【开题报告】金属介质微纳结构中的SPP效应及其透射特性研究

【开题报告】金属介质微纳结构中的SPP效应及其透射特性研究
【开题报告】金属介质微纳结构中的SPP效应及其透射特性研究

开题报告

应用物理

金属介质微纳结构中的SPP效应及其透射特性研究

一、选题的背景与意义

近几年,有关表面等离子极化激元效应(SPP)的研究取得了一些新进展,并出现了一些新的研究分支,随着现代理论研究的深化与微加工技术、光电检测技术的不断进步,已经形成了对能产生SPP效应的金属微纳结构体系的研究已经形成了一门新的学科——表面等离子体激元光子学。

表面等离子极化激元效应(SPP)是一种表面电磁波,在表面处有最大场强,在垂直于表面方向的场强呈指数衰减,这种现象既可以被电子激发也可以被光子激发,因此是相关领域的重要研究方向。由于SPP效应具有独特的光学特性,其在传感、光学超分辨成像、太阳能电池、数据存储等方面有着重要的研究和应用前景。

二、研究的基本内容与拟解决的主要问题

研究的基本内容:

研究使用光栅器件激发表面等离子极化激元效应(SPP)时,具有透射光强最大的光栅结构参数;

拟解决的主要问题:

透射光具有最大强度时的光栅结构是怎样的,这种器件在实际情况下的透射光强能达到理论值的多少。

三、研究的方法与技术路线

1、设计一种光栅结构,这种光栅结构可以产生表面等离子极化激元效应(SPP),使在这种光栅结构参数下具有最大的透射光强;

2、通过实验制造出器件样品并测量在这种情况下的透射光强的实验结果。

四、研究的总体安排与进度

2009年11月到12月:进行SPP效应的理论学习;

2009年1月:阅读相关的文献,对有关的理论知识和应用有更深层次的把握;

2009年3月到4月:完成器件设计、进行相关实验得出数据并完成论文。

五、主要参考文献:

[1].W.Liang,Y.huang.Y.Yu,R.K.Lee.a.Yariv, Highly sensitive fiber Bragg grating

refractive index sensors,Appl.Phys.Lett,86,151122.(2005)

[2].J.Homola,Present and future of surface Plasmon resonance biosensors,Anal Bioanal Chem.377,528-839,(2003)

[3].Sharon A, Glasberg S, Rosenblantt D and Frisem A A 1997 Metal-based reonant grating waveguide structures J. Opt. Soc. Am, A 14 588-94

[4].Wang Zhen-lin,A review on research progress in surface plasmons,Progress in Physics,1000-0542(2009)03-0287-38

[5].Jiri Homola,Sinclair S.Yee,Gunter Gauglitz,Surface Plasmon resonance sensors:review,Sensors and Actuators B 54(1999)3-15

微纳光学结构及应用

1引言微纳光学主要指微纳米尺度的光学效应,以及利用微纳米尺度的光学效应开发出的光学器件、系统及装置。微纳光学不仅是光电子产业的重要发展方向之一,也是目前光学领域的前沿研究方向。微纳光学的发展是由大规模集成电路工艺水平的进步所推动的。早在20世纪50年代,德国著名教授A.W.Lohmann [1]就考虑到利用光栅的整体相移技术对光场相位编码,以实现对光波的人工控制。1964年夏季,A.W.Lohmann 教授指导大学生Byron ,利用IBM 当时先进的制版设备演示了世界上第一张计算机全息图。随后的衍射光学进展都可以看作是人为地控制或改变光的波前,从这个意义上说,这个工作具有革命性的意义。随着半导体工艺技术的进步,微米尺度的任意线 宽都可以加工出来。由此,达曼提出一种新型的微光学分束器件,后人叫做达曼光栅[2]。达曼光栅通过任意线宽的二值相位调制,将一束激光分成多束等强度的激光。其制作充分利用了微电子工艺技术,是一个典 型的微光学器件[3]。 达曼光栅一般能产生一维或者二维矩阵的光强分布。周常河等[4]提出了圆环达曼光栅,也就是不同半径的圆孔相位调制,实现多级等光强的圆环分布。我们知道,圆孔的傅里叶变换是贝塞尔函数,而矩形的傅里叶变换是SINC 函数,因此,虽然达曼光栅和圆环达曼光栅的物理本质一样,但是其数学处理却不相同[5]。随着制造技术水平的进步,出现了一些纳米光学领域的新概念:光子晶体(Photonic Crystal )[6]、 表面微纳光学结构及应用 Micro-&Nano-Optical Structures and Applications 摘要简短回顾微纳光学的几个重要研究方向,包括光子晶体、表面等离子体光学、奇异材料、负折射、隐身以及 亚波长光栅等。微纳光学不仅成为当前科学的热点研究领域,更重要的是,微纳光学是新型光电子产业的 发展方向,在光通信、光存储、激光核聚变工程、激光武器、太阳能利用、半导体激光、光学防伪技术等诸多 领域,起到了不可替代的作用。 关键词微纳光学;纳米制造;微纳光学产业 Abstract Important areas of micro -and nano -optics are introduced,which include photonics crystal, plasmonics,metamaterials,negative -index materials,cloaking,subwavelength gratings and others. Micro -and nano -optics is not only the hot subject of the current scientific research,and more importantly,it reflects the new direction of the optoelectronics industry,which will be widely used in optical communications,optical storage,laser fusion facility,laser weapon,utilization of solar energy, semiconductor laser,optical anti-faking and others areas. Key words micro-&nano-optics;nanofabrication;micro-&nano-optical industry 中图分类号TN25doi : 10.3788/LOP20094610.0022

可控沉淀技术制备纳微结构药物颗粒

万方数据

万方数据

万方数据

万方数据

?1724?化工学报第61卷 也在其公开发表的综述论文中指出“……超重力法 制备新工艺,由于易放大、简单、高效纳米化等优 点,是药物纳米化的下一代战略性技术……,,[2lJ。 4药物构型的密度泛函计算 药物的疗效取决于药物本身的性质、纯度、剂 量、生产工艺、给药途径、给药时机等因素。一些 药物由于晶型不同在药效及其他方面产生的差异已 经逐步得到证实。同一药物的不同晶型在外观、溶 解度、熔点、溶出度、生物有效性等方面可能会有 显著不同,从而影响了药物的稳定性、生物利用度及疗效。药物多晶型现象是影响药品质量与临床疗效的重要因素之一,晶型对药效的影响是目前药学界关心的问题。目前鉴别晶型主要是针对不同的晶型具有不同的理化特性及光谱学特征来进行的,如XRD、FT—IR和核磁共振等实验方法。近年来,利用计算机分子模拟和量子化学理论辅助预测药物多晶型也有了较大的发展【2引。 本课题组利用密度泛函理论(densityfunctionaltheory)研究了抗前列腺癌药物比卡鲁胺和降血脂药物非诺贝特的构型。XRD实验结果已证实比卡鲁胺有两种晶型,分别为FormI和FormⅡ,目前只有FormI具有药效[2引。通过计算,得到了两种稳定构型A和B,其中A的几何构型参数与XRD结果得到的FormI吻合较好,B的构型参数与FormⅡ相吻合(如图3所示),且计算结果表明A相对于B更加稳定[2引。 对于非诺贝特目前实验只报道了一种晶型,而通过计算可以得到3种稳定构型A、B和C(如图4所示),其中A能量最低,且其几何构型参数与XRD实验结果一致心争26‘。研究表明可以用理论计算来预测药物的多晶型结构,以期更有效地指导药物纳微化工程和应用。 5液相沉淀法制备纳微结构药物的研究 5.1反应沉淀法 5.1.1吉非罗齐的微粉化研究吉非罗齐是一种非卤化的氯贝丁酯类降脂药物,在肠胃内的溶解度和溶解速率都很低,这使得药物口服后的有效吸收量和生物利用度都比较低。Huang等¨7]报道了采用反应沉淀法制备吉非罗齐的超细颗粒。研究了反应体系、酸碱溶液浓度、酸碱溶液体积比、混合温 图3比卡鲁胺晶型的DFT计算结果和xRD 实验结果比较 Fig.3Compa“sonofDFTcalculationsofbicalutamideconformersandX—raydiffractionanalysis 图4非诺贝特构型的DFT计算结果 Fig.4DFTcalculationsoffenofibrateconformers度、干燥方式等实验参数对吉非罗齐颗粒形貌与大小的影响,并确定较优实验条件为:反应体系为Na0H—H2SO。体系,Na()H与H2SO。的浓度分别为O.15、0.225m01.L~,表面活性剂为甲基纤维素(MC),用量为药物质量的5%,搅拌转速为5000r?min~,搅拌时间为30min,反应体系温度为5℃,干燥方式为喷雾一冷冻干燥法。在此条件下得到的吉非罗齐超细干粉颗粒的SEM照片如图5所示,颗粒平均粒径为1.25pm,比表面积为11.02m2?g~,约为原料药的6倍。吉非罗齐超细干粉颗粒与原料药具有相同的晶型、结构和成分,但微粉化产品的结晶度明显低于原料药。体外溶出实验表明(图6),在第120min时,微粉化产品的溶出量为91.2%,而此时吉非罗齐原料药的溶出量仅为23.6%。 5.1.2琥珀酸舒马普坦的微粉化研究琥珀酸舒马普坦是第一个上市的治疗急性偏头疼发作的曲坦类药物。目前,琥珀酸舒马普坦有口服给药、皮下注射、鼻腔给药和直肠给药4种剂型。但这4种剂 型存在一些不足:口服给药因为受过效应而生物利 万方数据

微纳结构光学及应用

王楠 1032011322017 光学工程 微纳光学结构及应用 摘要:微纳光学结构技术是指通过在材料中引入微纳光学结构,实现新型光学功能器件。其中表面等离子体光学、人工负折射率材料、隐身结构,都是通过引入微纳结构控制光的衍射和传播,从而实现新的光学性能。从这个角度来讲,微纳光学结构的设计和制造是微纳光学发展的共性关键技术问题,微纳光学是新型光电子产业的重要发展方向。 关键字:微纳光学;纳米制造;微纳光学产业; Abstract:Micro-nano optical structure technology refers to through the introduction of micro-nano optical structure in the material, implement new optical functional devices. The surface plasmon optics, artificial negative refractive index materials, stealth structure, through the introduction of micro-nano structure control of light diffraction and transmission, so as to realize the new optical performance. From this perspective, micro-nano optical structure design and manufacture is the universal key technical problems in the development of micro-nano optics, micro-nano optics is a new important development direction of optoelectronic industry. Key words : micro-nano optics; nanofabrication; micro-nano optical industry 1微纳光学技术的多种应用 1)加工新型光栅 借助于大规模集成电路工艺技术,可以加工出新型的光栅。光栅是个实用性很强的基本光学器件,在23ARTICLE | 论文激光与光电子学进展2009.10光谱仪、光通信波分复用器件、激光聚变工程、光谱分析等领域中大量使用。传统的表面光栅不论是机械刻画光栅,还是全息光栅,其表面的光栅结构是很薄的。明胶或光折变体全息光栅的光栅厚度较厚,由于制造工艺的一致性、温度稳定性和长期稳定性问题,在实际应用时仍然有限制。 2)制作深刻蚀亚波长光栅 采用激光全息、光刻工艺和半导体干法刻蚀工艺可以加工出深刻蚀亚波长光栅。

多孔金属材料的制备及应用_杨雪娟

多孔金属材料的制备及应用 杨雪娟,刘 颖,李 梦,涂铭旌 (四川大学材料科学与工程学院,成都610065) 摘要 根据制备过程中金属的状态,从液相法、固相法、金属沉积法三方面介绍了多孔金属材料的制备工艺。液态金属的发泡可以通过直接吹气法发泡法、金属氢化物分解发泡法来实现;固态金属可以通过粉末冶金法、粉末发泡法、金属空心球法和金属粉末纤维烧结法来实现;与前两种不同的是,金属沉积法是采用化学或物理的方法来实现的。最后,讨论了多孔金属材料在结构材料和功能材料两方面的应用。 关键词 多孔金属材料 制备工艺 应用   Preparation and Application of the Porous Metal Material YANG Xuejuan,LIU Ying,LI M eng,TU M ingjing (Schoo l of M aterials Scie nce&Engineering,Sichuan U niver sity,Chengdu610065) A bstract I n this pape r,prepara tion and applicatio n of the po ro us metal ma te rials are intr oduced acco rding to the state of the metal in the process———so lid,liquid,gaseous o r ionized state.Liquid metal can be fo rmed directly by in-jecting g as o r gas-releasing blow ing ag ent.Solid metal can be for med by various methods,including metal pow de r slurry foaming,o r ex trusion and sintering o f polymer/pow der mixtures.Diffe rently,metal-depo sitio n can be realized by chemic or phy sical methods.Finally,the structural and functional applicatio ns of po ro us metal materials are presented a s well. Key words po rous metal material,preparation,applicatio n   在材料科学研究中,永不改变的话题是探索新材料。人们注意到许多天然材料因其多孔的结构而具备优良的性能,因此,人们发展出了各种人造多孔材料。作为材料科学研究中较年轻的一员,多孔材料迅速成为近年来国际科学界关注的热点之一。 多孔材料可分为金属和非金属两大类,也可细分为多孔陶瓷材料、高分子多孔材料和多孔金属材料3种不同的类型。多孔金属材料又称为泡沫金属,作为结构材料,它具有密度小、孔隙率高、比表面积大等特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种性能。而且,多孔金属材料往往兼有结构材料和功能材料的双重作用,是一类性能优异的多用途材料。目前,多孔金属材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。多孔金属材料作为多孔材料的重要组成部分,在材料学领域具有不可取代的地位。 从20世纪中叶开始,世界各国竞相投入到多孔金属材料的研究与开发之中,并相继提出了各种不同的制备工艺[1]。根据制备过程中金属所处的状态可以将这些制备方法划分为以下几种:(1)液相法,(2)气相法,(3)金属沉积法。 1 液相法 1.1 直接发泡法 早在19世纪六七十年代,以直接发泡法制备多孔金属就已经获得了成功。相关实验主要集中在A l、M g、Zn等低熔点金属及其合金的闭孔金属材料的制备方面。经过研究者多年的实验和研究,直接发泡法制备多孔金属材料的工艺日渐成熟,目前已广泛应用于工业生产领域。直接发泡法包括两类不同的工艺: (1)直接吹气法发泡法;(2)金属氢化物分解发泡法。 (1)直接吹气法发泡法 对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的金属发泡方法。该方法的工艺是首先向金属液中加入SiC、A l2O3等以提高金属液的粘度,然后使用特制的旋转喷头向熔体中吹入气体(如空气、氩气、氮气)[2]。该法制备泡沫金属的工艺流程如图1所示。 图1 直接吹气法发泡法制备泡沫金属材料的流程图[4] Fig.1 Direct foaming of m elts with blowing agents[4] 该方法主要应用于泡沫铝的生产中。用这种工艺来生产泡沫铝,首先应在熔融铝液中加入一种高熔点材料的细小颗粒,这种难熔颗粒在铝液中既可以增加铝液粘度,又可以在气体和金属的界面上形成一层表面活性剂,从而保证气体能稳定地滞留在铝液中,并在凝固过程中不会导致泡沫塌陷。尽管有多种符合应用条件的难熔材料,但在实际生产中常选用碳化硅作为增加铝液粘度的增粘剂。在这一过程中,碳化硅可与铝液反应形成碳硅铝的合成物,并使铝液保持在相对较低的搅拌温度[3]。  杨雪娟:1983年生,硕士研究生 E-mail:ya ng xuejuan@tom.co m

微纳练习题解答

一、 1.套准精度的定义,套准容差的定义。大约关键尺寸的多少是套准容差? 套准精度是测量对准系统把版图套准到硅片上图形的能力。套准容差描述要形成图形层和前层的最大相对位移,一般,套准容差大约是关键尺寸的三分之一。 2.信息微系统的特点是什么? 低成本,能耗低,体积小,重量轻,高可靠性和批量生产,可集成并实现复杂功能。 3.微加工技术是由什么技术发展而来的,又不完全同于这种技术。独特的微加工技术包括哪些? (1)微电子加工技术;(2)表面微制造、体硅微制造和LIGA工艺。4.微电子的发展规律为摩尔定律,其主要内容是什么? 集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小√2倍 5.单晶、多晶和非晶的特点各是什么? 单晶:几乎所有的原子都占据着安排良好的规则的位置,即晶格位置;非晶:原子不具有长程有序,其中的化学键,键长和方向在一定的范围内变化; 多晶:是彼此间随机取向的小单晶的聚集体,在工艺过程中,小单晶的晶胞大小和取向会时常发生变化,有时在电路工作期间也发生变化 6.半导体是导电能力介于导体和绝缘体之间的物质;当受外界光和热作用时,半导体的导电能力明显变化;在纯半导体中掺杂可以使半导体的

导电能力发生数量级的变化。 7.标准RCA清洗工艺有几个步骤,各步主要用来去除哪些物质? SPM清洗:有机物 APM清洗:颗粒和少量有机物 DHF清洗:氧化膜 HPM清洗:金属离子 8.磁控溅射镀膜工艺中,加磁场的主要目的是什么? 将电子约束在靶材料表面附近,延长其在等离子体中运动的轨迹,提高与气体分子碰撞和电离的几率 9.谐衍射光学元件的优点是什么? 高衍射效率、优良的色散功能、减小微细加工的难度、独特的光学功能10.描述曝光波长与图像分辨率的关系,提高图像分辨率,有哪些方法? (1) NA = 2 r0/D, 数值孔径;K1是工艺因子:0.6~0.8 (2)减小波长和K1,增加数值孔径 氧气在强电场作用下电离产生的活性氧,使光刻胶氧化而成为可挥发的CO2、H2O 及其他气体而被带走;目的是去除光刻后残留的聚合物11.什么是等离子体去胶,去胶机的目的是什么? 通过控制F/C的比例,形成聚合物,在侧壁上生成抗腐蚀膜 12.硅槽干法刻蚀过程中侧壁是如何被保护而不被横向刻蚀的?

功能材料纳微化技术

功能材料纳微化技术 ●项目简介: 纳微结构赋予材料新的功能和功效。利用CO2辅助雾化制备和组装纳微颗粒结构材料,通过二相或多相流的喷头结构元件膨胀和雾化,根据混合和相分离的变化,组装纳微颗粒结构和形态。根据液滴在射飞过程中由于环境的变化而溃散、雾化、溶剂蒸发射飞过程中环境以及混合方式的调节,可形成各种纳微尺度和不同结构组装的颗粒材料。工艺路线如下: CO 钢瓶压缩机 萃 取 釜 雾 化 干 燥 室 壁材容液 TIC PI TI PI 产品 热风 工艺技术流程图 例如,根据多相流结构元件可快速形成高过饱和度快速成析和射流分散这样的特点,可设计给药系统,形成芯囊型或相互包嵌的超微细给药系统。又如用本方法制备的含能材料纳微颗粒,具有独到之处。 ●所属领域:化工、生物、医药、材料 ●项目成熟度:小试 ●应用前景: 纳米材料和纳米结构的应用将为新产品设计、新产业形成以及改造传统产业注入高科技含量,提供新的机遇。本技术可用于药物纳微颗粒制剂制备、聚合物纳微颗粒制备、纳微颗粒香料分散剂制备、功能布料固体整理剂制备、纳米催化剂制备与微结构改性、含能材料粒度微细化等。 ●知识产权及项目获奖情况: 含能材料的纳微化技术已授权发明专利ZL200710306452.2。 ●合作方式: 技术开发、专用产品制备技术开发;专利(实施)许可。

纳米光催化空气净化装置 ●项目简介: 本项目针对目前室内空气污染日益严重、对人体健康危害日益增加的问题,成功解决了纳米光催化技术的应用难题,将其应用于室内空气净化,并根据我国实际情况,开发出多种终端产品,包括用于家庭的光催化空气净化器,用于交通工具的车载空气净化器以及用于公共场所中央空调系统的光催化空气净化装置。该项目被认定为上海市高新技术成果转化项目,已具备年产2万台纳米光催化空气净化装置的生产能力。 经权威部门检测,纳米光催化空气净化装置对细菌杀灭率高达99.90%,对TVOC的脱除率为90%,对可吸入颗粒物的净化效率达国标的1.6倍,其综合技术总体上处于国内领先,在细菌杀灭率和脱除TVOC的功能上达到国际同类产品的先进水平。 目前中央空调用净化装置已在浦东星河湾酒店、兴业银行、中科院西安光机所等多家单位获得应用,其净化效果远优于普通的吸附、静电除尘等技术手段,获得用户的高度认可。 ●所属领域:材料、环境 ●项目成熟度:产业化 ●应用前景: 单机方面,美国的空气净化器家庭普及率达到27%,日本达到17%,而我国不足0.1%,市场潜力巨大。在中央空调系统空气净化装置方面,随着人们对中央空调带来的空气质量问题的日益关注,相应的产品市场前景看好。车载净化器同样会随着我国汽车的日益普及而获得长足的发展。 ●知识产权及项目获奖情况: 已申请发明专利1项,获外观设计专利授权2项。制定并备案企业标准《纳米光催化空气净化器》(Q/GHNM 7-2010)一项。 ●合作方式:空气净化工程总包、产品销售代理。 高性能中空纤维微滤超滤膜制备技术 ●项目简介: 超滤膜一种孔径规格一致,额定孔径范围为(0.001~0.1μm)的微孔过滤膜。微滤膜一种孔径规格一致,额定孔径范围为微滤膜(0.1~1μm)的微孔过滤膜。微滤超滤膜大多由醋酯纤维或与其性能类似的高分子材料制得。最适于处理溶液中溶质的分离和增浓,也常用于其他分离技术难以完成的胶状悬浮液的分离,其应用领域在不断扩大,工业应用十分广泛,已成为新型化工单元操作之一。用于分离、浓缩、纯化生物制品、医药制品以及食品工业中;还用于血液处理、废水处理和超纯水制备中的终端处理装置。在我国已成功地利用超滤膜进行了中草药的浓缩提纯。本项目提供高性能中空纤维微滤超滤膜制备技术。 ●所属领域:化工、材料

多孔金属材料

多孔金属材料 总论 所谓多孔金属材料即金属内部弥散分布着大量的有方向性的或随机的孔洞,这些孔洞的直径约2um~3mm之间。由于对孔洞的设计要求不同,孔洞可以是泡沫型的,藕状型的,蜂窝型的等等。多孔金属材料还可以根据其孔洞的形态可以分为独立孔洞型的和连续孔洞型的二大类。独立型的材料具有比重小,刚性、比强度好,吸振、吸音性能好等特点;连续型的材料除了具有上述特点之外,还具有浸透性、通气性好等特点。正因为多孔金属材料具有结构材料利功能材料的特点,所以被广泛应用于航空航天、交通运输、建筑工程、机械工程、电化学工程、环境保护工程等领域。 图为多孔模具钢的金相组织(ESEM)。从图中可以看出,该材料内部随机分布着大量三维空间互通的孔洞。由于该模具钢的透气性好,所以,铸出的铸件表面轮廓清晰;其二,充型阻力减小,于是充型动力也可以减小;其三,模具的合模力可以减小;其四,模具的重量可以减轻,仅为原来模具的三分之二,节约了金属材料;其五,上述优点的综合,可以简化模具结构的设计和对注塑机、压铸机型号的选择。从多孔钢在模具上的应用实例可以看出,多孔金属材料的研制利应用具有省能源,省资源,有利于材料的循环利用l地球环境的保护,所以具有广阔的应用前景利深远的经济效益及社会效益。 多孔金属材料的特性和用途 1.比重小,比强度大 由于金属材料中存在火量的孔洞,所以材料的比重显著减小,如上述的多孔模具钢的比重经测试只有 5.0g/cm ,比无孔的该材料(比重7.6g/cm )减少34.2%。如果是铝合金或镁合金的多孔材料,它们的比重可以小于l,只要材料的外表是致密的,那么它们可以浮出水面。 有人认为,金属材料内部分布大量的孔洞,那么其强度会大大削弱。一些文献指出,在材料的轻量化时,材料的形状因子是一个关键因素,形状因子包括了宏观形状因子和微观形状因子。在机械设计时经常不用圆棒而采用空心管,不用矩形截面而采工字型、兀字型等材料,所有这些都是改变宏观形状因子的措施。而将材料制备成多

金属多孔材料的制备及应用_于永亮

金属多孔材料的制备及应用 于永亮,张德金,袁勇,刘增林 (粉末冶金有限公司) 摘要:在归纳分析目前国内外各种制备多孔材料新技术的基础上,阐述了多孔材料在过滤、电极材料、催化载体、消音材料、生物和装饰材料方面应用及未来发展前景。 关键词:多孔材料功能结构制备方法金属加工 0前言 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。由于多孔材料具有相对密度低、比强度高、比表面积大、重量轻、隔音、隔热、渗透性好等优点,其应用范围远远超过单一功能的材料。近年来金属多孔材料的开发和应用日益受到人们的关注。目前,金属多孔材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。从20世纪中叶开始,世界科技较发达国家竞相投入到多孔金属材料的研究与开发之中,并相继研发了各种不同的制备工艺。 1金属多孔材料的制备工艺 1.1粉末冶金(PM)法[1] 该方法的原理是将一种或多种金属粉末按一定的配比混合均匀后,在一定的压力下压制成粉末压坯。将成形坯在烧结炉中进行烧结,制得具有一定孔隙度的多孔金属材料。或不经过成形压制,直接将粉末松装于模具内进行无压烧结,即粉末松装烧结法。 1.2纤维烧结法[2] 纤维烧结法与粉末冶金法基本类似。用金属纤维代替金属粉末颗粒,选取一定几何分布的金属纤维混合均匀,分布成纤维毡,随后在惰性气氛或还原性气氛保护的条件下烧结制备金属纤维材料。该法制备的金属多孔材料孔隙度可在很大范围内调整。 作者简介:于永亮(1981-),男,2006年7月毕业于中南大学粉末冶金专业。现为莱钢粉末冶金有限公司技术科助理工程师,主要从事生产技术及质量管理工作。1.3发泡法[3] 1)直接吹气法。对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的方法。 2)金属氢化物分解发泡法。这种方法是在熔融的金属液中加入发泡剂(金属氢化物粉末),氢化物被加热后分解出H2,并且发生体积膨胀,使得液体金属发泡,冷却后得到泡沫金属材料。 3)粉末发泡法。该方法的基本工艺是将金属与发泡剂按一定的比例混合均匀,然后在一定的压力下压制成形。将成形坯经过进一步加工,如轧制、模锻等,使之成为半成品,然后将半成品放入一定的钢模中加热,使得发泡剂分解放出气体发泡,最后得到多孔泡沫金属材料。 1.4自蔓延合成法[4] 自蔓延高温合成法是一种利用原材料组分之间化学反应的强烈放热,在维持自身反应继续进行的同时产生大量孔隙的材料合成方法。该方法放热反应可迅速扩展(即自蔓延),在极短时间内即可完成全部燃烧反应。同时因为反应时的温度高,故容易得到高纯度材料。这种方法主要是依靠反应过程中产生的液体和气体的运动而得到多孔结构,因此其孔隙大多是相互连通的,采用这种方法制备的多孔材料孔隙度可达到60%以上。然而,由于在自蔓延高温合成过程中,其热量释放和反应过程过于剧烈,容易导致材料的变形和开裂,同时不利于材料的孔结构控制和近净成形。 1.5铸造法[5] 1)熔模铸造法。熔模铸造法是先将已经发泡的塑料填入一定几何形状的容器内,在其周围倒入液态耐火材料,在耐火材料硬化后,升温加热使发泡塑料气化,此时模具就具有原发泡塑料的形状,将液态金属浇注到模具内,在冷却后把耐火材料与 36 莱钢科技2011年6月

多孔金属材料的应用

多孔泡沫金属材料的性能及其应用 摘要:多孔泡沫金属是一种在金属基体中含有一定数量、一定尺寸孔径、一定孔隙率的孔洞的金属材料.由于其结构特殊,因此具备了多方面的特殊性能。作为结构材料,它具有轻质、高比强度的特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种物理性能,因此在国内外一般工业领域及高技术领域都得到了越来越广泛的应用.本文对这种多孔泡沫金属材料的性能及其应用进行了较为全面的介绍。 关键词:多孔泡沫金属;性能;应用 0多孔泡沫金属是近几十年发展起来的一种功能材料,对其概念或分类学术界不尽统一,但基本上有如下定义方式:多孔泡沫金属是一种金属基体中含有一定数量、一定尺寸孔径、一定孔隙率的金属材料.概括起来,主要有如下分类方式:(1)按孔径和孔隙率的大小分为两类:多孔金属和泡沫金属.孔径小于013mm,孔隙率在45%~90%的,称为多孔金属(porousmetal);而孔径在015~6mm,孔隙率大于90%的,称为泡沫金属(foammetal);(2)按孔的形状特征进行分类:具有通孔结构的称为多孔金属,具有闭孔结构的称为胞状金属(cellu2larmetal).但用得最多的是多孔金属和泡沫金属,且多数作者都将两者视为等同的概念.目前更为合适的名称为多孔泡沫金属(porousfoammetal)[1-3].多孔泡沫金属材料实际上是金属与气体的复合材料,正是由于这种特殊的结构,使之既有金属的特性又有气泡特性,综合表现为能量吸收性(如吸音、减震等)、渗透性、阻燃耐热性、轻质等,故一直被期望用于建筑材料、吸音材料、减震材料、过滤器材料、电池电极材料等方面.如果在气孔结构的工艺控制、短流程连续化工业生产等关键性技术方面取得突破,多孔泡沫金属材料将为金属材料及其它相关领域带来革命性进展1多孔泡沫金属材料的结构特点[4]泡沫金属的孔径一般较大,011~10mm或更大(一般粉末冶金金属孔径不大于0.3mm)。孔隙率较高,一般随其种类不同而不同,在40%~98%的范围内变化。直接发泡法制作的泡沫金属,孔隙率在40%~60%左右,而通孔的海绵态泡沫金属的孔隙率可高达98%。随孔隙率的提高,泡沫金属的密度降低,泡沫金属的密度低,一般只有同体积金属的1/10~3/5。它的比表面积则较大,为10~40cm2/cm3。例如孔隙率大于63%的泡沫铝合金,其密度可达1以下,能够浮于水面上. 2多孔泡沫金属的性能及其应用泡沫金属材料的性能主要取决于气孔在基体材料内的分布情况,包括气孔的类型、形状、大小、数量、均匀性、以及比表面积等.多孔泡沫金属材料自问世以来,作为结构材料,它具有轻质、高比强度的特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种物理性能[5];因此它在国内外一般工业领域及高技术领域都得到了越来越广泛的应用。 2.1渗透性能及应用渗透性是高孔隙率材料在过滤、液-液分离、噪声抑制等方面的关键性能。泡沫金属中闭孔的数目对渗透性的影响较大,只有那些具有通孔结构的泡沫材料才有渗透性能,另外,渗透性还与孔径大小、孔的表面光洁度、渗透物体的性质(如黏度、流速)、渗透压力等因素有关.因其多孔性可将其应用于化学过滤器(如滤掉液体、气体中的固体颗粒等)、供净化水使用的气化处理器、自动加油的含油轴承、带香味的装饰品等。通过对泡沫金属孔结构(如孔隙度、孔径大小、通孔度等)的调整,可以获得不同透过性能要求的泡沫金属材料。 2.2消声减震性能及应用[6-8]具有通孔结构的泡沫金属材料,当有声波或机械振动波进入时,孔内介质(一般为空气)在声波作用下产生周期性的震动而与孔壁摩擦形成摩擦热,孔内介质在声波作用下发生压缩─膨胀形变也使部分声能变为热能,这种能量转换是不可逆的,对消声起主导作用;另外,泡沫材料本身也可以因弹性震动而消耗一部分声能;又由于泡沫材料具有的特殊结构,使其具有改变声源特性的功效,可以使难以消除的中低频段噪声峰值移向高频段,这些特征均为采用常规手段进一步降低气流噪声提供了有利条件。与其它的消音材料

金属的结构和性质

第八章金属的结构和性质 §8.1.金属键和金属的一般性质 8.1.1.自由电子模型 简单金属的自由电子模型很简单,价电子完全公有,构成金属中导电的自由电子,原子实与价电子间的相互作用完全忽略,自由电子之间也是毫无相互作用的理想气体。为了保持金属电中性,可设想原子实带正电分布于整个体积中,和自由电子的负电荷正好中和。 自由电子波函数可用一平面波表示 其中为波矢量,V为金属体积,与边长L关系 这样自由电子类似势箱中和自由粒子,自由电子在金属中的零势场中运动 相应能量可表示为 在绝对零度时,自由电子体系处于基态,N个电子占据个最低能级,最 高占据能为费米能级 自由电子气模型完全忽略电子间的相互作用,也忽略了原子实形成的周期势场对自由电子的作用,处理结果当然与真实金属有差距,后来发展了“近自由电子模型”(即在自由电子气中引入周期势场微扰),在一定程度上反映了简单金属的实际情况,可作为金属电子结构的一级近似。近年,有人提出用赝势理论处理简单金属,即采用微弱的赝势代替电子与正离子间的相互作用势,使问题得到简化。赝势可用正交平面波法解析导出,也可用参数直接构筑模型势。例如一模型赝势为 即原子实半径R 以外和真实库仑势相同,在原子实范围内用一个恒值势来代替

在近自由电子模型中的电子真实波函数(实线) 和赝势波函数(虚线) R为原子实半径。 8.1.2.能带理论 金属晶体中的电子处在带正电的原子实组成的周期性势场中运动, Schr?dinger方程为 用微扰法等近似方法可解得能带模型。它将整块金属当作一个巨大的超分子体系,晶体中N个原子的每一种能量相等的原子轨道,通过线性组合,得到N 个分子轨道。它是扩展到整块金属的离域轨道,由于N的数值很大(~数量级),得到分子轨道各能级间隔极小,形成一个能带。每个能带在固定的能量范围,内层原子轨道形成的能带较窄,外层原子轨道形成的能带较宽,各个能带按能级高低排列起来,成为能带结构,图8—4是导体与绝缘体的能带示意图。 图中红色的格于表示能带已填满电子,叫满带;空白的格子表示该带中无电子,叫空带。有电子但未填满的能带(橙色)叫导带。Na原子的电子组态为 电子正好填满,形成满带,3s轨道形成的能带只填子一半,形成导带。Mg原子的3s 轨道虽已填满,但它与3p轨道的能带重叠。从3s3p 总体来看,也是导带。能带的范围是允许电子存在的区域,而能带间的间隔,是电子不能存在的区域,叫禁带。 金属在外电场作用下能导电。导带中的电子,受外电场作用,能量分布和运动状态发生变化,因而导电。满带中电子已填满,能量分布固定,没有改变的可能,不能导电,空带中没有电子,也不能导电。若空带与满带重叠,也可形成导带。

纳米材料功能化宏观体系的构筑和性能研究

项目名称:纳米材料功能化宏观体系的构筑和性能 研究 首席科学家:姜开利清华大学 起止年限:2012.1至2016.8 依托部门:教育部

一、关键科学问题及研究内容 本项目拟解决的关键科学问题是: 1、纳米材料单元构筑宏观尺度纳米材料体系的界面结构控制 (1)不同材质纳米结构单元界面结构的设计和构筑方法 (2)不同尺寸和维度纳米结构单元组合的原理 2、不同纳米材料单元组装后性能演变和调控 (1)纳米材料单元组装后性能变化的机理和优化的方法 (2)多尺度单元组合对性能的影响以及单元耦合所产生的新功能 3、宏观尺度纳米材料体系中电子、光子和能量传输的新规律 (1)异质界面电子、光子和能量传输的新规律 (2)纳微尺度下的界面效应对性能的调控 4、宏观尺度纳米结构服役过程中的性能稳定性 (1)对外场的响应 (2)结构稳定性和性能稳定性的关系 以解决上述科学问题为核心,本项目的主要研究内容是: 1、不同材质纳米结构单元界面结构的设计,多元异质宏观尺度纳米结构单元构筑的新原理和新方法,包括从纳米结构单元的制备,纳米结构单元组合成微米结构,到由微米结构构筑宏观尺度的材料体系,发展不同尺度、不同维度纳米单元构筑宏观尺度纳米材料体系的新技术。构筑宏观尺度纳米材料体系的单元材质为:(a)半导体/金属肖特基结;(b)磁性/非磁性、磁性/铁电组合体;(c)碳管、碳管束和其他碳纳米结构单元。 2、纳米材料单元组装后性能变化的机理和优化的方法,宏观尺度纳米材料体系中纳米单元的耦合效应产生的新现象和新性能。主要研究内容为:碳纳米管与金属、高聚物复合体系界面的耦合效应,半导体量子点和贵金属纳米线异质界面耦合和光传输行为,肖特基结能量传递(光→电),磁性/非磁性和磁性/铁电性复合纳米单元界面耦合效应及能量传递的新规律(电→磁、磁→光)。通过耦合尺度效应的研究实现纳米单元组成的宏观尺度体系的综合性能的调控和优化。 3、宏观尺度纳米材料体系中异质界面对电、光、磁性能调控和输运性质的影响,能量传递和转化的新规律,探索其可能的应用。主要研究内容为:磁性/铁电复合纳米单元之间能量传递和转换的新规律(电→力、力→磁),实现增强电控磁效应的最佳条件,探索基于磁性/铁电复合纳米单元的电控磁存储技术,以纳微光学器件为导向,研究半导体量子点、金属纳米线等组合单元协同传递光子的行为,通过尺度效应和耦合效应的研究,探索能量传输、转换的新规律,发展基于纳米材料的红外波段探测器件,研究红外示范探测器件性能的稳定性。 4、宏观尺度纳米材料体系的结构性能关系及其在服役过程中的性能稳定性,主要研究内容为:研究复合纳米材料体系中,界面结构和特性对宏观性质的影响,探索提高材料综合性能的途径,研究碳纳米结构复合材料在外场作用下材料性能的变化与纳微结构的关系,能量和物质转化和传输的规律,服役条件下材料和结构的稳定性,探讨在高性能储能器件中的应用。

金属材料的结构与性能

第一章材料的性能 第一节材料的机械性能 一、强度、塑性及其测定 1、强度是指在静载荷作用下,材料抵抗变形和断裂的能力。材料的强度越大,材料所能承受的外力就越大。常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。 2、塑性是指材料在外力作用下产生塑性变形而不断裂的能力。塑性指标用伸长率δ和断面收缩率ф表示。 二、硬度及其测定 硬度是衡量材料软硬程度的指标。 目前,生产中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。此时硬度可定义为材料抵抗表面局部塑性变形的能力。因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。硬度试验简单易行,有可直接在零件上试验而不破坏零件。此外,材料的硬度值又与其他的力学性能及工艺能有密切联系。 三、疲劳 机械零件在交变载荷作用下发生的断裂的现象称为疲劳。疲劳强度是指被测材料抵抗交变载荷的能力。 四、冲击韧性及其测定 材料在冲击载荷作用下抵抗破坏的能力被称为冲击韧性。。为评定材料的性能,需在规定条件下进行一次冲击试验。其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。 五、断裂韧性 材料抵抗裂纹失稳扩展断裂的能力称为断裂韧性。它是材料本身的特性。 六、磨损 由于相对摩擦,摩擦表面逐渐有微小颗粒分离出来形成磨屑,使接触表面不断发生尺寸变化与重量损失,称为磨损。引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。 按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大基本类型。

第二节材料的物理化学性能 1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。不同用 途的机械零件对物理性能的要求也各不相同。 2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀能 力。 第三节材料的工艺性能 一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。 二、可锻性能:可锻性是指材料在受外力锻打变形而不破坏自身完整性的能力。 三、焊接性能:焊接性能是指材料是否适宜通常的焊接方法与工艺的性能。 四、切削加工性能:切削加工性能是指材料是否易于切削。 五、热处理性能:人处理是改变材料性能的主要手段。热处理性能是指材料热处理的难易 程度和产生热处理缺陷的倾向。 第二章材料的结构 第一节材料的结合键 各种工程材料是由不同的元素组成。由于物质是由原子、分子或离子结合而成,其结合键的性质和状态存在的区别。 一:化学键 1:共价键 2:离子键 3:金属键 4:范德。瓦尔键 二:工程材料的键性 化学键:组成物质整体的质点(原子、分子、离子)间的相互作用力,成为化学键。 1:共价键:有些同类原子,例如周期表Ⅳa、Ⅴa、Ⅵa族中大多元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键,如金刚石、单质硅、SiC等属于共价键。 2:离子键:大部分盐类、碱类和金属氧化物在固态下是不导电的,熔融时可以导电。这类化合物为离子化合物。当两种电负性相差大的原子(如碱金属元素与卤素元素的原子)相互靠

多孔金属材料的制备方法及应用研究

多孔金属材料的制备方法及应用研究 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 多孔金属材料是金属基体与孔隙共同组成的复合材料,也是一种新型的集结构和功能于一体的材料,因其具有独特的性质而备受广大科研工作者的热切关注. 它不仅比重低、强度高,而且具有消音、减振、耐热、渗透等诸多良好的性能,因而在化工、建筑、国防、医学、环保等领域有广泛的应用. 从多孔金属材料的性质考虑,多孔金属既承接了金属方面的性能,又具有多孔材料方面的性能. 作为金属材料,相比玻璃、陶瓷、塑料等非金属,它具有耐高温、良好的导电导热性、高强度,易加工成型的特点; 作为多孔材料,它比致密金属有诸多良好的性能,如轻质、比表面积大、吸能好等. 根据金属的状态和孔隙形成的来源,逐渐产生了许多制备多孔金属材料的工艺,有些在原有的工艺条件下进行了优化和创新,并取得了一定的成效. 1 多孔金属材料的制备方法 从多孔金属材料的定义上讲,它是多孔和金属两个词的统一体,这给科研工作者提供了制备多孔金属

的着手点,从而衍生出一系列制备多孔金属的工艺,包括材料的选择、孔隙结构的来源、设备调整、工艺参数的确定等方面. 金属的状态可以分为液态、固态、气态和离子态,而气孔的产生通常是以直接和间接的方式,两者相结合从而产生了不同的制备工艺. 传统上可分为铸造法、金属烧结法、沉积法等. 1. 1 铸造法 铸造法分为熔融金属发泡法、渗流铸造法和熔模铸造法等. 1. 1. 1 熔融金属发泡法 熔融金属发泡法包括气体发泡法和固体发泡法. 此方法的关键措施是选择合适的增粘剂,控制金属粘度和搅拌速度,以优化气泡均匀性和样品孔结构控制的程度. 此法主要用于制备泡沫铝、泡沫镁、泡沫锌等低熔点泡沫金属. 对于熔融金属发泡法,当前研究较多的是泡沫铝. 李言祥对泡沫铝的制备工艺、泡沫结构特点及气孔率方面进行了深入的实验研究; 于利民等人根据采用此法生产泡沫铝在国内外泡沫金属的发展形势,总结并探讨了其制备工艺及优缺点. 1) 气体发泡法 气体发泡法指的是向金属熔体的底部直接吹入气体的方法. 为增加金属熔体的粘度,需要加入高熔点

【CN109701457A】一种超重力纳微气泡产生装置及反应系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910163989.0 (22)申请日 2019.03.05 (71)申请人 北京化工大学 地址 100029 北京市朝阳区北三环东路15 号 (72)发明人 罗勇 王迪 初广文 刘亚朝  李志浩 蔡勇 邹海魁 孙宝昌  陈建峰  (74)专利代理机构 北京正理专利代理有限公司 11257 代理人 赵晓丹 (51)Int.Cl. B01J 8/10(2006.01) B01J 8/00(2006.01) B01J 7/02(2006.01) (54)发明名称 一种超重力纳微气泡产生装置及反应系统 (57)摘要 本发明提供一种超重力纳微气泡产生装置 及反应系统,在该装置中液相为连续相,气相为 分散相,气体由中空轴进入内部,经曝气微孔的 剪切作用对气体进行一次剪切形成气泡,气泡随 后在高速旋转的转轴作用下快速脱离转轴表面, 并在转轴所形成的超重力环境强大的剪切力下 进行二次剪切形成纳微气泡,具有快速、稳定、平 均粒径小的优点,所形成的纳微气泡平均粒径处 于800纳米-50微米之间,并可通过调节旋转轴的 转速对气泡平均粒径进行范围调控。该装置一方 面克服了传统超重力装置中液相不连续,无法形 成含纳微气泡液相的问题,另一方面克服了静态 微孔介质表面纳微气泡聚并的问题。权利要求书1页 说明书9页 附图4页CN 109701457 A 2019.05.03 C N 109701457 A

权 利 要 求 书1/1页CN 109701457 A 1.一种超重力纳微气泡产生装置,其特征在于,包括: 壳体,其上设置有液体进口和液体出口;以及 设置与所述壳体内的超重力气泡产生单元;其中, 所述超重力气泡产生单元包括: 设于所述壳体内的转子,可通过旋转形成超重力场,所述超重力场产生的离心力加速度大于10g; 一端与所述转子结合固定的中空轴,所述中空轴的另一端与气体进口连通; 其中,所述中空轴将所述壳体分为连通的内腔体和外腔体,所述中空轴的侧壁上设置若干纳微米尺度的孔道。 2.根据权利要求1所述的超重力纳微气泡产生装置,其特征在于,还包括: 设置在所述壳体与中空轴之间的间隙为0.1-10mm。 3.根据权利要求1所述的超重力纳微气泡产生装置,其特征在于,相邻两个孔道的孔心之间距离设定间距。 4.根据权利要求1所述的超重力纳微气泡产生装置,其特征在于,所述孔道包括位于所述中空轴侧壁上半部分的第一孔道和位于所述中空轴侧壁下半部分的第二孔道; 所述第一孔道的孔径大于、小于或等于所述第二孔道的孔径。 5.根据权利要求1所述的超重力纳微气泡产生装置,其特征在于,所述孔道的孔径沿气体流动的方向递增或递减;或, 所述孔道的孔径沿所述外腔体液体流动的方向递增或递减。 6.根据权利要求1所述的超重力纳微气泡产生装置,其特征在于,所述孔道围绕所述中空轴的轴心对称分布。 7.根据权利要求1所述的超重力纳微气泡产生装置,其特征在于,所述中空轴的材料为不锈钢或者钛基材料,优选孔道直径的范围为0.01-0.1mm。 8.根据权利要求1所述的超重力纳微气泡产生装置,其特征在于,所述中空轴由陶瓷膜制成,优选所述陶瓷膜的内壁膜孔道的孔径范围为2-48nm,外壁膜孔道的孔径范围为5-48nm。 9.一种反应系统,其特征在于,所述反应系统用于气液两相反应,所述反应系统包括超重力纳微气泡产生装置。 10.一种反应系统,其特征在于,所述反应系统用于气-液-固三相反应,或者用于拟均相的气-液-固反应,所述反应系统包括连通的反应器以及超重力纳微气泡产生装置,所述超重力纳微气泡产生装置将气体反应物与液体反应物混合形成具有纳微气泡的气液混合物,所述反应器中可通入固体反应物或者固体催化剂。 2

相关文档
最新文档