB 近似的应用非常广泛,特别是量子力学相关问题中。本文通过介绍了WKB 近似,并用其导出了一维势阱量子化条件为例,进一步深入了解WKB 近似法求解方程的步骤和过程。 关键词:WKB 近似,一维势阱,量子化条件,薛定谔方程 引言:WKB 近似全名为温侧-克喇末-布里渊近似法,是以三位物理学家Gregor Went zel 、Hendrix Anthony Kram ers 和Leon Brillouin 命名的。他们于1926年成功的发展和应用于量子力学。经过近百年的发展和改进,WKB 近似已得到完善和普及,应用广泛,如处理谐振子问题、开普勒问题、一维及三维定态微扰问题、分波相角计算问题等。本文主 要讲解的是在势场()x V 变化缓慢并且E —()x V 特别大的条件(即WKB 近似条件)下, 用WKB 近似方法求解一维定态薛定谔方程可以得到WKB 波函数,结合转折点处波函数的渐进行为以及边条件能过导出一维势阱中三种典型模型下的束缚态例子的量子化条件。 1.WKB 近似法的基本思想 若薛定谔方程可以分解为几个常微分方程,并且问题又与经典问题相差不大是,则可以将波函数按幂级数展开,而且只取前面少数几项就能得到到小号的结果。所谓问题与经典问题相差不大,是指在研究体系中,研究的动量与其运动空间尺度大,普朗克常量 作用不大,使量子力学问题退化为经典问题。 2.WKB 近似法的基本步骤 求解一个量子系统的薛定谔方程的基本步骤,由基本思想可以归结为以下五步: 首先将波函数打造为一个一个指数函数;其次是将这些指数函数代入薛定谔方程;然后将指数函数展开为普朗克常量的幂级数的多项式函数;再匹配约化普朗克常量同次幂的项目, 得到一个方程组;最后解析这些方程,得到WKB 近似波函数。 3.WKB 近似波函数 根据上述的基本思想和基本步骤,以一维自由粒子为例,解其WKB 近似波函数的过程如下。 考虑到量子力学与经典力学之间的过度条件:, ()M C M Q .0.→→ 利用准经典近似法(WKB 近似法),对一维自由粒子波函数以 展开,然后求薛定谔方程并取波函数近似解,即可得到WKB 近似波函数。 这一过程的具体步骤为: 对于一维自由粒子波函数??? ??±= i Aex p px ψ可记为()?? ? ??= i ex p x f ψ,将其

量子力学第四版卷一习题答案

第一章 量子力学的诞生 设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? Λ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:222 1 )(a m x V E a x ω===。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπ ωωω 得ω ωπm n m nh a η22 = = (3) 代入(2),解出 Λη,3,2,1, ==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-? arcsin 2222 22 2 设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==?Λ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, Λ,3,2,1,,=z y x n n n 粒子能量

第三章 量子力学导论

闽江学院 教案 课程名称:原子物理 课程代码: 21100430 授课专业班级: 2010级物理学(师范类)授课教师:翁铭华 系别:电子系 2012年8 月30 日

第三章量子力学导论 教学目的和要求: 1.了解量子化物质波粒二象性的概念。 2.理解测不准原理; 3.掌握波函数及物理意义; 4.了解薛定谔方程;了解量子力学问题的几个简例; 5.了解氢原子的薛定谔方程;了解量子力学对氢原子的描述。 教学重点和难点: 1. 教学重点:波函数及统计解释 2.教学难点:波函数及统计解释 教学内容: 1. 玻尔理论的困难 2. 波粒二象性 3. 不确定关系 4. 波函数及其统计解释 5. 薛定谔方程及应用 19世纪末的三大发现(1896年发现放射性,1897年发现电子,1900年提出量子化概念)为近代物理学的序幕。1905年爱因斯坦在解释光电效应时提出光量子概念,1913年玻尔将普朗克-爱因斯坦量子概念用于卢瑟福模型,提出量子态观念,成功地解释了氢光谱。此外,利用泡利1925年提出的不相容原理和同年乌仑贝克、古兹米特提出的电子自旋假说,可很好地解释元素周期性、塞曼效应的一系列实验事实。至此形成的量子论称为旧量子论,有严重的缺陷。 在“物质粒子的波粒二象性”思想的基础上,于1925-1928年间由海森堡、玻恩、薛定谔、狄拉克等人建立了量子力学,它与相对论成了近代物理学的两大理论支柱。 量子力学的本质特征在1927年海森堡提出的不确定关系中得到明确的反映,它是微观客体波粒二象性的必然结果。量子力学的主要内容:1)相关的几个重要实验;2)有别于经典物理的新思想; 3)解决具体问题的方法。 §3-1玻尔理论的困难 玻尔理论将微观粒子视为经典力学中的质点,把经典力学的规律用于微观粒子,使其理论中有难以解决的内在矛盾,故有重大缺陷。如:为什么核与电子间的相互作用存在,但处于定态的加速电子不辐射电磁波?电子跃迁时辐射(或吸收)电磁波的根本原因何在?……(薛定谔的非难“糟透的跃迁”:在两能级间跃迁的电子处于什么状态?) 玻尔理论在处理实际问题时也“力不从心”,如无法解释氢光谱的强度及精细结构,无法解释简单程度仅次于氢原子的氦光谱,无法说明原子是如何组成分子及构成液体和固体。…… §3-2波粒二象性 1.经典物理中的波和粒子 经典物理学中,波和粒子各自独立,在逻辑上不允许同时用这两个概念描写同一现象。粒子可视为质点,具有定域性,有确定的质量、动量、速度和电荷等,波可以在空间无限扩展,波有确定

物质量量子化方法

摩尔是一系统的物质的量,该系统中所包含的基本单元数与0.012kg 碳—12的原子数目相等。使用摩尔时应予以指明基本单元,它可以是原子、分子、离子、电子及其他粒子,或是这些粒子的特定组合。 0.012kg 碳—12中所含的原子数目叫做阿伏加德罗常数,符号为A N 。阿伏加德罗常数的近似值为236.0210?/mol ,具体数值是236.022136710?/mol ,这个常数可用很多种不同的方法进行测定。这些方法的理论根据各不相同,但结果却几乎一样差异都在实验方法误差范围之内,这说明阿伏加德罗常数是客观存在的重要数据。 物质量量子化方法 1、洛希密脱的理论计算 1865年,洛希密脱根据气体分子运动论并结合固体密度的实验数据,得出关于A N 的最早可靠估计值231010/A N mol ≈?他的理论计算如下: 洛希密脱根据气体分子运动论的平均自由程公式 从麦克斯韦速率分布函数求得的平均速率 及由气体输运过程得到的粘滞系数 得到 假定固体分子互相紧接着,每个分子占据一个边长为d 的正方体,则1mol 固体占据体积为3 A N d 于是,固体的密度为

洛希密脱的理论计算结果表明阿伏伽德罗常数是一个大得惊人的天文数字。 2、爱因斯坦的贡献 爱因斯坦在1905年和1906年发表的一系列论文中仔细分析了布朗运动,他的分析主要是关于在时间t内微粒的总位移是在很大范围内变化的,而其分量的均方值2x对于悬浮在粘滞系数为n的液体中半径为a的球形微粒来说,则有【1】 (1) 上式称为布朗运动的爱因斯坦公式。推导如下: 设微粒是半径为a的球体,根据斯托克斯定理,它在流体中运动所受粘滞力 (2)根据经典力学定律微粒的运动方程为 (3) F F F表示液体分子由于热运动而产生的对微粒的碰撞力。 其中,, x y z 假设t=0时微粒位于坐标原点, 则x,y,z代表微粒在t时刻的位移, 以x,y,z乘(2)式的3个式子并考虑到 则(1)式可以写为

量子力学(周世勋)课后答案-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 如果令x=kT hc λ ,则上述方程为 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 把x 以及三个物理常量代入到上式便知 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:根据德布罗意波粒二象性的关系,可知 λ h P =。 所考虑的粒子是非相对论性的电子(动能eV c m E e k 621051.0?=<<),满足 e k m p E 22 =, 因此利用非相对论性的电子的能量—动量关系式,有 在这里,利用了 m eV hc ??=-61024.1, eV c m e 621051.0?=。 最后,对 E m h e 2= λ 作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。 自然单位制: 在粒子物理学中,利用三个普适常数(光速c ,约化普朗克常数,玻耳兹曼常数 k )来减少独立的基本物理量的个数,从而把独立的量纲减少到只有一种(能量量纲,常用单位eV )。例:1nm=5.07/keV ,1fm=5.07/GeV , 电子质量m=0.51MeV . 核子(氢原子)质量M=938MeV ,温度5 18.610K eV -=?.

量子力学课后答案

=,量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86' =???? ? ?? -?+--?=-kT hc kT hc e kT hc e hc λλλλλπρ ? 011 5=-?+--kT hc e kT hc λλ

? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ nm m m E c hc E h e e 71.01071.031051.021024.12296 6 2=?=????= ==--μμ

2014年量子力学知识点总结

量子力学期末复习完美总结 一、 填空题 1.玻尔-索末菲的量子化条件为: pdq nh =?,(n=1,2,3,....), 2.德布罗意关系为:h E h p k γωλ == = =; 。 3.用来解释光电效应的爱因斯坦公式为: 21 2 mV h A υ=-, 4.波函数的统计解释:()2 r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。这是量子力学的基本原理之一。波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波 。 5 .波函数的标准条件为:连续性,有限性,单值性 。 6. , 为单位矩阵,则算符 的本征值为: 1± 。 7.力学量算符应满足的两个性质是 实数性和正交完备 性 。 8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。即 ()m n mn d d λλφφτδ φφτδλλ* * '' == -??或 。 9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ, 所描写 的态中测量粒子动量所得结果在p p dp → +范围内的几率。 10. i ; ?x i L ; 0。 11.如两力学量算符 有共同本征函数完全系,则 _0__。 12.坐标和动量的测不准关系是: () () 2 2 2 4 x x p ??≥ 。 自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒 13.量子力学中的守恒量A 是指:?A 不显含时间而且与?H 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。 14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。 15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。 16.对氢原子,不考虑电子的自旋,能级的简并为: 2 n ,考虑自旋但不考虑自旋与轨道角动量的 耦合时,能级的简并度为 2 2n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+ j 。 17.设体系的状态波函数为 ,如在该状态下测量 力学量 有确定的值 ,则力学量算符 与态矢量 的关系为:? F ψλ ψ = 。 18.力学量算符 在态 下的平均值可写 为 的条件为:力学量算符的本征 值组成分立谱,并且()r ψ是归一化波函数。 19. 希尔伯特空间:量子力学中Q 的本质函数有无限多 个,所以态矢量所在的空间是无限维的函数空间。 20.设粒子处于态 , 为 归一化波函数, 为球谐函数,则系数c 的取值为: , 的可能值为: 13 , 本征值为 出现 的几率为: 1 2 。

曽谨言量子力学第1章习题解答

第一章 量子力学的诞生 1.1设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2, ,2,1, x V E m p n nh x d p -===?? )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:222 1 )(a m x V E a x ω===。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπ ωωω 得ω ωπm n m nh a 22 = = (3) 代入(2),解出 ,3,2,1, ==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-? arcsin 2222 22 2 1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==? ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, ,3,2,1,,=z y x n n n 粒子能量

1 量子力学的公理化过程

0 量子力学的危机 相对论和量子力学的主要矛盾是什么? 相对论是非线性、局域、实在论的; (正统)量子力学是线性、非局域、实证论的。 这些是数学、物理、哲学方面的主要矛盾。 广义相对论和量子理论在各自的领域内都经受了无数的实验检验,迄今为止,还没有任何确切的实验观测与这两者之一矛盾。有段时候,人们甚至认为生在这么一个理论超前于实验的时代对于理论物理学家来说是一种不幸。Einstein 曾经很怀念Newton 时代,因为那是物理学的幸福童年时代,充满了生机;Einstein 之后也有一些理论物理学家很怀念Einstein 时代,因为那是物理学的伟大变革时代,充满了挑战。 今天的理论物理学依然充满了挑战,但是与Newton 和Einstein 时代理论与实验的“亲密接触” 相比,今天理论物理的挑战和发展更多地是来自于理论自身的要求,来自于物理学追求统一,追求完美的不懈努力。 量子引力理论就是一个很好的例子。 虽然量子引力理论的主要进展大都是在最近这十几年取得的,但是引力量子化的想法早在1930 年就已经由L. Rosenfeld 提出了。从某种意义上讲,在今天大多数的研究中量子理论与其说是一种具体的理论,不如说是一种理论框架,一种对具体的理论- 比如描述某种相互作用的场论- 进行量子化的理论框架。广义相对论作为一种描述引力相互作用的场论,在量子理论发展早期是除电磁场理论外唯一的基本相互作用场论。把它纳入量子理论的框架因此就成为继量子电动力学后一种很自然的想法。

但是引力量子化的道路却远比电磁场量子化来得艰辛。在经历了几代物理学家的努力却未获得实质性的进展后人们有理由重新审视追寻量子引力的理由。 广义相对论是一个很特殊的相互作用理论,它把引力归结为时空本身的几何性质。从某种意义上讲,广义相对论所描述的是一种“没有引力的引力”。既然“没有引力”,是否还有必要进行量子化呢?描述这个世界的物理理论是否有可能只是一个以广义相对论时空为背景的量子理论呢?[注一] 也就是说,广义相对论和量子理论是否有可能真的同时作为物理学的基础理论呢? 这些问题之所以被提出,除了量子引力理论本身遭遇的困难外,没有任何量子引力存在的实验证据也是一个重要原因。但是种种迹象表明,即使撇开由两个独立理论所带来的美学上的缺陷,把广义相对论和量子理论的简单合并作为自然图景的完整描述仍然存在许多难以克服的困难。 问题首先在于广义相对论和量子理论彼此间并不相容。我们知道一个量子系统的波函数由系统的Schr?dinger 方程 HΨ = i?tΨ 所决定。方程式左边的H 称为系统的Hamiltonian (哈密顿量),它是一个算符,包含了对系统有影响的各种外场的作用。这个方程对于波函数Ψ 是线性的,也就是说如果Ψ1 和Ψ2 是方程的解,那么它们的任何线性组合也同样是方程的解。这被称为态迭加原理,在量子理论的现代表述中作为公理出现,是量子理论最基本的原理之一。但是一旦引进体系内(即不仅仅是外场) 的非量子化引力相互作用,情况就不同了。因为由波函数所描述的系统本身就是引力相互作用的源,而引力相互作用又会反过来影响波函数,这就在系统的演化中引进了非线性耦合,从而破坏了量子理论的态迭加原理。不仅如此,进一步的分析还表明量子理论和广义相对论耦合体系的解有可能是不稳定的。 其次,广义相对论和量子理论在各自“适用” 的领域中也都面临一些尖锐的问题。比如广义相对论所描述的时空在很多情况下- 比如在黑洞的中心或宇宙的初始- 存在所谓的“奇点” (Singularity)。在这些奇点上时空曲率和物质密度都趋于无穷。这些无穷大的出现是理论被推广到其适用范围之外的强烈征兆。无独有偶,量子理论同样被无穷大所困扰,虽然由于所谓重整化方法的使用而暂得偏安一隅。但从理论结构的角度看,这些无穷大的出现预示着今天的量子理论很可能只是某种更基础的理论在低能区的“有效理论” (Effective Theory)。因此广义相对论和量子理论不可能是物理理论的终结,寻求一个包含广义相对论和量子理论基本特点的更普遍的理论是一种合乎逻辑和经验的努力。 狭义相对论和量子力学毫无矛盾,两者已经由量子场论和重整化技术很好地统一 2.广义相对论和量子力学有矛盾,广义相对论可以量子化,但量子化之后无法使用重整化技术,无法获得有价值的理论。 3.一小撮人从量子概念出发,假设基本粒子由振动的弦构成,并利用相对论的思想和量子场论的技术构造出所谓弦理论,这个理论被大多数人看好,但距离成功也遥遥无期

量子力学作业答案

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =??? ? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ --kT hc e kT hc λλ

? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 1.4 利用玻尔——索末菲的量子化条件,求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子轨道的可能半径。 已知外磁场H=10T ,玻尔磁子124109--??=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。 解 玻尔——索末菲的量子化条件为 ?=nh pdq 其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。 (1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有 2 22 12kx p E +=μ 这样,便有 )2 1(22 kx E p - ±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据 221 kx E = 可解出 k E x 2± =± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有

量子力学知识点小结

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性

二维量子体系中的磁通量子化

二维量子体系中的磁通量子化 作者:郭俊明 (陕西理工学院物理系,陕西 汉中 723001) 指导老师:王剑华 (所在单位:陕西理工学院) [摘 要]研究磁通量子化对研究量子比特电路和超导方面有很大的作用。量子比特电路对集成电路有很大意义,而超导对于材料的研究是至关重要的。所以磁通量子化是一个很热的话题,不少科学家对此进行研究,并不断地开发与发展。本文将对磁通量子化的提出,现在的状况,以及发展前景进行总结。 [关键词]磁通量子化 二维环超导体 分数角动量 隧穿效应 量子比特 引言 磁通量子化是由london 最先预言提出的(1)什么叫磁通量子化呢? 磁通量子化也叫磁通量子,指的是在超导环中的磁通量是量子化的,只能是一个常数的整数倍,这个常数等于h/2q.即0n φφ= ,而h/2q 0=φ 磁通量子化是一种宏观量子化效应,我们可以利用宏观波函数ρ?= φi e 来讨论。 其中ρ是粒子数密度,?是相位因子。经过分析推导可知 q nh ds B b =?=='?φφ 通过这种方法再次验证了磁通量是量子化的。 磁通量子化的研究现状 磁通量子化的研究现在有很多方向,主要超导体、分数角动量、隧穿效应、量子比特。 1.二维环形超导体中的磁通量子化 早期的超导理论是由F.Londong 发展的,其本质是一个唯象的理论,并且很好的说明了超导电性的基本事实比如无限大的电导率,Meissner 效应等等。但London 理论忽视了正的表面能的可能性。最后由Ginzburg 和Landau (G-L )提出的另一唯象理论克服了London 理论的困难。 2(21)(21)n m c hc S B n m B n m eB e πΦ=??=++=++ |||| 由Byers 和Yang (杨振宁)(2)指出,磁通量子化不仅仅是一种新的物理现象,而且是量子 理论的必然结果。在他们(2)的理论中是以Meissner 效应作为出发点的并没有把屏蔽电流对 总束缚磁通的影响考虑进去。为了给超导圆筒内总束缚磁通相对整数磁通量子有偏差有一个合理的解释,在60年代BCS 理论的基者之一Bardeen

由最小作用量到量子化条件

最小作用量原理到量子化条件 一.问题背景 为了说明从最小作用量原理到量子化的过程是有多么惊心动魄,我们先要明白量子化的原理,并且在一开始我也要声明这不是唯一的一种方法,并且也是当代的一位物理学家做的工作。我仅表示最崇高的敬意而写下这些可以让我好好赏析的艺术。 首先是介绍什么是作用量:WIKI 的解释 二.最小作用量原理 在物理学里,最小作用量原理(英语:least action principle ),或更精确地,平稳作用量原理(英语:stationary action principle ),是一种变分原理,当应用于一个机械系统的作用量时,可以得到此机械系统的运动方程。这原理的研究引导出经典力学的拉格朗日表述和哈密顿表述的发展。卡尔·雅可比特称最小作用量原理为分析力学之母[1]。 在现代物理学里,这原理非常重要,在相对论、量子力学、量子场论里,都有广泛的用途。在现代数学里,这原理是莫尔斯理论的研究焦点。本篇文章主要是在阐述最小作用量原理的历史发展。关于数学描述、推导和实用方法,请参阅条目作用量。最小作用量原理有很多种例子,主要的例子是莫佩尔蒂原理(Maupertuis' principle )和哈密顿原理。 从英文中的造字角度看该问题可以略见端倪,”l east action principle“。看了部分关于最 小作用量原理的论文和赏析后。从历史的角度看,费马原理是最原始的表述,而到现在,近乎所有的物理理论都可以表述成最小作用量的形式,但是无法想象的是竟然没有覆盖全部的物理学。简直无法忍受!接着先介绍电磁学的作用量:S = (动能?势能)t2 t1dt S = (12mv 2?V(x))t2t1dt S = (?mc 2 1?v 2/c 2?q e [? x,y,z,t ?v ?A (x,y,z,t)])t2t1dt S = 12?E 2?12?c 2B 2?ρ?+jA dt t2t1F =q e E +v ×B ?×F ≠0 写下这些方程是为了很好地表现拉氏量在力学和电磁学中发挥的作用~ 先从洛伦兹力下手,然后把势能函数表示出来,接着可以先给出非相对论情形下的拉格朗日函数: F =dp =q e ????eA +v × ?×A ???? eA et +v × ?×A =????eA et +? v ?A ? v ?? A dA(x,y,z,t)dt =eA et +eA ex ex et +eA ey ey et +eA ez ez et =eA et + v ?? A d p +q e A =??q e ??v ?A

相关文档
最新文档