初中数学竞赛讲座——数论部分4(辗转相除法与最大公约数)

初中数学竞赛讲座——数论部分4(辗转相除法与最大公约数)
初中数学竞赛讲座——数论部分4(辗转相除法与最大公约数)

第四讲 辗转相除法与最大公因数

一、基础知识:

1.带余除法:若a ,b 是两个整数,b >0,则存在两个整数q 和r ,使得

a =bq+r (0≤r <

b )成立,

且q ,r 是唯一的。

证明:【存在性】作整数序列

…,-3b ,-2b ,-b ,0,b ,2b ,3b ,…

则a 必在上述序列的某两项之间,即存在一个整数q 使得

qb ≤a <(q +1)b 成立。

令a -qb =r ,即证存在性。

【唯一性】设q 1、r 1是满足a =bq+r ,0≤r

于是b (q-q 1)=r 1-r 故b |q-q 1|=|r 1-r |

由于r 及r 1都是小于b 的非负整数,所以上式右边是小于b 的。 如果q ≠q 1,则上式左边≥b ,这是不可能的。即证唯一性。

【说明】特别地,如果r =0,那么a=bq 。这时,a 被b 整除,记作b|a ,

对任意整数a ,b 且b ≠0,存在唯一的整数q ,r ,使a =bq +r ,其中0≤r <|b |,这个事实称为带余除法定理,是整除理论的基础。 2.最大公因数:

若c |a ,c |b ,则称c 是a ,b 的公因数。

若d 是a ,b 的公因数,且d 可被a ,b 的任意公因数整除则称d 是a ,b 的最大公因数。 记为:(a ,b )=d

当d ≥0时,d 是a ,b 公因数中最大者。若a ,b 的最大公因数等于1,则称a ,b 互素。 记为:(a ,b )=1

3.辗转相除法:累次利用带余除法可以求出a ,b 的最大公因数,这种方法常称为辗转相除法。又称欧几里得算法。

例如,

一般的,设a ,b 是任意两个正整数,由带余数除法,我们有下面的系列等式: a =11bq r ,0<1r

b =1r 2q +2r ,0<2r <1r , ……………

2n r -=1n r -n q +n r ,0

因为每进行一次带余数除法,余数就至少减一,而b 是有限的,所以我们最多进行b 次带余数除法,总可以得到一个余数是零的等式,即1n r +=0 (1)式所指出的计算方法,叫作辗转相除法。

定理1: 设a ,b ,c 是任意三个不全为0的整数,且a =bq+c

其中q 是非零整数,则a ,b 与b ,c 有相同的公因数,因而(a ,b )=(b ,c )

证明:设d 是a ,b 的任一公因数,由定义,d |a ,d |b ,所以d 是c=a -bq 的因数,因而d 是b ,c 的一个公因数。同理可证b ,c 的任一公因数是a ,b 的一个公因数。于是定理的前一部分获证,第二部分随之得证。

定理2:若a ,b 是任意两个整数,则(a ,b )就是(1)中最后一个不等于零的余数,即(a ,b )=n r

证明:由定理(1)即得

n r =(0,n r )=(1n r +,n r ) =(n r ,1n r -)=………

=(1r ,b )=( a ,b ) 证完

由于n r 能够用辗转相除法直接算出,所以辗转相除法给出了求两整数的最大公因数的实际可行的算法。

定理3:裴蜀定理(或贝祖定理,B ézout 's identity )得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a ,b 和它们的最大公约数d ,关于未知数x 和y 的线性丢番图方程(称为裴蜀等式):若a ,b 是整数,且(a ,b )=d ,那么对于任意的整数x ,y ,ax +by 一定是d 的倍数,特别地,一定存在整数x ,y ,使ax+by =d 成立。

它的一个重要推论是:a ,b 互质的充要条件是存在整数x ,y 使ax+by =1. 证明:⑴若b =0,则(a ,b )=a .这时定理显然成立。

⑵若a ,b 都不等于0,∵(a ,b )=(a ,-b )∴不妨设a ,b 都大于零,a ≥b ,(a ,b )=d 对ax+by =d ,两边同时除以d ,可得(a 1)x +(b 1)y =1,其中(a 1,b 1)=1。 转证(a 1)x +(b 1)y =1。由带余除法: a 1=(q 1)b 1+(r 1),其中0≤r 1

b 1=(q 2)(r 1)+(r 2),其中0≤r 2

(r n -3)=(q n -1)(r n -2)+(r n -1) (r n -2)=(q n )(r n -1)+(r n ) (r n -1)=(q n +1)(r n )

于是,有(a 1,b 1)=(b 1,r 1)=(r 1,r 2)=...=(r n -1,r n )=1 故(r n -2)=( q n )(r n -1)+1,即1=(r n -2)-( q n )(r n -1)

由倒数第三个式子(r n -1)=(r n -3)-( q n -1)(r n -2)代入上式,得 1=[1+(q n )( q n -1)](r n -2)-( q n )(r n -3)

然后用同样的办法用它上面的等式逐个地消去(r n -2),...(r 1), 可证得1=(a 1)x +(b 1)y 。

(必要性)另证:假设u 和v 是使得au +bv 所有这种形式中的最小正整数,记为S 下证S =1,即只需证S 同时整除互素的数a 和b

由带余除法可知,存在整数q 和r 使得a =sq +r (0≤r <S ) 所以0≤r =a -sq =a -(au +bv )q =a (1-uq )+b (-vq )<S

即存在u '=1-uq 和v '=-vq ,它们给出了一个非负整数r =au '+bv ' 这个r 小于假定的最小的正整数S

故r 只能为0,否则与S 的最小性矛盾。 此时,a =Sq ,即S |a ,同理S |b

这样S 是a 和b 的公因数,又a 和b 互素,那么S =1 推论(1) a ,b 的公因数与(a ,b )的因数相同 (2)设a ,b 是任意两个不全为零的整数,

(ⅰ)若m 是任意正整数,则(am ,bm )=(a ,b )m . (ⅱ) 若δ是a ,b 的任一公因数,则(

a

δ

b

δ

)=

(,)

a b δ

,特别(

(,)a a b ,(,)

b

a b )=1,证明:当a ,b 有一为零时,定理显然成立,今设a ,b 都不为零.

(ⅰ)易知:(am ,bm )=(a m ,b m ),(a ,b )m =(a ,b )m ,因此不妨假定a ,b 都是正数,在(1)里,把各式两边同乘以m ,即得 am =(bm ) 1q +1r m ,0<1r m

由定理2得(am ,bm )=n r m =( a ,b )m ,因而(ⅰ)获证. (ⅱ)由(ⅰ)及定理1, (

a

δ

b

δ

)δ=(

a b

δ,

b

δδ

)=(a ,b )=(a ,b )

, 故 (

a

δ

b

δ

)=

(,)

a b δ

当 δ=(a ,b )时,上式即为(

(,)a a b ,(,)

b

a b )=1 证完 又若 (1a ,2a )=2d ,(2d ,3a )=3d ,……,(1n d -,n a )=n d (*) 于是我们有

(3)若1a ,2a ,……,n a 是n 个整数,则(1a ,2a ,……,n a )=n d

证明:由(*),n d |n a ,n d |1n d -,但1n d -|2n d -,故n d |1n a -,n d |2n d -,由此类推,最后得到n d |n a ,n d |1n a -,……,n d |1a ,即n d 是1a ,2a ,……,n a 的一个公因数,又设d 是1a ,2a ,……,n a 的任一公因数,则d |1a ,d |2a ,所以,d |2d ,同理,d |3d ,由此类推,最后得d |n d .因而d ≤d ≤n d .故n d 是1a ,2a ,……,n a 的最大公因数。 二、典型例题

例1 任给的五个整数中,必有三个数之和被3整除. 解:设a i =(03,1,2,3,4,5)i i i bq r r i +≤<=

(1)若在r i 中数0,1,2都出现,不妨设1230,1,2r r r ===, 则a 1+a 2+a 3=3(q 1+q 2+q 3)+3成立;

(2) 若在r i 中数0,1,2至少有一个不出现,

则至少有三个r i 取相同的值,令123(0,12)r r r r r ====或 则a 1+a 2+a 3=3(q 1+q 2+q 3)+3r 成立. 综合(1)(2)原题得证。

例2从自然数1,2,3,…,1000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?

解:设a ,b ,c ,d 是所取出的数中的任意4个数,则

a+b+c =18m ,a+b+d =18n ,

其中m ,n 是自然数。于是

c-d =18(m-n )。

上式说明所取出的数中任意2个数之差是18的倍数,即所取出的每个数除以18所得的余数均相同。设这个余数为r ,则

a =18a 1+r ,

b =18b 1+r ,

c =18c 1+r ,

其中a 1,b 1,c 1是整数。于是

a+b+c =18(a 1+b 1+c 1)+3r 。

因为18|(a+b+c ),所以18|3r ,即6|r ,推知r =0,6,12。因为1000=55×18+10,所以,从1,2,…,1000中可取6,24,42,…,996共56个数,它们中的任意3个数之和能被18整除。 例3 求证:如果a 和b 是整数,那么a ,b ,2

2

a b +,2

2

a b -中一定有一个能被5整除。 证明:若a ,b 之中有一个能被5整除,则命题获证。

若a ,b 之中任何一个都不能被5整除,则a ,b 只能形如51,52m m ±±,由于

222(51)251015(52)1m m m m m ±=±+=±+ 222(52)252045(54)4m m m m m ±=±+=±+

于是,a 2,b 2形如51,54m m ++

若a 2,b 2一个形如51m +,另一个形如54m +,则a 2+b 2能被5整除; 若a 2,b 2同为51m +形或54m +形,则a 2-b 2能被5整除; 故a ,b ,2

2

a b +,2

2

a b -中一定有一个能被5整除。 例4 正整数1210,,,a a a 的和为1001,1210(,,,)a a a d =,求d 的最大值。

解:因d 是1210,,,a a a 的最大公约数,故d |1001,即d 是1001=71113??的约数,又

d |a k (k =1,2,

,10),可得k a d ≥,所以

1001=1210a a a +++≥10d ,

从而,有d ≤

1001

10

<101,由此可见,d 至多取值71391?=

由于1001可以写成10个数的和:

10919191++

+182

其中每个数都能被91整除,所以d 的最大值为91。

例5 证明:若a 被9除的余数是3,4,5或6,则方程33x y a +=无整数解。 证明:对任意整数x ,y ,

记x =3q 1+r 1,y =3q 2+r 2(0≤r 1,r 2<3)

则x 3=(3q 1+r 1)3=9Q 1+R 1, y 3=(3q 2+r 2)3=9Q 2+R 2 其中R 1和R 2被9除的余数

分别与31r 和3

2r 被9除的余数相同,即R 1=0,1或8;R 2=0,1或8

所以x 3+y 3=9 (Q 1 + Q 2) +R 1+ R 2,而R 1+ R 2被9除的余数只能是0,1,2,7或8, 所以x 3+y 3不可能等于a

例6 设221,0k

k F k =+≥,(1)证明:若m >n ,则|(2)n m F F - (2)证明:若m ≠n ,则()1m n F F =,

证明:(1)分析 题目所证的式子为2221|21n

m

+-,应联想到先证明1

2221|21n m

+--

再利用1

2

2221(21)(21)n n n

+-=-+,证明原命题

证明 首先将k k x y -分解因式,即k k x y -=1221()()k k k k x y x x y xy y -----?++++

在上式中,取1

22

n x +=,y =1,k =2m -n -1,得

得到1

2221|21n m

+--

又1

2

2221(21)(21)n n

n

+-=-+,故可得2221|21n

m

+-

【另证:-1

-2-3

00

22222221(21)(21)(21)

(21)(21)m

m m m -=++++-

m >n ≥0,故n 必为m-1,m-2,…,0中的一个,故得证。】

(2)由(1)可得,对m >n ,有|(2)n m F F -,即存在整数x 使得2m n F xF -= 即2m n F xF -=,设d =(,)n m F F ,由2m n F xF -=,推出d |2,所以d =1或2,

1

221

2

2

1

21(2

1)()

m

n k k k k x

x

y xy

y +-----=-?++++

F F=1.

但F n显然是奇数,所以d=1,即(,)

n m

例7 设ax0+by0是形如ax+by(a,b不全为0)的整数中最小的正数,试证:对于任意整数x,y恒有ax0+by0|ax+by

分析与证明:对于任意整数x,y存在唯一的q,r,使得ax+by=(ax0+by0)q+r,0≤r< ax0+by0 r≠,则0

若0

而x-x0q与y-y0q均为整数,故r是一个比ax0+by0还要小的形如ax+by的正整数,

这与ax0+by0的最小性相矛盾,因此,必有r=0,故ax0+by0|ax+by

三、模拟训练

1.求(1056,3960)

解法1:210563960

25281980

2264990

3132495

1144165

415

所以(1056,3960)=23?3?11

解法2:分解质因数法:

因为1056=23?3?11?4,3960=23?3?11?15

所以(1056,3960)=23?3?11=264

解法3:(辗转相除法):

(1)先用1056除3960,得到商和余数3960=1056?3+792

(2)再用第一步得到的余数792来除1056,得到商和余数1056=792?1+264

(3)用第二步得到的余数264来除第二步中的除数792,得792=264?3

故264是1056和3960的最大公约数。

2.设a,b,c为正整数,证明:((a,b),c)=(a,b,c)

分析:((a,b),c)指的是a和b的最大公约数与c的最大公约数,

要证明((a,b),c)=(a,b,c),只需证明(a,b,c)| ((a,b),c),并且((a,b),c)|(a,b,c)

证明:由最大公约数的概念可知(a,b,c)|a,(a,b,c)|b,

所以(a,b,c)|(a,b)

又因为(a,b,c)|c,所以(a,b,c)| ((a,b),c)

反之,((a,b),c)|(a,b),((a,b),c)|c

所以((a,b),c)|a,((a,b),c)|b,

所以((a,b),c)| (a,b,c)

所以((a ,b ),c )=(a ,b ,c )

3.对于任意正整数n ,试证:分数

214

143

n n ++不能约简

分析:要证明这个分数不可约,只需证明21n +4和14n +3的最大公约数是1即可 证明:(21n +4,14n +3)= (21n +4-14n -3,14n +3) = (7n +1,14n +3)

=(7n +1,14n +3-14n -2) =(7n +1,1) =1 故对于任意正整数n ,分式

214

143

n n ++不能约简

4.已知两个正整数之和为104055,它们的最大公约数是6937,求这两个数。 解:设这两个数为x ,y ,依题意得

104055(,)6937

x y x y +=??

=?①②

由②令6937,6937x a y b ==,且(,)1a b =,代入①得15a b += 由于(,)1a b =,所以只有以下4种可能:

114a b =??=?,213a b =??=?,411a b =??=?,7

8a b =??=?

分别代入x ,y 的表达式,得

693797118x y =??

=?;1387490181x y =??=?;2774876307x y =??=?;4855955496

x y =??=? 5.已知正整数a ,b 使得

11

a b b a

+++是整数,证明:a 与b

证明:因为11a b b a +++=22a b a b ab

+++,假设a 和b 的最大公约数是d ,由于ab 可被d 2整除,所以22a b a b +++可被d 2整除,既然22

a b +可以被d 2整除,所以a b +可以被d 2

d

6.已知a 和b 都是正整数,且(a ,b )=1,求证:()

22

,a b a ab b +-+等于1或3

解:设(a +b ,a 2-ab +b 2)=d ,则

22

(,a b dm m n a ab b dn +=??-+=?

是正整数)② ①2-②得23()ab d dm n =-

因为(a ,b )=1,所以d |3,或d |a ,或d |b 当d |3时,则d =1或3;

当d |a 或d |b 时,因为d |(a+b ),所以d =1,

综上所述,()

22

,a b a ab b +-+=1或3.

7.在正方体的每个顶点上各记上1个互不相同的正整数,在它的每条棱上记上它两端上的两个正整数的最大公约数,那么,是否有可能使得顶点上的各数的和等于棱上的各数的和?证明你的结论。

解:不能,设a 和b 为两个正整数,且a >b ,记a,b 的最大公约数为(a ,b ),则有(a ,b )≤b

且(a ,b ) ≤

2a ,因此,当a b ≠时,(a ,b ) ≤3

a b + 由正方体的12条棱组成12个这样的不等式,于是,我们得出:当且仅当(a ,b ) =

3

a b

+时,满足问题条件的等式成立。这时,a,b 中的大数应是其中小数的2倍,不妨设a =2b 。

考察从记有数a 的顶点出发的另外两条棱的另一端点的数字c 和d ,其中每一个数都

应该或是2a ,或是

2

a

。 如果其中至少有一个是2

a

,则它必与b 相等;如果两个都比a 大,则它们应该相等。这

两种情况都与已知矛盾,于是,结论成立。

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

初中数学竞赛讲座之数论初步(一)

初中数学竞赛讲座之数论初步(一) 整数的整除性 定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a. 显然,1能整除任意整数,任意整数都能整除0. 性质:设a ,b ,c 均为非零整数,则 ①.若c|b ,b|a ,则c|a. ②.若b|a ,则bc|ac ③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb ④.若b|ac ,且(a ,b)=1,则b|c 证明:因为(a ,b)=1 则存在两个整数s ,t ,使得 as +bt =1 ∴ asc +btc =c ∵ b|ac ? b|asc ∴ b|(asc +btc) ? b|c ⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c 证明:a|c ,则c =as(s ∈Z) 又b|c ,则c =bt(t ∈Z) 又(a ,b)=1 ∴ s =bt'(t'∈Z) 于是c =abt' 即ab|c ⑥.若b|ac ,而b 为质数,则b|a ,或b|c ⑦.(a -b)|(a n -b n )(n ∈N),(a +b)|(a n +b n )(n 为奇数) 整除的判别法:设整数N =121n 1a a a a - ①.2|a 1?2|N , 5|a 1? 5|N

②.3|a 1+a 2+…+a n ?3|N 9|a 1+a 2+…+a n ?9|N ③.4|a a ? 4|N 25|a a ? 25|N ④.8|a a a ?8|N 125|a a a ?125|N ⑤.7||41n n a a a --a a a |?7|N ⑥.11||41n n a a a --a a a |?11|N ⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)] ?11|N ⑧.13||41n n a a a --a a a |?13|N 推论:三个连续的整数的积能被6整除. 例题: 1.设一个五位数d a c b a ,其中d -b =3,试问a ,c 为何值时,这个五位数被11整除. 解:11|d a c b a ∴ 11|a +c +d -b -a 即11|c +3 ∴ c =8 1≤a ≤9,且a ∈Z 2.设72|b 673a ,试求a ,b 的值. 解:72=8×9,且(8,9)=1 ∴ 8|b 673 a ,且9| b 673a ∴ 8|b 73 ? b =6 且 9|a +6+7+3+6 即9|22+a ∴ a =5 3.设n 为自然数,A =3237n -632n -855n +235n ,

初一数学竞赛讲座.

初一数学竞赛讲座(三) 数字、数位及数谜问题 一、 知识要点 1、整数的十进位数码表示 一般地,任何一个n 位的自然数都可以表示成: 122321*********a a a a a n n n n +?+?++?+?---Λ 其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0. 对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n Λ- 2、正整数指数幂的末两位数字 (1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末 位数字就是a n 的末位数字。 (2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末 位数字与m q 的末位数字相同。 3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条 件的整数是多少的问题,这类问题称为数迷问题。这类问题不需 要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜” 的方法求解,是一种有趣的数学游戏。 二、 例题精讲 例1、有一个四位数,已知其十位数字减去2等于个位数字,其 个位数字加上2等于其百位数字,把这个四位数的四个数字反着 次序排列所成的数与原数之和等于9988,求这个四位数。

分析:将这个四位数用十进位数码表示,以便利用它和它的反序 数的关系列式来解决问题。 解:设所求的四位数为a ?103+b ?102+c ?10+d ,依题意得: (a ?103+b ?102+c ?10+d)+( d ?103+c ?102+b ?10+a)=9988 ∴ (a+d) ?103+(b+c) ?102+(b+c) ?10+ (a+d)=9988 比较等式两边首、末两位数字,得 a+d=8,于是b+c18 又∵c-2=d ,d+2=b ,∴b-c=0 从而解得:a=1,b=9,c=9,d=7 故所求的四位数为1997 评注:将整数用十进位数码表示,有助于将已知条件转化为等式, 从而解决问题。 例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新 排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正 好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。 分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差 后分析求出所有三位“新生数”的可能值,再进行筛选确定。 解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为 cba 。由“新生数”的定义,得 N=()()()c a a b c c b a cba abc -=++-++=-991010010100

高中数学竞赛数论部分

高中数学竞赛数论部分文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1.请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首 届匈牙利 数学竞赛第一题) (2) ①设n Z ∈,证明2131n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++能整除123n ???(1956年上海首 届数学竞赛第一题) (3) 证明:3231 122 n n n ++-对于任何正整数n 都是整数,且用3除时余2。(1956年 北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹 克竞赛第一题) (5) 令(,, ,)a b g 和[,, ,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数, 试证:[][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占% 。

初中数学竞赛讲座6

第六讲整式的运算 吴忠市第一中学韩瑞峰 一、知识要点 1、整式的概念:单项式,多项式,一元多项式; 2、整式的加减:合并同类项; 3、整式的乘除: (1)记号f(x),f(a); (2)多项式长除法; (3)余数定理:多项式f(x)除以(x-a)所得的余数r等于f(a); (4)因数定理:(x-a)|f(x)?f(a)=0。 二、例题示范 1、整式的加减 例1、已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值。 提示:只有同类项才能合并为一个单项式。 例2、已知A=3x2n-8x n+ax n+1-bx n-1,B=2x n+1-ax n-3x2n+2bx n-1,A-B中x n+1项的系数为3,x n-1项的系数为-12,求3A-2B。 例3、已知a-b=5,ab=-1,求(2a+3b-2ab) -(a+4b+ab) -(3ab+2b-2a)的值。 提示:先化简,再求值。 例4、化简:x-2x+3x-4x+5x-…+2001x-2002x。 例5、已知x=2002,化简|4x2-5x+9|-4|x2+2x+2|+3x+7。 提示:先去掉绝对值,再化简求值。 例6、5个数-1, -2, -3,1,2中,设其各个数之和为n1,任选两数之积的和为n2,任选三个数之积的和为n3,任选四个数之积的和为n4,5个数之积为n5,求n1+n2+n3+n4+n5的值。 例7、王老板承包了一个养鱼场,第一年产鱼m千克,预计第二年产鱼量增长率为200%,以后每年的增长率都是前一年增长率的一半。 (1)写出第五年的预计产鱼量;

高中数学竞赛资料-数论部分 (1)

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学竞 赛第一题) (2) ①设n Z ∈,证明213 1n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++ 能整除123n ??? ?(1956年上海首届数学竞赛第一题) (3) 证明:3 231 122 n n n + +-对于任何正整数n 都是整数,且用3除时余2。(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹克竞赛第一题) (5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证: [][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。 这说明:数论题在命题者心目中总是占有一定的分量。如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。 3.请看近年来国内外重大竞赛中出现的数论题: (1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( ) A 、 0 B 、1 C 、3 D 、无穷多 (2007全国初中联赛5) (2)已知,a b 都是正整数,试问关于x 的方程()2 1 02 x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。 (2007全国初中联赛12)

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

初中数学竞赛讲座.doc

竞赛讲座01 —奇数和偶数 整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用21表示,这里k是整数. 关于奇数和偶数,有下面的性质: (1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数; (2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数; (4)若a、b为整数,则与有相同的奇数偶; (5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数. 以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜. 1.代数式中的奇偶问题 例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数? □+□=□,□-□=□, □×□=□□÷□=□. 解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数. 例2(第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组 是整数,那么

(A)p、q都是偶数. (B)p、q都是奇数. (C)p是偶数,q是奇数(D)p是奇数,q是偶数 分析由于1988y是偶数,由第一方程知1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而2711x为奇数,所以是奇数,应选(C) 例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数. 分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面 都添上正号和负号不改变其奇偶性,而1+2+3+…+1992996×1993为偶数于是题设的代数和应为偶数。 2.与整除有关的问题 例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样 的:0,1,3,8,21,…。问最右边的一个数被6除余几? 解设70个数依次为a123据题意有 a1=0,偶 a2=1 奇 a3=3a21,奇 a4=3a32,偶 a5=3a43,奇 a6=3a54, 奇 ……………… 由此可知:?当n被3除余1时,是偶数; 当n被3除余0时,或余2时,是奇数,显然a70是31型偶数,所以k必须是奇数,令21,则 a70=31=3(21)+1=64。

七年级数学竞赛讲座数论的方法与技巧(含答案详解)

数学竞赛讲座 数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得abq+r(0≤r

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)(a1+1)(a2+1)…(ak+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

(完整版)小学奥数中的数论问题

小学奥数中的数论问题 在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。 一、小学数论究包括的主要内容 我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理 一、两个自然数分别除以它们的最大公约数,所得的商互质。 二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。 (2)约数个数决定法则(小升初常考内容) 整数及分数的分解与分拆:这一部分在难度较高竞赛中常

出现,属于较难的题型。二、数论部分在考试题型中的地位 在整个数学领域,数论被当之无愧的誉为“数学皇后”。翻开任何一本数学辅导书,数论的题型都占据了显著的位置。在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。 出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。三、孩子在学习数论部分常常会遇到的问题 数学课本上的数论简单,竞赛和小升初考试的数论不简单。 有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数? 这道题就经常在孩子们平时的作业里和单元测试里出现。可是小升初考题里则是:例2:求3600有多少个约数? 很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

初中数学竞赛竞赛讲座(数字、数位及数谜问题)

竞赛讲座(数字、数位及数谜问题) 一、 知识要点 1、整数的十进位数码表示 一般地,任何一个n 位的自然数都可以表示成: 122321*********a a a a a n n n n +?+?++?+?--- 其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0. 对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=1 21a a a a n n - 2、正整数指数幂的末两位数字 (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。 (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。 3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。 二、 例题精讲 例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。 分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。 解:设所求的四位数为a ?103+b ?102+c ?10+d ,依题意得: (a ?103+b ?102+c ?10+d)+( d ?103+c ?102+b ?10+a)=9988 ∴ (a+d) ?103+(b+c) ?102+(b+c) ?10+ (a+d)=9988 比较等式两边首、末两位数字,得 a+d=8,于是b+c18 又∵c-2=d ,d+2=b ,∴b-c=0 从而解得:a=1,b=9,c=9,d=7 故所求的四位数为1997 评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。 例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。 分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定。 解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba 。由“新生数”的定义,得

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制 一、基础知识: 1.我们通常接触的整数都是―十进制‖整数,十进制计数法就是用0,1,2…9十个数码,采用―逢十进一‖的法则进行计数的方法。例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为: 1999=1×1000+9×100+9×10+9 底数为10的各整数次幂,恰好是十进制数的各个位数: 100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1 位上的数) 故1999=1×103+9×102+9×101+9×100 二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。例如二进制中的111记为(111)2 111=1×22+1×2+1=7

60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1 所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。 具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。 例如:0.25 0.25*2 = 0.5 ------------整数部分:0 0.5*2 = 1.0 ------------整数部分:1 所以十进制数0.25转为二进制数即为 0.01 所以十进制数 60.25 转为二进制数即为 (11100.01)2 二、典型问题: 例1 证明:形如abcabc 的六位数总能被7、11、13整除。 证明:将已知的六位数写成十进制表达形式,得 c b a c b a abcabc +?+?+?+?+?=10101010102345 )110()1010()1010(3 4 2 5 +?++?++?=c b a 100110010100100?+?+?=c b a )10100(1001c b a ++?= )10100(13117c b a ++??= a b c a b c ∴总能被7,11,13整除。 【变式】试证明:任何一个四位正整数,如果四个数字和是9的倍数,那么这个四位数必能被9整除。并 把它推广到n 位正整数,也有同样的结论。 证明:设一个四位数为103a +102b +10c +d ,根据题意得

最新:七年级数学竞赛讲义附练习及答案(12套)

七年级数学竞赛讲义附练习及答案(12套) 初一数学竞赛讲座 第1讲数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力. 数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”. 因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了. 任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作. ”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重. 数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆. 主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的. 特别地,如果r=0,那么a=bq. 这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即

其中p 1<p 2<…<p k 为质数,a 1,a 2,…,a k 为自然数,并且这种表示是唯一的. (1)式称为n 的质因数分解或标准分解. 4.约数个数定理:设n 的标准分解式为(1),则它的正约数个数为: d (n )=(a 1+1)(a 2+1)…(a k +1). 5.整数集的离散性:n 与n+1之间不再有其他整数. 因此,不等式x <y 与x ≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决. 这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ; 4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数. 例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差. 结果小明发现,无论白色卡片上是什么数字,计算结果都是1998. 问:红、黄、蓝3张卡片上各是什么数字? 解:设红、黄、白、蓝色卡片上的数字分别是a 3,a 2,a 1,a 0,则这个四位 数可以写成:1000a 3+100a 2+10a 1+a 0,它的各位数字之和的10倍是10(a 3+a 2+a 1+a 0)=10a 3+10a 2+10a 1+10a 0,这个四位数与它的各位数字之和的10倍的差是: 990a 3+90a 2-9a 0=1998,110a 3+10a 2-a 0=222. 比较上式等号两边个位、十位和百位,可得a 0=8,a 2=1,a 3=2. 所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8. 例2 在一种室内游戏中,魔术师请一个人随意想一个三位数abc (a,b,c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab bca bac acb ,,,与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc . 现在设N=3194,请你当魔术师,求出数abc 来. 解:依题意,得

初中数学竞赛辅导讲座19讲(全套)

第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。

相关文档
最新文档