低压气体直流放电击穿特性

低压气体直流放电击穿特性
低压气体直流放电击穿特性

实验研究报告

实验名称:低压气体直流放电击穿特性

院系:物理与光电工程学院

班级:物理1301

姓名:徐梦洋

学号:201398004 摘要:通过低气压直流辉光放电发生装置,研究了氩气的气压与击穿电压的关系,在放电极板间隙及极板材质不变的情况下,得到了氩气的帕邢曲线,给出了氩气的最小击穿电压和最佳击穿条件.

关键词:帕邢定律;放电击穿;击穿电压;直流辉光放电

引言;气体在常态下是良好的绝缘体,在直流电场下没有载流能力,但在一定激励作用下,使气体中的中性粒子发生电离形成正负电离的粒子,当粒子数达到一定数目时,气体就成了导体,在此情形下施加一定的电场,粒子在场作用下会定向移动,就发生了气体放电现象.气体放电分为自持放电和非自持放电,非自持放电指的是存在外致电离源的条件下才能维持放电,而支持放电指去掉外致电离源的条件下,仍能维持放电.气体从非自持放电到自持

实验目的:(1)通过实验了解气压的测量原理以及低气压的实验和维持方法。通过实验进一步了解气体放电的过程,对理论上气体放电的过程有进一步的认识。(2)体验到从实验现象的分析到理论普遍性规律的一般认识过程,培养出理论联系实际的物理学思考的品质。实验原理:常态下气体是绝缘体,不导电,但是如果有一定的外界条件,使气体中性粒子发生电离,并且数量达到一定的比例,在外加电场的情况下就会导电产生气体放电现象。其中又分为自持放电和非自持放电。自持放电是在没有外电离作用下可以维持放电的现象,而非自持放电是指在有外电离作用下才可以维持放电。气体首先在外电离因素的支持下可以在电场中传导电流,当电场增大到一定的程度。电流迅速增加,即使没有外界的电离作用,放电仍可以维持,此时气体从非自持放电转化为自持放电,这种现象就叫做气体的击穿,此时所需要的电场强度就是击穿场强,相应的电压就是击穿电压。

上述的这类过程就叫做汤森放电,汤森认为,气体在宇宙射线或者其它因素的影响下,本身就有一定的电离,称为剩余电离。当外加电场不够大时,点电流很小,电流密度很低,在空间的分布是均匀的,此时电流随着电压的增大是线性增加,趋于饱和。这个过程是暗放电,

不发光。当电场足够大时,电子的能量越来越大,发生电子碰撞,从而电子的数量进一步提高,电流快速增加,与此同时,会产生光辐射,从而有光电效应的产生。同时也会产生离子,随着电场的增加离子的能量增加,会轰击阴极产生二次电子发射,极大的提高了阴极发射电子的速率,当阴极发射足够强时发生电子击穿,条件如下:

ad e γγ=+1

1889年帊刑经过一系列的实验发现了帊刑定律V BPd APe /-=α A 和B 为实验常数,其中击穿条件可以表示为: ???? ??+=)/11ln(ln γAPd BPd

V s

实验过程 ;实验装置为大连理工物光学院制造的低气压直流辉光放电发生装置,具备水冷系统以及氩气的控制与调节系统。

放电管构

图表 1辉光放电管构造示意图

1水冷法兰 2阴极 3双探针 4等离子体 5阳极 6玻璃管 7气体流量管

实验前将玻璃管抽真空至1~2pa ,调节减压阀,改变通气流

量,使放电管内的气压为10Pa ,调节输出电压,记录气体击穿瞬间的击穿电压值,放电管气压间隔5pa ,依次测量值至100pa ,得到组线性区的气体压强与击穿电压值,而后将压强调制10pa ,在从10pa 按顺序降至4pa 测量其中4组非线性区的气体压强与击穿低压值。测量值如图 2所示

实验数据与处理

d=89.5mm

图表2

由图得,最低电压为463v ,临界气压值为为10 Pa。帕邢曲线在特定的10Pd值时,有最小的击穿电压。帕邢定律在一定(10-100Pd)范围有效。气压过高或过高真空中,帕邢定律不适用。

实验结果与讨论

氮气压强太大或太小都不利于气体起辉,当压强较大时,放电管内中性粒子束较多,当电压较小时,已电离的粒子碰撞中性粒子,由于粒子在单位路程内碰撞的粒子束多,很难使中性粒子电离,因此必须提高极板电压,而当气体压强过小时,带电粒子碰撞中性粒子的概率大大降低,也很难起辉.

通过实验发现一些需要注意的事情。首先,测量顺序必须严格遵守,第一组数据从10Pa开始测量,而后依次增加5Pa至100Pa,进行线性区测量,而后调回10Pa,从10Pa开始逐渐降低气压测量,否则,如

果在测完100Pa后直接测5Pa左右的时候,之前100Pa时在管内残留有较多的电离的粒子,会对试验产生很大影响。而且在每次读取完击穿电压值后,必须先调回50V以下,使放电熄灭,去除部分电离的粒子,也避免了在调节气压过程中出现再次击穿,使下一组数据的测量的初始条件较上一组变化不大。由于气压小于10Pa时处于非线性区,所以在此区间测量间隔应减小.

在读数过程中发现,电压值在击穿后会出现下降,当气压值较高时尤为明显,这是由于击穿后,电流电流自动增加,放电电压借助回路自动适应调整,特别是亚辉光放电模式下的伏安特性呈现负阻性,导致电压降低.另外,在气压较低时,可以观察到辉光放电发光先在阳极附近建立,随着气压的增大,击穿时辉光放电逐渐向阴极附近扩散.

【思考题】

1.击穿电压是气体击穿发生的电压,想一想放电的熄灭电压为什么与击穿时的电压不同。答:熄灭电压是击穿之后再减小电压,直到放电结束的那个电压,而击穿电压是放电从非自持状态过度到自持的那个电压,熄灭电压的环境是存在了很多很多的电子离子,而击穿过程发生在电子数不断增加的过程,因而需要电压不断增高,以积累足够电荷,以至电荷产生的电场影响了外加电场,故击穿电压要高于熄灭心得体会:在实验中我深刻的体会到从实际中走出的理论与实际情况符合想当的好,对此感到很高兴,我们物理学就是这样,理论来源于实际并且来指导实践。

参考文献

[1]余虹,张家良,等.大学物理实验.北京:科学出版社2011:195~199

[2]余虹,张家良,等.大学物理实验.北京:科学出版社2011:199~204

[3] 赵永莉. 变气压直流辉光放电的数值模拟,2008

[4]龙珏,胡振辉等,低气压直流辉光等离子体实验装置[J],大学物理实验,2009,22(1):75~78

[5]侯清润,茅卫红等.气体放电实验与帕邢定律[J],物理实验,2004,24(1):3~5

放电、击穿及闪络三个术语的含义

电缆故障测试和电缆预防性试验中 放电、击穿及闪络三个术语的含义 放电这是一个笼统的概念,泛指在电场作用下,绝缘材料由绝缘状态变为导电状态的跃变现象。这种跃变现象可能呈“贯通状”发生在电极间,即其中的绝缘材料完全被短接而遭到破坏,此时电极间的电压迅速下降到甚低至或接近零值;跃变现象也可能发生在电极间的局部区域,使其中的绝缘材料局部被短接,其余部分仍有良好的绝缘性能,电极间电压仍能维持一定的数值。前者称为破坏性放电,后者称为局部放电。 破坏性放电和局部放电可以发生在固体、液体、气体电介质及其组合介质中,换句话说,“放电”一词可以用于所有电介质及其组合中。 然而,放电发生在不同电介质及其组合中时又有特殊的称呼。当在气体或液体电介质中,电极间发生的破坏性放电称为火花放电,如在空气间隙、油间隙发生的破坏性放电,确切的说应该是火花放电。可见,火花放电这个词仅限用于气体和液体电介质中。 在固体电介质中发生破坏性放电时,称为击穿。击穿时在固体电介质中留下痕迹,使固体电介质永久失去绝缘性能。如绝缘纸板击穿时,会在纸板上留下一个孔。可见击穿这个词仅限用于固体电介质中。当在气体或液体电介质中沿固体绝缘表面发生破坏性放电现象,称之为闪络。常见的是沿气体与固体电介质交界面发生的闪络。如沿绝缘子串表面、沿套管表面的破坏性放电称之为闪络。所以闪络这个词仅限用于特殊条件的放电现象。 电缆做预防性试验时,由于电缆局部介质绝缘下降,导致电缆相间或对钢铠的电压迅速下降到甚低至或接近零值,这时薇安表迅速上升,该现象表明电缆存在绝缘问题,需要找出电缆绝缘故障的准确位置,快速修复电缆,电缆修复后,再次进行预防性试验,直至电缆符合运行标准即可。

电池的放电特性

电池的放电特性 电池的放电特性:相同容量的电池,放电至相同的截止电压,在以较小的电流放电时,可以放出更多的能量。 虽然相同容量的电池单元所含有的能量是一定的,但是电池放电时并不能完全的放出电池所有的能 量。 同一电池单元放电所能放出的能量跟UPS系统设定的电池放电截止电压的高低有关,也和放电电流的大小有关。 二、电池的放电特性 电池系统放电的截止电压越低,放出的能量越多,但是可能会对电池造成伤害。 对于相同的负载,电池系统的并联电池组数越多或者是电池组的电压越高,电池单元的放电电流就会越小,这样放出的能量就会越多,后备时间就会越长。 例:山特并联冗余6KVA满载下,接一组24AH电池的放电时间约为53分钟,接两组24AH的电池组并联的放电时间约为137分钟。 三、UPS的电池系统 通常UPS所用的电池组都是由电池单元(cell)经过串联或并联得到的.电池单元串联(电压相加)是为了达到UPS所需的电压,并联(电流相加)是为了增加后备电源供电的时间?(Ex;山特3C3*32节,并联冗余*20 节) 每个电池单元的能量(即瓦特数)是一定的。若一个电池系统是由M节电池串联,然后又由N组并联而成的。则此电池系统的能量为; 单节电池的能量*M节*6cell/pcs*N 组UPS满载下所耗的功率为:UPS容量(W /整机效率UPS的满载下放电时间可以计算为: T=(单节电池的能量*M*6cell/pcs*N )/ UPS容量 (Watt)/整机效率) 四、电池系统的配置 在UPS勺型号及负载一定的情况下,UPS的后备时间与电池单元容量(通常用AH表示)和电池的 节数有关。 对于某一种UPS来讲,电池系统的电压一般是固定的,则单个电池组的电池节数就是固定的。用户若想得到更长的后备时间则需要更大能量的电池系统,就需要使用更大容量的电池单元,或者是使用更多组数的电池组并联。 例:对于山特并联冗余6KVA UPS其规定的电池电压为240V,电池节数为20节。用户若想得到更长的后备时间,贝U需要将电池容量变大(比如由24AH换为38AH,或者用两组(20节*2)或者更多的电池组并联。UPS勺满载下放电时间计算为: T=(单节电池的能量*M*N)/ (UPS容量(V)/整机效率)*k注:单节电池的能量*M*N(M节*6cell/节*N 组数) 例:客户需求山特60KS-UPS+fe池65Ah一组可供电时间? Ex1:65Ah*32*6cells/60kva*0.8/92%=0.283Hr*60m = 17 分钟 Ex2:192X(Ah)/(60Kva*0.8/92%)= 0,25Hr(15/60 ) So: X= 67.93Ah

闪络效应

闪络效应 摘要 目录 1闪络效应 2基本介绍 3现象分析 4机械效应 5电压产生 6绝缘子运用 展开 目录 1闪络效应 2基本介绍 3现象分析 4机械效应 5电压产生 6绝缘子运用 7现代防雷的原则 收起 闪络效应 当人体被闪电击中后,99%的电流不是通过人体导入地下,而是会以电弧的形式从人体表面穿过,导入地下,降低对人体的伤害,这就是有些人被闪电打击后还能存活的缘故,这种现象就叫闪络效应,也叫闪络现象。在高电压作用下,气体或液体介质沿绝缘表面发生的破坏性放电。其放电时的电压称为闪络电压。发生闪络后,电极间的电压迅速下降到零或接近于零。 闪络通道中的火花或电弧使绝缘表面局部过热造成炭化,损坏表面绝缘。 基本介绍

闪络效应,在高电压作用下,气体或液体介质沿绝缘表面发生的破坏性放电。其放电时的电压称为闪络电压。发生闪络后,电极间的电压迅速下降到零或接近于零。闪络通道中的火花或电弧使绝缘表面局部过热造成炭 化,损坏表面绝缘.沿绝缘体表面的放电叫闪络。而沿绝缘体内部的放电则称为是击穿。沿绝缘体表面的放电叫闪络。而沿绝缘体内部的放电则称为是击穿。 现象分析 1.绝缘子表面和瓷裙内落有污秽,受潮以后耐压强度降低,绝缘子表面形 成放电回路,使泄漏电流增大,当达到一定值时,造成表面击穿放电。 2.绝缘子表面落有污秽虽然很小,但由于电力系统中发生某种过电压,在 过电压的作用下使绝缘子表面闪络放电。 处理方法是:绝缘子发生闪络放电后,绝缘子表面绝缘性能下降很大,应立即更换,并对未闪络放电绝缘子进行清洁处理。 机械效应 闪电击中地面物,闪电电流产生焦耳-楞次热效应,虽然电流峰值很高,但作用时间很短,只能产生局部瞬时高温,可以使较小体积的金属熔化。 有些闪电的半峰值时间较大,则容易造成树林或木结构物的高温燃烧起 火。另一种情况是闪电流过击中物的途径中,物体的焦耳楞次热导致体内的水份剧烈蒸发,产生气体,气体膨胀的机械作用可使树木劈裂,房屋破坏,器物的爆裂、爆炸等。闪电的热效应和机械效应造成的灾祸仍非常严重,不容轻视,许多新技术设备受损,特别是微电子技术的产品,如大规模和超大规模集成电路接口和模块的损坏,归根到底,仍是闪电电流的热效应所致。 电压产生

电池放电曲线

锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池使用以下反应:Li+MnO2=LiMnO2,该反应为氧化还原反应,放电。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 电池总反应:LiCoO2+6C=Li1-xCoO2+LixC6 由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,所以锂电池生产要在特殊的环境条件下进行。但是由于锂电池的很多优点,锂电池被广泛的应用在电子仪表、数码和家电产品上。但是,锂电池多数是二次电池,也有一次性电池。少数的二次电池的寿命和安全性比较差。 后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 随着数码产品如手机、笔记本电脑等产品的广泛使用,锂离子电池以优异的性能在这类产品中得到广泛应用,并在近年逐步向其他产品应用领域发展。1998年,天津电源研究所开始商业化生产锂离子电池。习惯上,人们把锂离子电池也称为锂电池,现在锂离子电池已经成为了主流。 下边是常用的两个品牌的电池放电特性,希望对大家有用。 三洋电池的放电特性,更适合手机使用

气体放电管

放电管特性及选用 吴清海 放电管的分类 放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。 气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。气体放电管同流量大,但动作电压较难控制。 半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。半导体放电管的保护机理和应用方式和气体放电管相同。半导体放电管动作电压控制精确,通流量较小。 放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。 气体放电管 气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。 在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。其中,r表示一个正离子轰击阴极表面而

固体电介质的击穿特性

天津理工大学中环信息学院教案首页 题目:固体、液体和组合绝缘的电气强度 讲授内容提要: 1.固体电介质的击穿特性 2.液体电介质的击穿特性 教学目的:掌握固体液体电击穿、热击穿理论 教学重点:理解影响固体液体击穿电压的因素及提高击穿电压的方法教学难点:理解各种电场在不同电压下的击穿电压 采用教具和教学手段:多媒体及板书 授课时间:2014年9月1日授课地点:新教学楼1108 教室注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第四章 固体、液体和组合绝缘的电气强度 本次课主要内容: 1. 固体电介质的击穿特性 2. 液体电介质的击穿特性 固体电介质击穿的机理 气、固、液三种电介质中,固体密度最大,耐电强度最高。 固体电介质的击穿过程最复杂,且击穿后是唯一不可恢复的绝缘。 普遍规律:任何介质的击穿总是从电气性能最薄弱的缺陷处发展起来的,这里的缺陷可指电场的集中,也可指介质的不均匀性。 1. 固体电介质击穿特性的划分 2. 电击穿 电击穿理论建立在固体电介质中发生碰撞电离基础上,固体电介质中存在少量传导电子,在电场加速下与晶格结点上的原子碰撞,从而击穿。 3. 热击穿 由于介质损耗的存在,固体电介质在电场中会逐渐发热升温,温度 10-1 1 101 102 103 104 105 106 107 108 109 1010 1011 1012时间(μs ) 500450400350300250200150100500击穿电压为一分钟耐压的百分比数(%)

升高导致固体电介质电阻下降,电流进一步增大,损耗发热也随之增大。在电介质不断发热升温的同时,也存在一个通过电极及其它介质向外不断散热的过程。如果同一时间内发热超过散热,则介质温度会不断上升,以致引起电介质分解炭化,最终击穿,这一过程称为电介质的热击穿过程。 影响固体介质击穿电压主要因素 电压的作用时间 温度 电场均匀度和介质厚度 电压频率 受潮度的影响 机械力的影响 多层性的影响 累积效应的影响 提高电介质击穿电压的方法 改进绝缘设计如采取合理的绝缘结构,使各部分绝缘的耐电强度能与共所承担的场强有适当的配合;改善电极形状及表面光洁度,尽可能使电场分布均匀,把边缘效应减到最小;改善电极与绝缘体的接触状态,消除接触处的气隙或使接触处的气隙不承受电位差。 改进制造工艺清除固体电介质中残留的杂质、气泡、水分等 改善运行条件注意防潮,加强散热冷却等。 固体电介质的老化

软包装锂离子电池的高倍率放电性能

软包装锂离子电池的高倍率放电性能 ■<1.河南师范大学化学与环境科学学院常照荣吕豪杰 ■<2.新乡学院化学与环境工程学院付小宁 ■<3.河南新飞科隆电源有限公司尹正中 摘 要:以额定容量为1100mAh的063465型软包装锂离子电池为研究对象,研究了电池结构,正极活性物质与导电剂、粘结剂的配比,极板的面密度、压实密度等因素对锂离子电池高倍率放电性能的影响。制备的实验电池以15C大电流放电,电压平台为3.5V,循环220次(15C放电),容量保持率为87.0%。 关键词:软包装; 锂离子电池; 高倍率放电 锂离子电池具有能量密度高、循环寿命长、开路电压高及污染小等优点[1],已用于小电流放电的移动通讯、笔记本和数码相机等领域,但高倍率放电性能有待提高[2-4]。程建聪等[5]通过提高导电剂含量,采用薄正极和中间相炭微球(MCMB),并使用功能电解液,改善了电池的大电流性能;V.Subramanian 等[6]以气相法烧制的纳米纤维碳为负极制备的锂离子电池,可进行10C放电;M.Okuho等[7]通过水热法制备纳米级(17 nm)的LiCoO2,l00C放电容量达到1C时的65%,可满足电动汽车等大功率放电要求,但是制备工艺苛刻。 本文作者采用工业化的正负极材料,通过优化电池结构,调整配比参数,制备软包装电池,并测试了相关性能。 1 实验 1.1 极板制备 将正极活性物质LiCoO2(北京产,≥99.4%)、导电炭黑SP(Timcal公司产,≥99.75%)和导电石墨KS6(Timcal公司产,≥99.4%)按不同的比例混合后,以PVDF(美国产,≥99.9%)作为粘结剂,配制成浆料;将负极活性材料人工石墨(深圳产,≥99.9%)、导电炭黑SP、分散剂SBR(河南产,≥99.0%)和粘结剂CMC(德国产,≥99.9%)按质量比90.5:1.5:4:4混合后,配制成浆料。用涂布机将正极浆料均匀涂覆于铝箔(江苏产,≥99.8%)上,负极浆料均匀涂覆于铜箔(湖南产,≥99.8%)上,在80℃下真空(-0.1 MPa)干燥12h后,辊压,制成正、负极片。电解液为1mol/L LiPF6/ DMC+EMC+EC(体积比1:1:1,张家港产),隔膜为0.025 mm厚的聚丙烯微孔膜(日本产)。 1.2 测试仪器 采用BS-8802二次电池检测装置(广州产)对电池进行化成;BS-V高电压大电流动力电池检测设备(广州产)进行倍率测试;BS-VR3内阻测试仪(广州产)检测内阻。 1.3 电极及电池设计 以额定容量为1100mAh的063465型液态软包装锂离子电池为研究对象。采用真空热封机封口,经过防短路处理、干燥,然后注入电解液,经化成分容后,测试电池的性能。 实验电池的参数见表1。 2结果与讨论 2.1 电池结构的影响 电池技术 < 2008年9月73

电晕电弧辉光滑闪放电

电晕放电气体介质在不均匀电场中的局部自持放电。最常见的一种气体放电形式。在曲率半径很小的尖端电极附近,由于局部电场强度超过气体的电离场强,使气体发生电离和激励,因而出现电晕放电引。发生电晕时在电极周围可以看到光亮,并伴有咝咝声。电晕放电可以是相对稳定的放电形式,也可以是不均匀电场间隙击穿过程中的早期发展阶段。 低压气体中显示辉光的气体放电(空气中的电子大概在1000对/cm,由于高压放电现象在低气压状态下会产生辉光现象)现象,即是稀薄气体中的自激导电现象。 滑闪放电是绝缘表面气体热电离引起的,沿着绝缘表面的不稳定的树枝状放电,它并没有贯穿两极。如果滑闪贯穿两极就称为闪络。 闪络是指固体绝缘子周围的气体或液体电介质被击穿时,沿固体绝缘子表面放电的现象。(当在气体或液体电介质中沿固体绝缘表面发生破坏性放电现象,称之为闪络。)其放电时的电压称为闪络电压。发生闪络后,电极间的电压迅速下降到零或接近于零。闪络通道中的火花或电弧使绝缘表面局部过热造成炭化,损坏表面绝缘。 电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。电弧放电是气体放电中最强烈的一种自持放电。当电源提供较大功率的电能时,若极间电压不高(约几十伏),两极间气体或金属蒸气中可持续通过较强的电流(几安至几十安),并发出强烈的光辉,产生高温(几千至上万度),这就是电弧放电。电弧是一种常见的热等离子体(见等离子体应用)。 电弧放电最显著的外观特征是明亮的弧光柱和电极斑点。 当高压电源的功率不太大时,高电压电极间的气体被击穿,出现闪光和爆裂声的气体放电现象。火花放电时,碰撞电离并不发生在电极间的整个区域内,只是沿着狭窄曲折的发光通道进行,并伴随爆裂声。

气体电介质的击穿 液体电介质的击穿 固体电介质的击穿

第5章电介质的击穿气体电介质的击穿 液体电介质的击穿 固体电介质的击穿

?电介质的击穿 介质发生击穿时,通过介质的电流剧烈地增加,通常以介质伏安特性斜率趋向于∞(即dI/dU=∞)——击穿发生的标志。 ?击穿电压 ?击穿场强: 电介质的击穿场强是电介质的基本电性能之一,它决定了电介质在电场作用下保持绝缘性能的极限能力。

5.1 气体电介质的击穿 ?正常气体中的载流子(离子和电子)在外电场作用下迁移,形成电流电流随电压增加而增加 电离产生的载流子来不及复合,全部到达电极 气体中出现碰撞电离,载流子浓度增大,电流不再保持恒定而迅速上升载流子数剧增,气体中的电流无限增大(dI/dU→∞)——丧失绝缘性能。 气体击穿(气体放电):气体由绝缘状态变为良导电 状态的过程。 击穿场强:均匀电场中击穿电压与气体间隙距离之比.

击穿场强反映了气体耐受电场作用的能力,即气体的电气强度。 平均击穿场强:不均匀电场中击穿电压与间隙距离之 比称 ?气体发生击穿时除电流剧增外,通常还伴随有发光及发热等现象。

5.1.1 均匀电场中气体击穿的理论 1.气体击穿的汤逊(Townsend)理论 电子崩形成过程(电子倍增过程)(1)电子崩与电流倍增 外界电离因子在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多的电子。

α 如电离系数为,则从阴极出发的一个电子,行经单位距离后增加为2α个电子。类似雪崩似地发展,这种急剧增大的空间电子流被称为电子崩。

SF_6中绝缘子表面电荷积聚及其对直流GIL闪络特性的影响_张博雅

第41卷第5期:1481-1487 高电压技术V ol.41, No.5: 1481-1487 2015年5月31日High V oltage Engineering May 31, 2015 DOI: 10.13336/j.1003-6520.hve.2015.05.009 SF6中绝缘子表面电荷积聚及其对直流GIL 闪络特性的影响 张博雅1,2,王强1,2,张贵新1,2,李金忠3 (1. 清华大学电机工程与应用电子技术系,北京100084; 2. 清华大学电力系统及发电设备安全控制和仿真国家重点试验室,北京100084; 3. 中国电力科学研究院,北京100192) 摘 要:随着中国特高压直流输电工程建设进程的逐渐加快,直流气体绝缘输电线路(GIL)的需求日益迫切,对GIL在特高压直流下一些关键问题的研究显得至关重要。因此针对直流电压下GIL中盆式绝缘子表面电荷积聚问题展开研究,建立了一套基于静电探头法的表面电荷测量系统,研究了在SF6气体环境中,不同电压幅值和电压极性反转情况下绝缘子表面电荷的积聚规律。同时,在特高压直流GIL试验单元上进行了直流闪络试验,研究了绝缘子表面电荷积聚对直流闪络特性的影响。研究结果表明:在0.5 MPa的SF6中,绝缘子表面主要积聚与所加直流电压极性相反的电荷,这种电荷分布将增大绝缘子表面与中心电极间的局部场强,并将进一步导致绝缘子闪络;GIL中盆式绝缘子的直流耐受电压仅为交流耐受电压的64%左右。该研究为GIL中盆式绝缘子在直流电压下闪络电压下降提供了一种可能的解释。 关键词:表面电荷;绝缘子;SF6;气体绝缘;GIL;特高压直流;闪络;静电探头 Surface Charge Accumulation on Insulators in SF6 and Its Effects on the Flashover Characteristics of HVDC GIL ZHANG Boya1, 2, WANG Qiang1, 2, ZHANG Guixin1, 2, LI Jinzhong3 (1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; 2. State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Tsinghua University, Beijing 100084, China; 3. China Electric Power Research Institute, Beijing 100192, China) Abstract:As the process of UHVDC power transmission projects accelerates in China, the demand for DC gas insulated transmission lines (GIL) is increasing. Thus it is very necessary to investigate the key issues of GIL under UHVDC vol-tage. Focusing on the surface charge accumulation phenomenon of GIL insulator under DC voltage, we established a surface charge measurement system based on an electrostatic voltmeter. Moreover, we studied the surface charge accu-mulation patterns in SF6 under different voltage amplitudes and under polarity reversal conditions. Meanwhile, we experimentally studied the flashover in a UHVDC GIL test unit in order to study the influence of surface charge accumu-lation on the flashover characteristics of the GIL insulator. The results show that, in SF6 at 0.5 MPa, the most accumulated charges on the insulator surface are those with the opposite polarity of the applied voltage, which can enhance the electric field between the electrode and insulator surface and even leads to flashover on the insulator. The flashover experiments show that the maximum withstand voltage of GIL insulator under DC voltage is just 64% of that under AC voltage. The study can give a possible explanation for the reduction of DC flashover voltage of GIL insulator. Key words:surface charge; insulator; SF6; gas insulated; GIL; UHVDC; flashover; electrostatic probe 0引言 我国地域辽阔,风电、水电等可再生资源主要 ——————— 基金资助项目:国家重点基础研究发展计划(973计划) (2014CB239502)。Project supported by National Basic Research Program of China (973 Program) (2014CB239502).集中在西部和北部,而负荷中心集中在东部和南部,能源储备和电力负荷的分布极不均衡,因此必然需要能源和电力的跨区域、大规模流动[1]。特高压直流输电方式是目前世界上电力大国实现远距离、大容量输电和电网互联的重要手段之一,能够实现大

铅蓄电池放电特性(精)

第八节铅蓄电池放电特性 一定放电电流,首先,物质的消耗,密度减少,电动势降低,引起输出端电压减少;另外,放电生成物增多,内电阻上升,引起内压降增多,也引致输出端电压进一步下降。 总之,放电过程中,除了内电阻是增大以外,其他的参数都将减少。 铅蓄电池的放电曲线不同放电电流时的放电曲线 图3-6铅蓄电池的放电曲线 (1)刚放电时, (消耗>补充) (电极上反应物之间接触面多,使反应过程充分进行,而且生成物不足阻碍反应进行,内阻压降基本不变。而进行反应的电极材料孔隙内、外的电解液密度差不多,硫酸分子扩散运动很慢,) 使之消耗量和扩散补充量不平衡,使进行反应的硫酸密度下降较快,故电动势和端电压都有较快的下降。 (2)随着反应深入到中期过程, (消耗=补充) 在反应的孔隙内、外的电解液密度的差值较大,促进补充硫酸的扩散运动速度加快,消耗的硫酸分子得以相应补充。密度减少变缓慢,电动势减少缓慢,内电阻变化也不明显,因此,端电压仍随电动势下降较慢。 (2)反应加深,进入放电后期时, (消耗>补充) 化学反应在孔隙内深处进行,硫酸扩散路径变长,生成物使硫酸扩散通道变窄,甚至被堵塞,处于硫酸消耗多于补充的不平衡状态,电动势下降较快,内阻及降不断增大,造成端电压下降加快,曲线变陡。 单体电池当放电电压达到D点时,就是放电的终止电压值。如果在低于终止放电电压值下继续放电的话,电池电压将迅速变为零。这种超量放电是不允许的,实践中,在终止放电电压值达到后的放电,蓄电池已经失去了保证向负载供电能力。一般D点电压值定为1.7伏,也就是额定负载下端电压下降到20伏,就应该给电池充电。 停止放电后,硫酸分子经一段时间扩散到电极孔隙内,会使该处电解液的密度回升,而且均匀分布,所以电动势值可回到1.99伏左右。 影响放电电压的放电条件: 第一,放电电流影响放电电压。 放电电流大小的改变,化学反应进行的程度不同。增大负载时,能量转换量大,化学反应要求更多、更快,硫酸消耗多,密度下降快,生成物多,内阻增大,影响扩散速度。因此,电动势和端电压下降就快了,达到终止放电的时间会缩短,所以放电电流越大,放电电压下降越快。可放电的时间越短。 (注意,放电电流较大状态下的放电终止电压值允许低一些。)

接触网绝缘子闪络分析及预防措施

接触网绝缘子闪络分析及预防措施 摘要:本文介绍了绝缘子闪络产生的特点和危害,分析了导致闪络的环境、季节因素,针对闪络提出了具体的预防措施。 关键词:绝缘子;闪络特点;因素;防治措施。 0引言 随着电气化铁路向高速性、稳定性、安全性发展,对接触网的运行提出了越来越高的要求。但由于目前环境污染日益严重,对供电设备尤其是绝缘子的产生的越来越大恶劣影响,因此确保牵引供电系统持续稳定供电,杜绝绝缘子闪络的研究势在必行。电气化绝缘子闪络是导致电气化铁路跳闸故障的主要原因之一,严重时会造成接触网断线,影响铁路运输。供电部门可分析绝缘子闪络原因制定清扫周期,更换新型材料的绝缘子等有效手段遏制因闪络引起的跳闸中断供电。 1、绝缘子闪络的特点 闪络主要有污闪、雾闪、覆冰等几种情况,受外界作用,其中包括雨、露、霜、雾、风等气候影响,或者是粉尘、废气、自然盐碱,灰尘,鸟粪,等污秽的污染,绝缘子被污染的过程一般是渐进的,但有时也可能是急速的。 1.1污闪的原因分析 附着在绝缘子普通的污层在干燥状态下一般不导电,出现疾风骤雨绝缘子将被冲刷干净。但在环境污染较为严重的区段,临近污染源较近,空气中所含化学原料,工厂附近弥漫的碳粉、水泥粉、酸、碱性、金属性等化工物质附着在绝缘子,长时间积污形成结块,粘着力强,不易被雨水冲刷干净,残留表面,在遇到毛毛雨、雾、露等天气时,绝缘子表面附着这部分污质将被水分所湿润,电导大大增强,进而导致泄露电流增加。当泄露电流电场强度已足以引起表面空气的碰撞电离时,在铁帽周围即开始电晕放电或辉光放电,出现蓝紫色细线,由于此时泄露电流较大,电晕或辉光放电很易直接转变为由明亮通道的电弧,在雾、露天气下,污层湿度不断增加,泄露电流也随之变大,在一定电气下能维持局部长度也不断增加,一旦局部电弧达到某一临界长度时,弧道温度很高,弧道进一步伸长就不再需要更高的电压,自动延伸至贯通两级,造成绝缘子放电闪络 1.2雾(湿)闪的原因分析 在长时间的浓雾(潮湿)天气下,瓷绝缘子的表面逐渐形成一层水膜,复合绝缘子由于其憎水性能的丧失,表面也会形成水膜,由于绝缘子场强分布的不均匀,同时绝缘子表面覆有杂质,加之雾水的成分复杂,在绝缘子的端部将是先形成电晕和局部电弧放电,由于空气湿度的增加,空气击穿场强将明显降低,进而造成绝缘子端部瓷裙间飞弧击穿,一旦第一片裙边被击穿,第二片裙边讲授更高的电压,重复出现刚才的过程,由于交流电压过零点时电弧要熄灭,所以在这种

电池性能测试

性能测试 二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 手机电池块有哪些电性能指标怎么测量? 电池块的主要电性能指标: (1)容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAh是意味着电池以1600mA放电可以持续放电一小时。 (2)寿命 该指标反映电池块反复充放电循环次数。 (3)内阻 电池块的内阻越小越好,但不能是零。 (4)充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 (5)放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB 板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 (6)短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并做出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 电池的可靠性测试项目有哪些? (1)循环寿命 (2)不同倍率放电特性

(3)不同温度放电特性 (4)充电特性 (5)自放电特性 (6)不同温度自放电特性(7)存贮特性 (8)过放电特性 (9)不同温度内阻特性(10)高温测试 (11)温度循环测试 (12)跌落测试 (13)振动测试 (14)容量分布测试 (15)内阻分布测试 (16)静态放电测试ESD 电池的安全性测试项目有哪些? (1)内部短路测试 (2)持续充电测试 (3)过充电 (4)大电流充电 (5)强迫放电 (6)坠落测试 (7)从高处坠落测试 (8)穿透实验 (9)平面压碎实验 (10)切割实验 (11)低气压内搁置测试(12)热虐实验 (13)浸水实验 (14)灼烧实验

气体介质击穿

气体介质击穿-正文 气体介质在电场作用下发生碰撞电离而导致电极间贯穿 性放电的现象。气体介质击穿与很多因素有关,其中主要的影 响因素为作用电压、电极形状、气体的性质及状态等。气体介 质击穿常见的有直流电压击穿、工频电压击穿、冲击电压击穿、 高气压电击穿、高真空电击穿、负电性气体击穿。 直流电压击穿直流电压作用下的气体介 质击穿。可分为以下两种。 ①在电极间电场是均匀的情况下,气压低于1大气压(约0.1兆帕)时,间隙击穿电压服从于帕邢定律。对于空气介质,击穿电压U b可按经验公式 进行计算。式中d为电极间距离(cm),δ为空气相对密度。一般情况下,空气介质击穿电压也可近似地用30kv/cm的击穿场强来估计。对于稍不均匀电场,如两球电极的间隙,当电极距离d与球直径D之比d/D<1/4时,可看作均匀电场,超过此限度时就不能这样考虑了。 ②在极不均匀电场的情况下,如棒-板电极的间隙,击穿场强E b 大为降低,并且还会出现极性效应,即正极性棒对负极性板的间隙击穿 电压小于相反极性的情形,如图1所示。引起极性效应的原因是由于正离子比电子运动慢很多,在间隙中形成正极性空间电荷,改变了电场分 布而引起不同的放电发展过程。在 0.3~3m电极间距离范围内,棒对板间隙的平均击穿场强E b分别约为:正极性棒电极时,E+≈4.5kV/cm;负极性棒电极时,E-≈10kV/cm。

工频电压击穿工频交流电压作用下的气 体介质击穿。在均匀电场(见不均匀电场)的间隙 中,工频击穿电压和直流击穿电压相等。在极不均匀电场的间隙中(如棒-板间隙),击穿总是发生在棒电极处于正极性的状态,因而交流击穿电压幅值与正极性棒对负极性板间隙的直流击穿电压相近。棒-板空气间隙的交流平均击穿场强为Eа≈4.8kV/cm,与上述E+很接近。为提供高电压输电线或变电所空气间隙距离的设计依据,近年来很多人研究长空气间隙的工频击穿电压(见长间隙击穿)。图2为1~ 10m间隙距离的击穿电压曲线。图中,曲线1、2是棒-棒电极间隙,上棒电极均为5m,下棒电极分别为6m及3m,两者的击穿电压稍有差异。这是因为曲线2的下棒电极短,大地的影响大。曲线3是棒-地间隙的击穿电压,它比棒-棒间隙的数值低许多,并且有“饱和”的趋势。这些试验是在室内进行的,后来由户外试验说明,并未出现“饱和”现象。“饱和”现象是由于试验室墙的影响引起的。进行长间隙的试验需要很大的试验室,投资很多。因此许多人在研究用理论模型计算或试验模拟来代替实际尺寸的试验。 冲击电压击穿冲击电压作用下的气体介质击穿现象。冲击电压可分两类:一类是雷电冲击电压,其标准波形为1.2/50,是模拟雷闪放电时造成的雷电过电压;一类是操作冲击电压,标准波形为 250/2500或波前时间为2000~3000的衰减振荡波,为模拟开关操作或系统故障时产生的操作过电压(见过电压)。不同电极形状空气间隙的雷电冲击击穿电压如图3 所示。由于冲击击穿电压有随机分散性,一般

锂离子电池的三大特性分析

锂离子电池的三大特性分析 时间:2014-11-12 11:12:47来源:本站原创浏览次数:9697 一、电池的容量特性 容量测试得到电池在不同倍率下的放电电压与容量关系曲线如图3所示。 图3 不同倍率下的放电电压与容量的关系曲线 从图中可以看出,在整个放电过程中锂离子电池的电压曲线可以分为3个阶段:1)电池在初始阶段端电压快速下降,放电倍率越大,电压下降的越快; 2)电池电压进入一个缓慢变化的阶段,这段时间称为电池的平台区,放电倍率越小,平台区持续的时间越长,平台电压越高,电压下降越缓慢。在锂离子电池的实际使用过程中,尽可能希望电池工作在平台区; 3)在电池电量接近放完时,电池负载电压开始急剧下降直至达到放电截止电压。从容量测试的结果中,同时还可以得到放电电流与容量的曲线关系,如图4所示。

图4 不同放电电流与容量的关系曲线 从图中可以看出,电池放电电流的大小,会直接影响到电池的实际容量。放电电流越大,电池容量相应减小,这表明放电电流越大,到达终止电压经历的时间越短。所以谈到电池容量时,应指明其放电电流(放电倍率)。 二、电池开路电压特性 开路电压测试[6]得到锂离子电池开路电压与电池SOC的关系曲线如图5所示。 图5 电池充电与放电时的OCV-SOC曲线

从图中可以看出,电池的OCV-SOC曲线与电池放电电压曲线趋势基本相同。在SOC的中间区间(20%<SOC<80%)内,电池的OCV变化极小,电池处于平台区;而在SOC的两端区间(SOC<10%和SOC>90%),OCV 的变化率较大,整个磷酸铁锂电池的OCV-SOC曲线呈现中间区域平坦,头尾两端陡峭的样子,开路电压法即是利用这一稳定的对应关系进行SOC估计。 锂离子电池OCV-SOC关系曲线受温度、放电倍率、老化程度因素影响较小[7],但在充放电2种状态下,两条特性曲线之间会存在一定差异。 三、电池内阻特性 图6表示磷酸铁锂电池在充电和放电时的欧姆内阻。 图6 电池内阻变化曲线

锂电池和超级电容充放电特性

锂电池笑效率模型: 目前提出的各种锂电池等效模型可以分为:内阻模型、阻容模型和基于运行时间的电路模型,较为常用的电池模型为Thevenin电路模型,它用电压源表示电源的电动势,电阻表示电池的直接内阻,用RC 电路模拟电池的极化内阻和极化电容 电池的充电限制电压是指电池由恒流充电转入恒压充电时的电压值,对一般的锂离子电池,其值为 4.2V,若电池到达限制电压后仍采用恒流充电,电池内部会持续升温,活化过程中所产生的气体膨胀,使电池内压增大,压力达到一定程序,会有外壳破裂。 电池的终止电压是指电池放电时电压下降到不适宜再继续放时的最低工作电压。电池在使用过程中,如果电池的端电压已经到达终止电压,继续放电能得到的容量很少,但是对电池的使用寿命会带来极大的破坏。所以在放电过程中,必须在终止电压时停止放电。终止电压与电池的放电电流、温度等因素有关,不同的工作环境下电池的终止电压将有所不同。我国国家标准规定,单体电池的终止电压为 2.75V,即电池的负载电压达到 2.75V 时,应立刻停止放电。 电池的内阻包括欧姆内阻和极化内阻,欧姆内阻包括电池电极本身的电阻、电解液的电阻、离子透过隔膜时所受到的阻力、正负极与隔离层的接触电阻。欧姆内阻与电池的类型、正负极材料、电解质有关,也受电池的大小、结构、装配等因素影响。极化内阻指在电池的正极与负极进行电化学反应时极化所引起的电阻,包括电化学极化和浓差极化引起的电阻。极化内阻并不服从欧姆定律,其阻抗一般呈容性。 R2为电池的欧姆电阻,R 1为电池的极化电阻,C1 为电池的极化电容,通常R2比较稳定,在电池工作过程中变化较小,R1和C1 是动态的,在电池充放电过程中会改变。 电池的内阻很小,基本在200 毫欧以内。在小电流放电时,由于外部电阻较大,电池内部压降相对于外电压可以忽略不计。但电池进行大电流放电时,电池极化严重,电阻增大,会产生大量的热量使电池温度升高,电池端电压降低,放电时间缩短,对电池性能和寿命造成严重影响 电池的实际容量是指在一定的放电条件下电池实际放出的电量,理论上等于电池放电电流与放电时间的积分。其值通常要少于理论容量和额定容量。 在研究电池充放电电流时,通常用C为单位,C为电池额定容量,对于1500mAh的电池,1C的放电倍率就是1500mA。锂离子电池典型的充电方式为恒流恒压充电方式,充电开始时先采用恒流充电,使用快速充电时充电倍率一般为0.5C-1C,随着恒流充电的进行,电池电动势逐渐升高,为了维持电池的恒定充电电流,充电器两端电压也必须慢慢升高。当电池端电压达到充电限制电压(通常为4.2V)时,充电过程进入恒压阶段,充电器两端输出恒定电压,在此阶段充电电流持续下降,当电流少于某一设定值,则认为电池已经充满。锂离子最大充电电流通常为1C-1.5C。 图2-6 是锂离子电池在固定充放倍率下的电压曲线,可见充电曲线和放电曲线不会重合,充电曲线的电压高于放电时的电压,这种现象叫做电池的迟滞效应(hysteresis effect)

电缆闪络性高阻故障的查找实例

电缆闪络性高阻故障的查找 唐文波 2006年10月,接到电仪部调度命令,为二期总变至码头变电所一条新敷设的6kV电缆线路进行直流高压试验。我们首先详细地了解了电缆的情况,总变至码头电缆全长约2600m,为交联聚乙烯电缆,型号为ZRA-YJV-6/10-3*95。中间有一处接头,在试验前的绝缘测试中,用2500V绝缘摇表检查发现C相绝缘电阻与其他两项差距较大,A相与B为∞,C相为120MΩ,为了进一步确定问题,又采用5kV电压测量C相绝缘,发现出现绝缘电阻值波动现象,根据以上现象可判断此电缆出现闪络性高阻绝缘故障。 为了及时通电,必须立即进行故障点的查找。首先施工单位把电缆中间头打开。经分段测试绝缘电阻,判断故障段为总变馈出柜至1100m处,为了快速准确找出故障点,我们使用了先进的HT-TC2002型电缆故障测试仪。 测试过程如下: 一、用直流高压闪络测试法,进行故障点距离的粗测 测试原理:在直流高压的作用下,使高阻故障点发生闪络放电,形成瞬间短路电弧,从而产生来回反射波。故障点到测试端的距离为L= 1/2 vT (v--电波在电缆中的传波速度)。测试线路如图1所示。首先对电缆C相进行测试: 1.打开笔记本电脑,进入测试系统主界面,选择脉冲法。

2. 打开前端电源、按“复位”(前端与计算机连接同脉冲法)。 3. 选工作方式与参数: 由主界面菜单栏“测试方式”中选“冲闪”出现该方式对话框,选择频率为25MH 、介质选择为“聚氯乙烯电缆” 4.按图1接线,并检查无误后,接通电源,缓慢升压,当电压升至约8kV 时,听到有规律的"嗒、嗒、嗒"的放电声,毫安表指针有规律地摆动。 图1 5.此时按下采集按钮,出现图2的冲闪波形,t 1为故障点闪络放电后 形成的一次反射波,t 2为二次反射波,t 3为三次反射波,依次循环。 则故障点的距离L=v(t 2-t 1)/2=v(t 3-t 2)/2=v(t 4-t 3)/2=…。按"采样/ 保持"键,使仪器处于"保持状态",降压、断开调压器电源、放电。⑤通过波形处理,游标定位起始端点,游标移动设定游标于T2两端, 则计算出故障点为640m 。

相关文档
最新文档