集成电路芯片测试仪的设计

集成电路芯片测试仪的设计
集成电路芯片测试仪的设计

摘要

集成电路(IC)测试是伴随着电子技术的发展而来的,数字集成芯片在使用过程中容易被损坏,用肉眼不易观察。早期的人工测试方法对一些集成度高,逻辑复杂的数字集成电路显得难于入手,因而逐渐被自动测试所取代,因此很需要设计一种能够方便测试常用芯片好坏的仪器。

本系统以单片机AT89C52为核心,由芯片测试插座、独立按键、74HC573驱动8位数码管显示、5V直流电源控制模块等组成。根据数字集成芯片的引脚特性以及集成芯片的真值表编写测试程序。该系统能完成14脚以内常用TTL74、54系列数字集成芯片的功能测试。

关键字:测试仪;数字集成电路;单片机

ABSTRACT

Integrated circuit (IC) test is accompanied with the development of electronic technology, Digital integrated chip is easily damaged during use, and difficult to observe with the naked eye. Early manual test methods for some high integration, the logic of complex digital integrated circuits become difficult,thus gradually replaced by automated testing, so it is necessary to design a testing instrument to distinguish the Common chips is good or bad conveniently.

The system is with AT89C52 microcontroller at the core, including the chip test socket,the independent button, 74HC573drives an 8-bit digital display, 5V DC power supply control module and other components, etc. According to the characteristics of digital IC pins and the truth table write integrated chip test program. The system can be completed within 14 feet common TTL74, 54 series digital integrated chip functional test.

Keywords: tester; digital integrated circuit; microprocessor control unit

目录

1系统总体方案 (1)

2 系统硬件电路设计 (2)

2.1硬件系统电路原理框图 (2)

2.2硬件系统电路各模块设计 (2)

2.2.1 MCS-52单片机最小系统 (2)

2.2.2 独立按键模块 (3)

2.2.3 芯片测试模块 (4)

2.2.4 显示模块 (5)

2.2.5 电源供电模块 (7)

3 系统软件设计 (8)

3.1 测试对象TTL74系列芯片简介 (8)

3.2 测试原理 (8)

3.3 程序流程图 (9)

3.4 模块程序关键代码 (11)

3.4.1 主程序 (11)

3.4.2 独立按键扫描程序 (11)

3.4.3 74HC573控制数码管显示程序 (15)

3.4.4 信号检测程序 (17)

4 系统仿真测试 (19)

总结 (21)

致谢 (22)

参考文献 (23)

附录 (24)

附录A 源程序 (24)

附录B 元件清单 (35)

附录C 整体电路图 (36)

1系统总体方案

在数字集成电路的设计、制造和应用阶段,不可避免地会出现故障,为了保证数字集成电路工作的可靠性,需要对其进行必要的测试。设计门电路自动测试仪目的在于能够方便检测数字集成芯片的好坏。

然而,由于常用的TTL系列芯片种类繁多,不同型号的数字集成芯片其逻辑功能不同、引脚排列不同、甚至哪些引脚作为输入,哪些引脚作为输出都不固定,也就是说,某个型号的集成芯片的其中一只引脚是输入脚,而另一个型号的集成芯片的同一只引脚却可能是输出脚了。在进行硬件电路设计时,必须要有这样的接口电路:和集成芯片引脚连接的检测端口既可作为输入,又可作为输出。

正由于上述原因,本方案设计一套数字集成电路测试装置,能够实现对指定几种14脚常见的74系列数字电路测试。芯片有74LS00、74LS04、74LS20、74LS74、74LS86。

对数字系统进行测试基本方法是:从数字集成电路的原始输入端施加若干输入矢量作为激励信号,观察由此产生的输出响应,并与预期的正确结果进行比较,一致则表示芯片完好,不一致则表示芯片有故障。因此判断一个集成电路芯片是否存在故障,可用该芯片被检测出来的功能是否同设计规范的功能一致来判断。要让测试结果直观明了,就需设计一个显示模块显示对应测试结果,在此系统中我选用8位数码管来显示芯片型号和两个发光二极管显示测试结果。此外,由于集成芯片的型号不同,为了提高测试的效率,还需设计一个独立按键模块用于输入检测芯片的型号,方便操作。

综合以上所涉及的几个问题,完整的门电路自动测试仪应包括按键输入模块,显示模块,芯片测试插座模块,结合单片机最小系统来加以控制。在确立硬件结构的基础上,结合软件完成。软件部分主要由数据检测程序和显示驱动程序,以及按键子程序三大部分组成。在设计过程中,首先使用Protel和Proteus仿真软件作为开发平台来进行硬件电路的设计,并运用软件Keil uVision编写程序完成系统的仿真实现,结合软、硬件完成系统的整体调试。

2 系统硬件电路设计

2.1硬件系统电路原理框图

该测试系统的原理框图如下图1所示。

图1 测试仪原理框图

此次所设计的数字集成电路检测系统由单片机控制单元,独立按键输入单元,信号检测单元,数码管显示单元和电源供电单元组成。

2.2硬件系统电路各模块设计

2.2.1 MCS-52单片机最小系统

MCS-52单片机内部主要由CPU,存储器,可编程I/O口,定时器/计数器,串行口,中断控制系统,时钟电路等组成。52系列单片机应用广泛,成本低,控制应用等电路成熟。此系统中,我选择单片机AT89C52最小系统进行控制,,它的P0、P1、P2、P3端口是准双向I/O口:既可作为输入口,又可作为输出口,为信号的检测控制奠定了重要的基础。其连接如图2所示。

图2 AT89C52单片机最小系统

单片机在电路中起到控制整个系统的作用,无论是信号检测,还是数码管显示,都通过编程完成控制。

2.2.2 独立按键模块

采用独立按键的优点是控制程序和硬件电路都很简单,缺点是如果每个按键都要占用一个I/O口,当按键较多时占用I/O口较多。但考虑到本次设计只需要三个按键:检测型号键、复位键、自动检测键。因此在实际的测试中分别对应P3.0\P3.1\P3.2通过按键查询就可以简单的起到控制输入的目的。

值得注意的是,在用单片机对按键处理的时候涉及到了一个重要的过程,那就是按键的去抖动。当用手按下一个键时,按键并不会立刻稳定地接通,在释放一个键时,也不会立刻断开。因而在闭合和断开的瞬间都会伴随着一连串的抖动。抖动的持续时间随按键材料和操作员而异,不过通常总是不5-10ms。这种抖动对于单片机来说是完全可以感觉到的,所以必须消除抖动。通常有两种方法可以消除抖动,一种是硬件方法,需要硬件电路,另一种是软件方法,用软件方法可以很容易地解决抖动问题,只需通过延迟10ms 来等待抖动消失这之后,在读入按编码值。所以,我们采用软件

消抖法。独立按键电路如图3所示。

图3 独立按键与单片机连接图

2.2.3芯片测试模块

结合单片机的I/O口使用情况,以及设计的局限,在该系统中我选用了16脚的通用IC紧锁座作为芯片测试插座,能够测试14脚以下的常用数字集成芯片。根据AT89C52中P0口与P2口的特点,本设计采用AT89C52的P1口和P2口连接测试芯片接口,单片机的P0口的P0.0—P0.7,P2口中的P2.0—P2.5共14条通用I/O线和检测插座构成了检测电路,其中,P2口中P2.7用于控制14管脚电源地转换,因为规则芯片的右上脚都为电源(Vcc),左下脚都为地(GND)。测试插座优先考虑14脚的通用测试情况。单片机与测试插座之间的连接如图4所示。

图4 单片机与测试插座连接图

在单片机与紧锁座之间需串接470Ω(或510Ω)的电阻。串接电阻目是对AT89C52起限流保护作用,假设,P2.0输出高电平,此时,测试芯片又为非门,那么将引起灌电流现象,致使P2.0口线上电流非常大,对AT89C52有害。

2.2.4显示模块

(1)数码管显示模块

在系统中,由于系统的独立按键模块和测试插座模块已经使用了单片机的P1,P2和P3口,只剩下一组I/O口可供选择。74HC573是8数据锁存器。主要用于数码管、按键等的控制,至此,我选用一块芯片74HC573直接控制8位数码管。有效的节省了单片机的I/O口的使用,极大地简化了硬件电路。由5片芯片74HC573和4个7段共阴极数码管构成了显示电路,用于向用户提供按键输入信息及输出检测结果等。通过单片机的三个I/O口来控制信号输入。

74HC573与AT89C52单片机的硬件连接如图6所示,74HC573锁存器的数据输入端连接单片机的P0口,P0口同时加了上拉电阻,数码管中的C1,C2,C3,C4是它们的位选

端。

图674HC573驱动8位数码

(2)发光二极管显示模块

为了使测试结果直观明了,分别在单片机的两个I/O口P3.6和P3.7分别串接两分别显示芯片好坏两种状态,发光二极管与单片机连接图个红、绿色发光二极管

连接图如图7所示。

图7 发光LED指示灯与单片机连接图

2.2.5 电源供电模块

在该设计系统中,所需电压都为直流5V,它由电源变压器,桥式整流电路(4个二极管D1~D4构成),滤波电容,防止自激电容和一只固定式三端稳压器(LM7805)极为简捷方便地搭成的,为了保证输入LM7805电压的稳定性,在7805之前我使用一只7812保证电流稳定输入12V。

如图8所示,220V交流电通过电源变压器变换成交流低压,再经过桥式整流电路BR1和滤波电容C6的整流和滤波,在固定式三端稳压器LM7812和LM7805的Vin和GND两端形成一个并不十分稳定的直流电压(该电压常常会因为市电电压的波动或负载的变化等原因而发生变化),此直流电压经过LM7812和LM7805的稳压和C4,C5的滤波便在稳压电源的输出端产生了精度高、稳定度好的直流输出电压。

图8 220V转5V直流电源连接图

LM7805用来给单片机等其它芯片供电,整流电路后的C6为滤波电容,容量较大,输出端电容C4、C5主要是抑制高频干扰,此外还在两个稳压块中加散热片。

3系统软件设计

软件设计包括主程序模块,按键控制模块,芯片信号检测模块和数码管显示模块等,下面将逐一介绍各个模块的详细设计过程。由于测试芯片种类繁多,在进行程序设计时首先需要分析常用数字集成芯片的一些规律,便于编程控制。TTL74系列作为两大主流集成芯片,地位和作用极其重要,基于此,接下来就对测试对象中的常用系列数字集成电路进行分析。

3.1 测试对象TTL74系列芯片简介

TTL电路以双极型晶体管为开关元件,所以又称双极型集成电路,74系列的工作环境温度规定为O~70℃,电源电压的工作范围为5V士5%。

此外,为满足用户在提高工作速度和降低功耗这两方面的要求,继TTL74、54系列之后,又相继研制和生产了74H系列、74S系列、74LS系列、74AS系列和74ALS系列,以及54H系列、54S系到、54LS系列、54AS系列和54ALS系列,就像74系列和54系列的区别那样,它们之间的区别也仅在于工作环境温度与电源电压工作范围不同。据于设计的局限及考虑到程序的繁琐,表1列举了14脚以内的要测试TTL74芯片,本设计中只实现对指定几种14脚常见的74系列数字电路测试。芯片有74LS00、74LS04、74LS20、74LS74、74LS86。

3.2测试原理

对于逻辑芯片的检测,我们主要实现检测芯片逻辑功能好坏亦或是确定芯片的型号,由于主控单元采用AT89C52单片机,其I/O与TTL电平完全兼容,因而直接由单片机对芯片插座的引脚进行扫描,由于是固定的14脚芯片,为了编程方便,使芯片测试引脚1~7分别为P1.0~P1.6,引脚14~8分别为P2.0~P2.6。实现了通过单片机输出端口

模拟芯片的各种输入状态,并通过单片机读回芯片的输出结果,通过与芯片真值表的比较即可判断芯片逻辑功能的好坏的目的。在进行芯片扫描时,必须先将芯片的输出引脚I/O置为高电平,然后对芯片的输入引脚进行各种状态的扫描,通过单片机读回芯片的输出,再依据芯片的真值表对其输出进相比较,不一致则说明芯片的逻辑功能发生错误,断定芯片为坏的,若芯片的输出与真值表完全相符,则说明芯片的逻辑功能正确,可以判断为好芯片。然后再依据所检测的结果,通过单片机对芯片的逻辑功能加以详细测试,并对结果加以显示。在自动检测的时候,为了提高准确度,我们编写了程序,采用对同一端口两次输入再两次读回其状态的比较方法,来对芯片好坏进行准确测试,继而返回正确的芯片型号。

此次在测试过程中我选用7400来进行系统的调试。其中,7400为四2输入与非门,在编写测试程序时,主要从以下思路入手:首先,根据测试插座与单片机的各I/O口连接情况,分别送给测试芯片各引脚送值。送值的时候是将所有可能出现的各种逻辑情况进行组合送入至芯片输入端,而输出端都给它置1,并根据真值表推断出预期的正确结果先存于寄存器中,送值结束后,读取芯片输出端的值,判断输出是否与预期的值相符,若一致则继续判断另一组输入逻辑值的情况,直至每一组都完成后对各组结果相与,逻辑为真则表示芯片是好的,若为假表示芯片是坏的。当然,在测试时若遇其中一组的逻辑为假,则直接判断出芯片是坏的。

3.3程序流程图

流程图如图9所示。

3.4模块程序关键代码

3.4.1主程序

在主程序中,需要完成对各状态的初始化,如单片机引脚,寄存器的初始化、74HC573控制数码管显示的初始化、按键扫描,信号检测等工作。主程序将根据检测芯片的型号,按键的输入提示分别完成信号的测试比较、结果显示等不同的操作。关键代码如下所示:

int main()//主程序

{

reset();//初始化

while(1)//不停扫描按键

{

keyscan();

}

return 0;//结束程序

}

3.4.2 独立按键扫描程序

在按键控制时采用了全扫描方式,这种方式是直接在主程序中插入按键扫描子程序,主程序每执行一次则按键检测子程序被执行一次,对按键进行检测一次。如没有按键按下,则跳过键识别,直接执行主程序;如果有键按下,则通过按键扫描子程序识别按键,得到按键的编码值,然后根据编码值进行相应的处理,处理完成在回到主程序执行。另外我们采用软件消抖法,具体代码如下所示:

void keyscan(void) //键盘扫描函数

{ int i;

unsigned char output1,output2;

if(key1==0)//按键1的子程序

{

delayms(10);//延时10ms

if(key1==0)

{

while(key1==0);//等待按键释放

k=detect();

display(name[k]);

}

}

if(key2==o)//按键2的子程序

{

delayms(10);

if(key2==0)

(

while(key2==0);//等待按键释放

ledR = 1;//灭绿led灯

ledG = 1;//灭红led灯

display(0);//数码管显示为0000

}

}

if(key3==0)//按键3的子程序

{

delayms(10);

if(key3==0)

{

while(key3==0);//等待按键释放

k=detect(); //调用检测芯片型号子程序

delayms(100);

if(k==0)//检测芯片好坏

{

for(i=0;i<4;i++)

{

input1=LS00[i][0];

input2=LS00[i][1];

delayms(500);

output1=input1&0x3f;

output2=input2&0x3f;

if(output1!=LS00[i][2]||output2!=LS00[i][3]) {

ledR= 0;

time=0;

break;

}

if(output1==LS00[i][2]&&output2==LS00[i][3])

{

time++;

}

}

if(time==4)

{

ledG = 0;

display(name[0]);

time=0;

}

}

if(k==1)

{

for(i=0;i<2;i++)

{

input1=LS04[i][0];

input2=LS04[i][1];

delayms(500);

output1=input1&0x3f;

output2=input2&0x3f;

if(output1!=LS04[i][2]||output2!=LS04[i][3]) {

ledR = 0;

time=0;

break;

}

if(output1==LS04[i][2]&&output2==LS04[i][3]) {

time++;

}

}

if(time==2)

{

ledG = 0;

time=0;

}

}

if(k==2)

{

for(i=0;i<16;i++)

{

input1=LS20[i][0];

input2=LS20[i][1];

delayms(500);

output1=input1&0x3f;

output2=input2&0x3f;

if(output1!=LS20[i][2]||output2!=LS20[i][3]) {

ledR = 0;//点亮红led

time=0;

break;

}

if(output1==LS20[i][2]&&output2==LS20[i][3]) {

time++;

}

}

if(time==16)

{

ledG = 0;//点亮绿led

display(name[k]);//显示芯片型号

time=0;

}

}

if(k==4)

{

for(i=0;i<4;i++)

{

input1=LS86[i][0];

input2=LS86[i][1];

delayms(500);

output1=input1&0x3f;

output2=input2&0x3f;

if(output1!=LS86[i][2]||output2!=LS86[i][3]) {

ledR = 0;

time=0;

break;

}

if(output1==LS86[i][2]&&output2==LS86[i][3]) {

time++;

}

if(time==4)

{

ledG = 0;

display(name[k]);

time=0;

}

}

}

}

}

3.4.374HC573控制数码管显示程序

每个数码对应一个位选端。单片机可以控制锁存器的锁存端,进而控制锁存器的

数据输出,这种分时控制的方法便可方便地控制任意数码管显示任意数字。在这里我们把数码管的显示部分写成了一个带参数的函数,以便以后调用,另外我们把这个要显示的参数分离成4个一位数。

void display(uint namex)//数码管显示子程序

{

uchar qian,bai,shi,ge;

qian = namex/1000;//千位,把一个4位数分离后分别送数码管显示

bai = namex%1000/100;//百位

shi = namex%100/10;//十位

ge = namex%10;//个位

dula1 = 1;

P0 = table[qian];//送段选数据

dula1 = 0;

P0 = 0xff;//送位选数据前关闭所有显示

delayms(500);//延时500ms

dula2 = 1;

P0 = table[bai];

dula2 = 0;

P0 = 0xff;

delayms(500);

dula3 = 1;

P0 = table[shi];

dula3 = 0;

P0 = 0xff;

delayms(500);

dula4 = 1;

P0 = table[ge];

dula4 = 0;

P0 = 0xff;

delayms(500);

P0 = 0xff;

wela = 1;

P0 = 0xc0;

wela =0;

while(1)

{

if(key1==0) break;

if(key2==0) break;

}

}

3.4.4 信号检测程序

在信号检测部分,我们只对指定的74系列门电路芯片进行功能测试(完好/损坏),如74LS00、74LS04、74LS20、74LS86。并且能够自动检测指定的几种74系列门电路的型号。程序设计中需要考虑到芯片的引脚识别,芯片型号的检测程序如下:unsigned char detect(void) //14脚芯片识别函数

{

unsigned char i,output1,output2;//7474的检测

P1=0xff; //初始化测试端口

P2=0xff;

input1=0x3b;

input2=0x39;

delayms(100);

input1=0x3f; //上升沿

input2=0x3d;

delayms(100);

output1=input1&0x3f;

output2=input2&0x3f;

if(output1==0x1f&&output2==0x2d)

{

return (4);

}

//7400/04/20/86的自动检测

集成电路课程设计报告

课程设计 班级: 姓名: 学号: 成绩: 电子与信息工程学院 电子科学系

CMOS二输入与非门的设计 一、概要 随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。 集成电路有两种。一种是模拟集成电路。另一种是数字集成电路。本论文讲的是数字集成电路版图设计的基本知识。然而在数字集成电路中CMOS与非门的制作是非常重要的。 二、CMOS二输入与非门的设计准备工作 1.CMOS二输入与非门的基本构成电路 使用S-Edit绘制的CMOS与非门电路如图1。 图1 基本的CMOS二输入与非门电路

2.计算相关参数 所谓与非门的等效反相器设计,实际上就是根据晶体管的串并联关系,再根据等效反相器中的相应晶体管的尺寸,直接获得与非门中各晶体管的尺寸的设计方法。具体方法是:将与非门中的VT3和VT4的串联结构等效为反相器中的NMOS 晶体管,将并联的VT 1、VT 2等效PMOS 的宽长比(W/L)n 和(W/L)p 以后,考虑到VT3和VT4是串联结构,为保持下降时间不变,VT 3和VT 4的等线电阻必须减小为一半,即他们的宽长比必须为反相器中的NMOS 的宽长比增加一倍,由此得到(W/L)VT3,VT4=2(W/L)N 。 因为考虑到二输入与非门的输入端IN A 和IN B 只要有一个为低电平,与非门输出就为高电平的实际情况,为保证在这种情况下仍能获得所需的上升时间,要求VT 1和VT 2的宽长比与反相其中的PMOS 相同,即(W/L)VT1,VT2=(W/L)P 。至此,根据得到的等效反向器的晶体管尺寸,就可以直接获得与非门中各晶体管的尺寸。 如下图所示为t PHL 和t PLH ,分别为从高到低和从低到高的传输延时,通过反相器的输入和输出电压波形如图所示。给其一个阶跃输入,并在电压值50%这一点测量传输延迟时间,为了使延迟时间的计算简单,假设反相器可以等效成一个有效的导通电阻R eff ,所驱动的负载电容是C L 。 图2 反相器尺寸确定中的简单时序模型 对于上升和下降的情况,50%的电都发生在: L eff C R 69.0=τ 这两个Reff 的值分别定义成上拉和下拉情况的平均导通电阻。如果测量t PHL 和t PLH ,可以提取相等的导通电阻。 由于不知道确定的t PHL 和t PLH ,所以与非门中的NMOS 宽长比取L-Edit 软件中设计规则文件MOSIS/ORBIT 2.0U SCNA Design Rules 的最小宽长比及最小长度值。 3.分析电路性质 根据数字电路知识可得二输入与非门输出AB F =。使用W-Edit 对电路进行仿真后得到的结果如图4和图5所示。

数字集成电路物理设计阶段的低功耗技术

数字集成电路物理设计阶段的低功耗技术 张小花(200XXXXXXXX) 2011年六月 摘要:通过一个图像处理SoC的设计实例,着重讨论在物理设计阶段降低CMOS功耗的方法。该方法首先调整 PAD摆放位置、调整宏单元摆放位置、优化电源规划,得到一个低电压压降版图,间接降低CMOS功耗;接着,通过规划开关活动率文件与设置功耗优化指令,直接降低CMOS功耗。最终实验结果表明此方法使CMOS功耗降低了 10.92%。基于该设计流程的图像处理SoC已经通过ATE设备的测试,并且其功耗满足预期目标。 关键词: 集成电路; 物理设计; 电压降; 低功耗 Digital integrated circuit physical design phase of the low power technology luo jiang nan(2008102041) June, 2011 Abstract: through a image processing of SoC design examples, the paper discuss the physical design stage reduce power consumption method. CMOS This method firstly PAD put the position, adjusting adjustment macro unit put the position, optimizing power planning, get a low voltage pressure drop, reduce the power consumption of the CMOS indirect territory; Then, through the planning activities rate documents and set switch power optimization, reduce the power consumption of the CMOS setup instructions directly. Finally the experimental results show that the method that CMOS power consumption was reduced by 10.92%. Based on the design process of the image processing has been through the ATE the SoC test equipment, and its power consumption to meet expectations. Keywords: IC; physical design; voltage drop; low power consumption 1 引言 随着集成电路规模的扩大以及便携式和嵌入式应用需求的增长,低功耗数字集成电路设计技术日益受到重视,已成为集成电路设计的研究热点.通常低功耗设计技术包括三个方面:设计中的低功耗技术、封装的低功耗技术和运行管理的低功耗技术.其中设计中的低功耗技术包括前端设计阶段的 体系结构级低功耗技术、RTL级低功耗技术、门级低功耗技术和物理设计阶段的低功耗 技术.

集成电路测试

第一章 集成电路的测试 1.集成电路测试的定义 集成电路测试是对集成电路或模块进行检测,通过测量对于集成电路的输出回应和预期输出比较,以确定或评估集成电路元器件功能和性能的过程,是验证设计、监控生产、保证质量、分析失效以及指导应用的重要手段。 .2.集成电路测试的基本原理 输入Y 被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入x 和网络功能集F(x),确定原始输出回应y,并分析y是否表达了电路网络的实际输出。因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。 3.集成电路故障与测试 集成电路的不正常状态有缺陷(defect)、故障(fault)和失效(failure)等。由于设计考虑不周全或制造过程中的一些物理、化学因素,使集成电路不符合技术条件而不能正常工作,称为集成电路存在缺陷。集成电路的缺陷导致它的功能发生变化,称为故障。故障可能使集成电路失效,也可能不失效,集成电路丧失了实施其特定规范要求的功能,称为集成电路失效。故障和缺陷等效,但两者有一定区别,缺陷会引发故障,故障是表象,相对稳定,并且易于测试;缺陷相对隐蔽和微观,缺陷的查找与定位较难。 4.集成电路测试的过程 1.测试设备 测试仪:通常被叫做自动测试设备,是用来向被测试器件施加输入,并观察输出。测试是要考虑DUT的技术指标和规范,包括:器件最高时钟频率、定时精度要求、输入\输出引脚的数目等。要考虑的因素:费用、可靠性、服务能力、软件编程难易程度等。 1.测试界面 测试界面主要根据DUT的封装形式、最高时钟频率、ATE的资源配置和界面板卡形等合理地选择测试插座和设计制作测试负载板。

集成电路课程设计(CMOS二输入及门)

) 课程设计任务书 学生姓名:王伟专业班级:电子1001班 指导教师:刘金根工作单位:信息工程学院题目: 基于CMOS的二输入与门电路 初始条件: 计算机、Cadence软件、L-Edit软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) & 1、课程设计工作量:2周 2、技术要求: (1)学习Cadence IC软件和L-Edit软件。 (2)设计一个基于CMOS的二输入的与门电路。 (3)利用Cadence和L-Edit软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 布置课程设计任务、选题;讲解课程设计具体实施计划与课程设计报告格式的要求;课程设计答疑事项。 | 学习Cadence IC和L-Edit软件,查阅相关资料,复习所设计内容的基本理论知识。 对二输入与门电路进行设计仿真工作,完成课设报告的撰写。 提交课程设计报告,进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 # 摘要 (2) 绪论…....………………………………………….………………….. ..3 一、设计要求 (4) 二、设计原理 (4) 三、设计思路 (4) 3.1、非门电路 (4) 3.2、二输入与非门电路 (6) 、二输入与门电路 (8) } 四、二输入与门电路设计 (9) 4.1、原理图设计 (9) 4.2、仿真分析 (10) 4.3、生成网络表 (13) 五、版图设计........................ (20) 、PMOS管版图设计 (20) 、NMOS管版图设计 (22) 、与门版图设计 (23)

高校实验室IC集成电路芯片测试解决方案

高校实验室IC集成电路芯片测试 解决方案 在高校的教学实验环节,需要大量地使用一些基本功能的集成芯片。譬如74/54系列的门电路,AD/DA芯片,放大器,比较器,二极管,三极管,光耦,接口芯片等。 由于学生初学电路,使用过程中,存在很多偶然的低级错误,造成芯片的损伤,给后面的实验造成很多麻烦,所以在实验过程中,为了排除这类因素,节省教学时间,需要用专用的amdtech芯片测试仪器对芯片的功能进行校验。除此之外,此测试仪支持芯片自动查找功能,查找成功后会自动显示芯片的型号。测试仪软硬件独立设计,芯片库可在线实时更新,简单易用。可根据用户提供的芯片,进行测试(需定制)。 1.1方案特色 1.基于标准USB接口,即插即用; 2.标准40脚锁扣插座,最大可测40脚的IC; 3.系统带自检功能,芯片型号可自动判别; 4.可测试74/54系列TTL芯片,4000/4500系列CMOS芯片; 5.可测试放大器,比较器,二极管,三极管,光耦,接口 芯片等集成电路芯片;

6.可测试常用的AD、DA芯片; 7.驱动程序支持win2000/winxp/win2003/win7/win8/ win10; 8.测试仪软硬件独立设计,芯片库可在线实时更新,简单 易用; 9.可根据用户提供的芯片,进行测试(需定制)。 1.2方案使用 1.首先安装软件,安装完成后,插入芯片测试仪,系统会自动提示安装驱动设备,按照提示,使用自动安装。 测试芯片时,不管什么类型的芯片,都是底部对齐,缺口朝上,如下图所示:

2.运行芯片测试仪软件。 测试步骤如下: (1)在【选择类型】下拉框里面,选择芯片的类型 (2)选择好类别后,在【选择器件】列表框里选择具体的待测 试芯片型号。 (3)选中芯片后,点击【测试】按钮,这时测试仪 的“ready”指示灯会点亮。软件会自动测试指定芯 片的好坏。 (4)如果芯片字迹模糊,而无法知道具体芯片型号 时,可以选择【自动扫描测试】按钮,软件会自动从 芯片库里面进行比对,如果对应上了具体型号,会自 动提示芯片的型号。 注:【自动扫描测试】是扫描当前类别里面的器件,

CMOS模拟集成电路课程设计

电子科学与技术系 课程设计 中文题目:CMOS二输入与非门的设计 英文题目: The design of CMOS two input NAND gate 姓名:张德龙 学号: 1207010128 专业名称:电子科学与技术 指导教师:宋明歆 2015年7月4日

CMOS二输入与非门的设计 张德龙哈尔滨理工大学电子科学与技术系 [内容摘要]随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。 集成电路有两种。一种是模拟集成电路。另一种是数字集成电路。本次课程设计将要运用S-Edit、L-edit、以及T-spice等工具设计出CMOS二输入与非门电路并生成spice文件再画出电路版图。 [关键词]CMOS二输入与非门电路设计仿真

目录 1.概述 (1) 2.CMOS二输入与非门的设计准备工作 (1) 2-1 .CMOS二输入与非门的基本构成电路 (1) 2-2.计算相关参数 (2) 2-3.电路spice文件 (3) 2-4.分析电路性质 (3) 3、使用L-Edit绘制基本CMOS二输入与非门版图 (4) 3-1.CMOS二输入与非门设计的规则与布局布线 (4) 3-2.CMOS二输入与非门的版图绘制与实现 (5) 4、总结 (6) 5、参考文献 (6)

1.概述 本次课程设计将使用S-Edit画出CMOS二输入与非门电路的电路图,并用T-spice生成电路文件,然后经过一系列添加操作进行仿真模拟,计算相关参数、分析电路性质,在W-edit中使电路仿真图像,最后将电路图绘制电路版图进行对比并且做出总结。 2.CMOS二输入与非门的设计准备工作 2-1 .CMOS二输入与非门的基本构成电路 使用S-Edit绘制的CMOS与非门电路如图1。 图1 基本的CMOS二输入与非门电路 1

青岛农业大学电子设计自动化与专用集成电路课程设计报告汇总

青岛农业大学 理学与信息科学学院 电子设计自动化及专用集成电路 课程设计报告 设计题目一、设计一个二人抢答器二、密码锁 学生专业班级 学生姓名(学号) 指导教师 完成时间 实习(设计)地点信息楼121 年 11 月 1 日

一、课程设计目的和任务 课程设计目的:本次课程设计是在学生学习完数字电路、模拟电路、电子设计自动化的相关课程之后进行的。通过对数字集成电路或模拟集成电路的模拟与仿真等,熟练使用相关软件设计具有较强功能的电路,提高实际动手,为将来设计大规模集成电路打下基础。 课程设计任务: 一、设计一个二人抢答器。要求: (1)两人抢答,先抢有效,用发光二极管显示是否抢到答题权。 (2)每人两位计分显示,打错不加分,答对可加10、20、30分。 (3)每题结束后,裁判按复位,重新抢答。 (4)累积加分,裁判可随时清除。 二、密码锁 设计四位十进制密码锁,输入密码正确,绿灯亮,开锁;不正确,红灯亮,不能开锁。密码可由用户自行设置。 二、分析与设计 1、设计任务分析 (1)二人抢答器用Verilog硬件描述语言设计抢答器,实现: 1、二人通过按键抢答,最先按下按键的人抢答成功,此后其他人抢答无效。 2、每次只有一人可获得抢答资格,一次抢答完后主持人通过复位按键复位,选手再从新抢答。 3、有从新开始游戏按键,游戏从新开始时每位选手初始分为零分,答对可选择加10分、20分,30分,最高九十分。 4、选手抢答成功时其对应的分数显示。 (2)密码锁 1、第一个数字控制键用来进行密码的输入 2、第二个按键控制数字位数的移动及调用密码判断程序。当确认后如果显示数据与预置密码相同,则LED 亮;如不相等,则无反应。按下复位键,计数等均复位

一种集成电路产品测试系统的设计与实现

一种集成电路产品测试系统的设计与实现 曹维国1,邓中亮1,王峥2 1北京邮电大学电子工程学院,北京 (100876) 2凤凰微电子(中国)有限公司,北京 (100084) E-mail:Weiguo.cao@https://www.360docs.net/doc/796776717.html, 摘要:本文回顾了数字集成电路的测试技术;分析了该项技术在对SIM形式封装的数字集成电路测试中的缺陷和不足;针对目前的测试系统的单一和性能价格比例偏低的情况提出了一种新型的综合测试系统,详细介绍了该系统的工作原理及组成,讨论了该系统的软硬件设计方案,总结了其优点。 关键词:用户识别模块,集成电路,测试系统,精密测量单元 1.引言 数字集成电路测试的目的在于检测集成电路的故障并对检测到的故障进行定位、生成测试报告并对故障进行分类汇总以用于缺陷分析。从测试技术上分可分为测试生成技术、响应鉴别技术、测试仪技术和易测设计技术等。从测试方法上分可分为人工测试和穷举测试法、ATPG (自动测试图形生成)、DFT (Design For Test,可测性设计)、 BST (边界扫描测试)和BIST (Build In Self Test,内建自测试)[1]等。从阶段可分为设计阶段测试、生产阶段测试和产品测试[2]。测试技术和测试方法具有通用性和共用性,而阶段性测试则跟被测对象的不同会衍生不同的测试系统尤其是在产品测试阶段[3]。设计阶段测试可借助强大的EDA(Electronic Design Automation,电子设计自动化)工具,生产阶段的测试由集成电路制造商完整的制造体系来保证,但是封装后的数字集成电路的外形各种各样,管脚有多有少,尤其是对SIM (Subscriber Identity Module,用户识别模块)形式封装的数字集成电路的产品外部只有8个管脚可以利用,从而造成了该类产品测试阶段通用性和专用性的矛盾。目前针对SIM封装形式的数字集成电路进行产品测试的系统十分稀缺且都具有共同的不足: 1)没有补偿电路,无法进行回零测试; 2)只能进行电气性能的开短路和漏电流测试,无法进行加压测流和加流测压; 3)只能进行电气性能的测试,无法完成逻辑功能的测试; 4)价格比较高。 结合SIM封装形式的数字集成电路产品测试系统的要求和企业产品的具体应用进行设计开发了一套专用测试系统,实现对SIM封装形式的数字集成电路的逻辑功能测试和电气性能测试,并对测试的结果进行汇总分析形成报告以用于缺陷分析。 2.系统介绍 本测试系统由控制计算机﹑测试电路和测试适配器三部分组成.适用于SIM封装形式下的集成电路的开短路测试﹑工作电流测试﹑输入管脚漏电流测试﹑输出电平测试和基本逻辑功能测试。并且具备16个芯片的并行测试能力。系统框架图如图1所示:

集成电路课程设计范例

集成电路课程设计 范例 1

集成电路课程设计 1.目的与任务 本课程设计是《集成电路分析与设计基础》的实践课程,其主要目的是使学生在熟悉集成电路制造技术、半导体器件原理和集成电路分析与设计基础上,训练综合运用已掌握的知识,利用相关软件,初步熟悉和掌握集成电路芯片系统设计→电路设计及模拟→版图设计→版图验证等正向设计方法。 2.设计题目与要求 2.1设计题目及其性能指标要求 器件名称:含两个2-4译码器的74HC139芯片 要求电路性能指标: (1)可驱动10个LSTTL电路(相当于15pF电容负载); (2)输出高电平时,|I OH|≤20μA,V OH,min=4.4V; (3)输出底电平时,|I OL|≤4mA,V OL,man=0.4V; (4)输出级充放电时间t r=t f,t pd<25ns; (5)工作电源5V,常温工作,工作频率f work=30MHz,总功耗P max=150mW。 2.2设计要求 1.独立完成设计74HC139芯片的全过程; 2.设计时使用的工艺及设计规则: MOSIS:mhp_n12;

3.根据所用的工艺,选取合理的模型库; 4.选用以lambda(λ)为单位的设计规则; 5.全手工、层次化设计版图; 6.达到指导书提出的设计指标要求。 3.设计方法与计算 3.174HC139芯片简介 74HC139是包含两个2线-4线译码器的高速CMOS数字电路集成芯片,能与TTL集成电路芯片兼容,它的管脚图如图1所示,其逻辑真值表如表1所示: 图1 74HC139芯片管脚图 表1 74HC139真值表 片选输入数据输出 C s A1 A0 Y0 Y1Y2Y3 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1

集成电路测试原理及方法资料

H a r b i n I n s t i t u t e o f T e c h n o l o g y 集成电路测试原理及方法简介 院系:电气工程及自动化学院 姓名: XXXXXX 学号: XXXXXXXXX 指导教师: XXXXXX 设计时间: XXXXXXXXXX

摘要 随着经济发展和技术的进步,集成电路产业取得了突飞猛进的发展。集成电路测试是集成电路产业链中的一个重要环节,是保证集成电路性能、质量的关键环节之一。集成电路基础设计是集成电路产业的一门支撑技术,而集成电路是实现集成电路测试必不可少的工具。 本文首先介绍了集成电路自动测试系统的国内外研究现状,接着介绍了数字集成电路的测试技术,包括逻辑功能测试技术和直流参数测试技术。逻辑功能测试技术介绍了测试向量的格式化作为输入激励和对输出结果的采样,最后讨论了集成电路测试面临的技术难题。 关键词:集成电路;研究现状;测试原理;测试方法

目录 一、引言 (4) 二、集成电路测试重要性 (4) 三、集成电路测试分类 (5) 四、集成电路测试原理和方法 (6) 4.1.数字器件的逻辑功能测试 (6) 4.1.1测试周期及输入数据 (8) 4.1.2输出数据 (10) 4.2 集成电路生产测试的流程 (12) 五、集成电路自动测试面临的挑战 (13) 参考文献 (14)

一、引言 随着经济的发展,人们生活质量的提高,生活中遍布着各类电子消费产品。电脑﹑手机和mp3播放器等电子产品和人们的生活息息相关,这些都为集成电路产业的发展带来了巨大的市场空间。2007年世界半导体营业额高达2.740亿美元,2008世界半导体产业营业额增至2.850亿美元,专家预测今后的几年随着消费的增长,对集成电路的需求必然强劲。因此,世界集成电路产业正在处于高速发展的阶段。 集成电路产业是衡量一个国家综合实力的重要重要指标。而这个庞大的产业主要由集成电路的设计、芯片、封装和测试构成。在这个集成电路生产的整个过程中,集成电路测试是惟一一个贯穿集成电路生产和应用全过程的产业。如:集成电路设计原型的验证测试、晶圆片测试、封装成品测试,只有通过了全部测试合格的集成电路才可能作为合格产品出厂,测试是保证产品质量的重要环节。 集成电路测试是伴随着集成电路的发展而发展的,它为集成电路的进步做出了巨大贡献。我国的集成电路自动测试系统起步较晚,虽有一定的发展,但与国外的同类产品相比技术水平上还有很大的差距,特别是在一些关键技术上难以实现突破。国内使用的高端大型自动测试系统,几乎是被国外产品垄断。市场上各种型号国产集成电路测试,中小规模占到80%。大规模集成电路测试系统由于稳定性、实用性、价格等因素导致没有实用化。大规模/超大规模集成电路测试系统主要依靠进口满足国内的科研、生产与应用测试,我国急需自主创新的大规模集成电路测试技术,因此,本文对集成电路测试技术进行了总结和分析。 二、集成电路测试重要性 随着集成电路应用领域扩大,大量用于各种整机系统中。在系统中集成电路往往作为关键器件使用,其质量和性能的好坏直接影响到了系统稳定性和可靠性。 如何检测故障剔除次品是芯片生产厂商不得不面对的一个问题,良好的测试流程,可以使不良品在投放市场之前就已经被淘汰,这对于提高产品质量,建立生产销售的良性循环,树立企业的良好形象都是至关重要的。次品的损失成本可以在合格产品的售价里得到相应的补偿,所以应寻求的是质量和经济的相互制衡,以最小的成本满足用户的需要。 作为一种电子产品,所有的芯片不可避免的出现各类故障,可能包括:1.固定型故障;2.跳变故障;3.时延故障;4.开路短路故障;5桥接故障,等等。测试的作用是检验芯片是否存在问题,测试工程师进行失效分析,提出修改建议,从工程角度来讲,测试包括了验证测试和生产测试两个主要的阶段。

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告 (前端设计部分) 课程设计题目:数字频率计 所在专业班级:电子科 作者姓名: 作者学号: 指导老师:

目录 (一)概述 2 2 一、设计要求2 二、设计原理 3 三、参量说明3 四、设计思路3 五、主要模块的功能如下4 六、4 七、程序运行及仿真结果4 八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 7 10 11

(一)概述 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。测量频率的方法有多种,数字频率计是其中一种。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。时基脉冲的周期越长,得到的频率值就越准确。通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。 本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。 (二)设计方案 一、设计要求: ⑴设计一个数字频率计,对方波进行频率测量。 ⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

数字集成电路测试仪YBD868

数字集成电路测试仪(YBD-868)} YBD868型数字集成电路测试仪是一种性能较高的通用仪器,测试脚数最大为双列直插式40脚,可测范围复盖了大多数的数字集成电路,测试准确可靠,操作简便,基本功能如下: ———* 器件好坏测试—————* 器件型号判别 ———* 器件动态老化————- * 器件代换查询 三.技术指标 1.操作系统:十六位轻触式立体键盘双音提示系统,被测器件安装采用锁紧插座。 2.显示系统:六位数码管显示器显示被测器件型号或各种功能提示,四只led显示仪器工作状态。 8. 外形尺寸:292*235*75立方厘米 9. 整机重量:2.0kg 四. 测试范围 ybd868型数字集成电路测试仪库存容量两千多片,包含以下各大系列: 1. ttl54系列 2. ttl55系列 3. ttl74系列 4. ttl75系列 5. cmos14系列 6. cmos40系列 7. cmos45系列

8. 光耦合器系列 9. led显示器系列 10. 常用ram系列 11. 常用单片机系列 12. 微机外围电路系列 五. 功能综述 1. 器件好坏判别: 当未知被测器件的好坏时,只要输入该器件的型号,并将器件放于对应的工作插座上,可判别出该仪器件的好坏。 2. 器件型号判别: 当未知被测器件的型号时,只需输入该器件的引脚数目,并将被测器件放于对应的工作插座上仪器即可立即判别出该器件的型号。 3. 器件代换查询: 输入欲查询的器件型号,按下“代换查询“键就可知道是否有逻辑功能与之完全相同的其它器件。 4. 器件动态老化: 当怀疑被测器件的动态稳定性时,只要输入该器件的型号,并将被测器件放于对应的插座上,按下“动态老化“键,仪器就可对该器件进行动态老化和连续测试。

集成电路课程设计模板及参考资 [1]...

集成电路课程设计报告 设计课题: 数字电子钟的设计 姓名: 专业: 电子信息工程 学号: 日期 20 年月日——20 年月日指导教师: 国立华侨大学信息科学与工程学院

目录 1.设计的任务与要求 (1) 2.方案论证与选择 (1) 3.单元电路的设计和元器件的选择 (5) 3.1 六进制电路的设计 (6) 3.2 十进制计数电路的设计 (6) 3.3 六十进制计数电路的设计 (6) 3.4双六十进制计数电路的设计 (7) 3.5时间计数电路的设计 (8) 3.6 校正电路的设计 (8) 3.7 时钟电路的设计 (8) 3.8 整点报时电路的设计 (9) 3.9 主要元器件的选择 (10) 4.系统电路总图及原理 (10) 5.经验体会 (10) 参考文献 (11) 附录A:系统电路原理图 (12)

数字电子钟的设计 1. 设计的任务与要求 数字钟是一种…。 此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。而且通过数字钟的制作进一步了解…。 1.1设计指标 1. 时间以12小时为一个周期; 2. 显示时、分、秒; 3. 具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; 4. 计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时; 5. 为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。1.2 设计要求 1. 画出电路原理图(或仿真电路图); 2. 元器件及参数选择(或开发板的考虑); 3. 编写设计报告,写出设计的全过程,附上有关资料和图纸(也可直接写在 相关章节中),有心得体会。 2. 方案论证与选择 2.1 数字钟的系统方案 数字钟实际上是…

集成电路物理设计库

1.集成电路物理设计库 集成电路物理设计库(PDK 和标准单元库)作为芯片制造商、EDA 供应商、芯片设计者之间的桥梁。开发工作必备的资源较多:工艺信息、集成电路设计方法和 EDA 技术。从 2006 年开始,电子设计平台与共性技术研究室基于中芯国际、上海宏力、上海华虹的 65nm、90nm、 0.13um 和 0.35um 等工艺节点,开发出一系列功能完善、器件类型丰富、设计合理及参数正确的 PDK 和标准单元库,并建立了相应的设计参考流程。 在实现 PDK 完整功能的基础上,相关研发团队从设计者角度优化参数化单元的 CDF 参数,并采用结构化的方式开发 Pcell 和批处理方式验证 Pcell,保证了开发流程的高效性和可靠性。同时,对标准单元进行了 OPC 校正,移向掩膜分析(PSM),分辨率增强(RET)等 DFM 优化分析;光学模拟仿真结果证实了优化后的标准单元边缘放置误差(EPE)平均减小了 5%,即优化后的标准单元库具有更高的可靠性、准确性和可制造性。经过验证,每套 PDK 和标准单元库都能灵活准确的支持电路设计。能够根据芯片设计者的需求提供专业PDK 设计服务和芯片设计技术支持。在此基础上,建立了一套完善的设计开发流程。 电子设计平台与共性技术研究室开发的集成电路物理设计库的工艺设计包(PDK:Process Design Kit)应用于数模混合 IC 设计,其包含的内容是和全定制流程紧密结合在一起的。PDK 库主要包括以下内容:

(1)器件模型(Device Model):由 Foundry 提供的仿真模型文件; (2)Symbols & View:用于原理图设计的符号,参数化的设计单元都通过了 SPICE 仿真的验证; (3)组件描述格式(CDF:Component Description Format) & Callback:器件的属性描述文件,定义了器件类型、器件名称、器件参数及参数调用关系函数集 Callback、器件模型、器件的各种视图格式等; (4)参数化单元(Pcell:Parameterized Cell):它由 Cadence 的 SKILL 语言编写,其对应的版图通过了 DRC 和 LVS 验证,方便设计人员进行原理图驱动的版图(SDL:Schematic Driven Layout)设计流程; (5)技术文件(Technology File):用于版图设计和验证的工艺文件,包含 GDSII 的设计数据层和工艺层的映射关系定义、设计数据层的属性定义、在线设计规则、电气规则、显示色彩定义和图形格式定义等; (6)物理验证规则文件(PV Rule File):包含版图验证文件集(DRC/LVS/RC)。 而集成电路物理设计库的标准单元库应用于大规模数字 IC 设计,从前端功能仿真到后端版图实现支撑着整个数字 IC 设计流程。标准单元库研究的主要内容包括: (1)网表信息文件:包含标准单元的器件尺寸和节点连接关系。

集成电路综合实验报告

集成电路设计综合实验 题目:集成电路设计综合实验 班级:微电子学1201 姓名: 学号:

集成电路设计综合实验报告 一、实验目的 1、培养从版图提取电路的能力 2、学习版图设计的方法和技巧 3、复习和巩固基本的数字单元电路设计 4、学习并掌握集成电路设计流程 二、实验内容 1. 反向提取给定电路模块(如下图1所示),要求画出电路原理图,分析出其所完成的逻辑功能,并进行仿真验证;再画出该电路的版图,完成DRC验证。 图1 1.1 查阅相关资料,反向提取给定电路模块,并且将其整理、合理布局。 1.2 建立自己的library和Schematic View(电路图如下图2所示)。 图2 1.3 进行仿真验证,并分析其所完成的逻辑功能(仿真波形如下图3所示)。

图3 由仿真波形分析其功能为D锁存器。 锁存器:对脉冲电平敏感,在时钟脉冲的电平作用下改变状态。锁存器是电平触发的存储单元,数据存储的动作取决于输入时钟(或者使能)信号的电平值,当锁存器处于使能状态时,输出才会随着数据输入发生变化。简单地说,它有两个输入,分别是一个有效信号EN,一个输入数据信号DATA_IN,它有一个输出Q,它的功能就是在EN有效的时候把DATA_IN的值传给Q,也就是锁存的过程。 只有在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号。其中使能端A 加入CP信号,C为数据信号。输出控制信号为0时,锁存器的数据通过三态门进行输出。所谓锁存器,就是输出端的状态不会随输入端的状态变化而变化,仅在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号到来时才改变。锁存,就是把信号暂存以维持某种电平状态。 1.4 生成Symbol测试电路如下(图4所示) 图4

集成电路课程设计

集成电路课程设计报告 课题:二输入或非门电路与版图设计 专业 电子科学与技术 学生姓名 严 佳 班 级 B 电科121 学号 1210705128 指导教师 高 直 起止日期 2015.11.16-2015.11.29

摘要 集成电路是一种微型电子器件或部件。它是采用一定的工艺,把一个电路中所需的晶体管等有源器件和电阻、电容等无源器件及布线互连在一起,制作在一小块半导体晶片上,封装在一个管壳内,执行特定电路或系统功能的微型结构。在整个集成电路设计过程中,版图设计是其中重要的一环。它是把每个原件的电路表示转换成集合表示,同时,元件间连接的线也被转换成几何连线图形。对于复杂的版图设计,一般把版图设计划分成若干个子版图进行设计,对每个子版图进行合理的规划和布图,子版图之间进行优化连线、合理布局,使其大小和功能都符合要求。 越来越多的电子电路都在使用MOS管,特别是在音响领域更是如此。MOS 管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点,且它是一种压控器件,有与电子管相似的传输特性,因而在集成电路中也得到了广泛的应用。 关键词:CMOS门电路或非门集成电路

绪论 目前,集成电路经历了小规模集成、中规模集成、大规模集成和超大规模集成。单个芯片上已经可以制作包含臣大数量晶体管的、完整的数字系统。在整个集成电路设计过程中,版图设计是其中重要的一环。它是把每个原件的电路表示转换成集合表示,同时,元件间连接的线也被转换成几何连线图形。对于复杂的版图设计,一般把版图设计划分成若干个子版图进行设计,对每个子版图进行合理的规划和布图,子版图之间进行优化连线、合理布局,使其大小和功能都符合要求。版图设计有特定的规则,这些规则是集成电路制造厂家根据自己的工艺特点而制定的。不同的工艺,有不同的设计规则。设计者只有得到了厂家提供的规则以后,才能开始设计。在版图设计过程中,要进行定期的检查,避免错误的积累而导致难以修改。 1.设计要求 (1)学习Multisim软件和L-Edit软件 (2)设计一个基于CMOS的二输入或非门电路。 (3)利用Multisim和L-Edit软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。 2.设计目的 (1)熟悉Multisim软件的使用。 (2)L-Edit软件的使用。 (3)培养自己综合运用所学知识、独立分析和解决实际问题的能力,培养创新意识和创新能力,并获得科学研究的基础训练,加深对集成电路版图设计的了解。 3.设计原理 能够实现B =“或非”逻辑关系的电路均称为“或非门”。二输入或 A L+ 非门有两个输入端A和B以及一个输出端L,只有当A端和B端同时为高电平时输出才为低电平,否则输出都为高电平。在一个或门的输出端连接一个非门就构成了“或非门”,如图1.1所示,逻辑符号如图1.2所示,真值表如图1.3所示。

集成电路芯片测试仪(A题)——【全国大学生电子设计大赛】

集成电路芯片测试仪(A题) 一、任务 设计制作一个集成电路芯片测试仪,能对常用的74系列逻辑芯片进行逻辑功能测试,以确定芯片的好坏和型号。 二、要求 1.基本要求 (1)通过键盘输入型号,可以对74系列的 00/02/04/08/10/11/20/21/27/30十种组合逻辑芯片进行逻辑功能测试,确定其功能正确性; (2)通过键盘输入管腿特性,可以确定上述74系列的组合逻辑芯片的型号; (3)显示上述芯片的逻辑符号和逻辑表达式。 2.发挥部分 将上述三项基本要求扩展到74系列时序电路:74/109/160/245等。 (1)通过键盘输入型号,可以对74系列的74/109/160/245等芯片进行逻辑功能测试,确定其功能正确性; (2)通过键盘输入管腿特性,可以确定上述74系列时序逻辑芯片的型号; (3)显示上述芯片的逻辑符号和状态转换图; (4)其它特色与创新。 1

三、评分标准 四、说明 要求用单片机或DSP模块做成一个相对独立的整体,不能用PC机实现。 2

LED显示棒(B题) 一、任务 设计制作一个依靠摇动能显示字符、图形的LED显示棒。 二、要求 1.基本要求 (1)设计一个基于LED的显示棒,LED灯必须线状排列,至少使用16只。 (2)摇动时形成的亮灯扇形区域能够让人分辨出“A”字符。 (3)摇动时形成的亮灯扇形区域能够让人分辨出“电”字。 (4)摇动时形成的亮灯扇形区域能够让人分辨出国际奥委会五环图形。 (5)用按键实现显示切换,用电池供电。 2.发挥部分 (1)摇动时形成的亮灯扇形区域能够让人分辨出英文单词“Welcome”。 (2)摇动时形成的亮灯扇形区域能够让人分辨出汉字词组“美亚”。 (3)摇动时形成的亮灯扇形区域能够让人分辨出北京奥运会会徽图形。 (4)其它特色与创新。 三、评分标准 3

集成电路课程设计报告书

集成电路原理及应用课程设计报告 \\ 题目 DDS芯片AD9850原理及应用 授课教师 学生 学号 专业

教学单位 完成时间 2011年7月1日 摘要:介绍了美国A D公司采用先进的直接数字频率合成 ( DDS )技术推出的高集成度频率合成器 A D9 8 5 0的工作原理、主要特点及其与 MCS51单片机的接口,并给出了接口电路图和部分源程序。同时给出了以AD9850为频率合成器,以AT89S52单片机为进程控制和任务调度核心来设计一个信号频率和幅度都能预置且频率稳定度高的函数信号发生器的设计方法. 引言 随着“软件无线电”技术和数字技术的飞速发展,用数字控制方法从一个参考频率源产生多种频率的技术——直接数字合成器(Direct Digital Synthesizer。DDS)被广泛应用。具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全数字化、控制灵活方便等方面,并具有极高的性价比。现已广泛应用于通讯、导航、雷达、遥控遥测、电子对抗以及现代化的仪器仪表工业等领域。美国AD公司推出的高集成度的采用先进的CMOS技术的直接频率合成器AD9850是DDS技术的典型产品之一。AD9850是高稳定度的直接数字频率合成器件,部数据输入寄存器、可编程DDS系统、高性能数/模转换器(DAC)及高速比较器,能实现全数字编程控制的频率合成器和时钟发生器,如接上精密时钟源,AD9850可产生一个频谱纯净、频率和相位都可编程控制的正弦信号。AD9850中包含高速比较器,正弦波也可直接用作频率信号源,也可通过比较器转换成方波,作为时钟输出。本文主要介绍了高集成度频率合成器 A D9 8 5 0的工作原理、主要特点及其与 MCS51单片机的接口及应用设计。 一.特性: 1)最高125MHz的时钟频率; 2)片集成高性能模数变换器(10位ADC)和高速比较器; 3)具有良好的动态性能:在40MHz输出时,DAC的抑制寄生动态围(SFDR)仍大于50dB; 4)供电模式可选:+5v或+3.3v单电源供电;

集成电路课程设计(范例)

集成电路课程设计 1. 目的与任务 本课程设计是《集成电路分析与设计基础》的实践课程,其主要目的是使学生在熟悉集成电路制造技术、半导体器件原理和集成电路分析与设计基础上,训练综合运用已掌握的知识,利用相关软件,初步熟悉和掌握集成电路芯片系统设计一电路设计及模拟一版图设计一版图 验证等正向设计方法2. 设计题目与要求 2.1 设计题目及其性能指标要求 器件名称:含两个2-4译码器的74HC139芯片 要求电路性能指标: (1)可驱动10个LSTTL电路(相当于15pF电容负载); (2)输出高电平时,|l O H < 20 卩A, V O H min=4.4V; (3)输出底电平时,|l OL| < 4mA V O L ma=0.4V; (4)输出级充放电时间t r=t f , t pd V25ns; (5)工作电源5V,常温工作,工作频率f work = 30MHZ总功耗P max= 150mW。 2.2 设计要求 1. 独立完成设计74HC139芯片的全过程; 2. 设计时使用的工艺及设计规则:MOSlS:mhp_n12; 3. 根据所用的工艺,选取合理的模型库; 4. 选用以lambda(入)为单位的设计规则; 5. 全手工、层次化设计版图; 6. 达到指导书提出的设计指标要求。 3. 设计方法与计算 3.1 74HC139芯片简介 74HC139是包含两个2线-4线译码器的高速CMO数字电路集成芯片,能与TTL集

成电路芯片兼容,它的管脚图如图1所示,其逻辑真值表如表1 所示: 地址输人数据输岀 ▼[>!> Sb A Ob A)b Y (lb lb Y Zb 丫盹 加加 I I I 二 _「 选通I —I 地址输人数擔输出 图1 74HC139芯片管脚图 表1 74HC139真值表 从图1可以看出74HC139芯片是由两片独立的2—4译码器组成的,因此设计时只需分析其中一个2—4译码器即可,从真值表我们可以得出Cs为片选端,当其为0时,芯片正常工作,当其为1时,芯片封锁。A1、A0为输入端,丫0-丫3为输出端,而且是低电平有效。 2—4译码器的逻辑表达式,如下所示: 丫0 C s A A C s A A o 丫 1 C s A A o C s A A o

相关文档
最新文档