遗传算法的0-1背包问题(c语言)

遗传算法的0-1背包问题(c语言)
遗传算法的0-1背包问题(c语言)

基于遗传算法的0-1背包问题的求解

摘要:

一、前言

组合优化问题的求解方法研究已经成为了当前众多科学关注的焦点,这不仅在于其内在的复杂性有着重要的理论价值,同时也在于它们能在现实生活中广泛的应用。比如资源分配、投资决策、装载设计、公交车调度等一系列的问题都可以归结到组合优化问题中来。但是,往往由于问题的计算量远远超出了计算机在有效时间内的计算能力,使问题的求解变为异常的困难。尤其对于NP 完全问题,如何求解其最优解或是近似最优解便成为科学的焦点之一。

遗传算法已经成为组合优化问题的近似最优解的一把钥匙。它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。

背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其

计算复杂度为

)2(O n ,传统上采用动态规划来求解。设w[i]是经营活动 i 所需要的资源消耗,M 是所能提供的资源总量,p[i]是人们经营活动i 得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。

二、问题描述

背包问题( Knapsack Problem)的一般提法是:已知n 个物品的重量(weight )及其价值(或收益profit )分别为0>i w 和

0>i p ,背包的容量(contain )假设设为0>i c ,如何选择哪些物品装入背包可以使得在背包的容量约束限制之内所装物品的价值最大?

该问题的模型可以表示为下述0/1整数规划模型:

目标函数:∑==n

i i i n x c x x x f 121),,(max

?????=∈≤∑=)

,2,1(}1,0{t .s 1n i x p x w i n i i i i (*)

式中i x 为0-1决策变量,1=i x 时表示将物品i 装入背包中,0=i x 时则表示不将其装入背包中。

三、求解背包问题的一般方法

解决背包问题一般是采取动态规划、递归回溯法和贪心方法。动态规划可以把困难得多阶段决策变换为一系列相互联系比较容易的单阶段问题。对于背包问题可以对子过程用枚举法求解,而且约束条件越多,决策的搜索范围越小,求解也越容易。它的主要缺点是用数值方法求解时会随着状态变量的个数呈指数级的增长,往往对于求解背包问题的实际问题是不现实的。

使用递归回溯法解决背包问题的优点在于它算法思想简单, 而且它能完全遍历搜索空间,肯定能找到问题的最优解;但是由于此问题解的总组合数有n 2个,因此,随着物件数 n 的增大,其解的空间将以n

2级增长,当 n 大到一定程度上,用此算法解决背包问题将是不现实的。

使用贪心方法求解时计算的复杂度降低了很多,但是往往难以得到最优解,有时所得解与最优解相差甚远。因此, 我们可以探索使用遗传算法解决物件数较大的背包问题。

四、遗传算法简介

遗传算法( Genetic Algorithms ,GA) 是在1975 年首次由美国密西根大学的D 。J 。Holland 教授和他的同事们借鉴生物界达尔文的自然选择法则和孟德尔的遗传进化机制基础之上提出的。经过近30年的研究、应用,遗传算法已被广泛地应用于函数优化、机器人系统、神经网络学习过程、模式识别、图象处理、工业优化控制等领域。

遗传算法是将问题的每一个可能性解看作是群体中的一个个体(染色体),并将每一个染色体编码成串的形式,再根据预定的目标函数对每个个体进行评价,给出一个适应值。算法将根据适应度值进行它的寻优过程,遗传算法的寻优过程是通过选择、杂交和变异三个遗传算子来具体实现的。它的搜索能力由选择算子和杂交算子决定,变异算子则保证了算法能够搜索到问题空间的尽可能多的点,从而使其具有搜索全局最优的能力。遗传算法的高效性和强壮性可由Holland 提出的模式定理( Schema Therem) 和隐式并行性得以解释。在遗传算法中,定义长

度较短、低阶且适应值超过平均适应值的模式在群体中数目的期望值按指数递增,这个结论称为遗传算法的基本定理。遗传算法是通过定义长度短、确定位数少、适应度值高的模式的反复抽样、组合来寻找最佳点,称这些使遗传算法有效工作的模式为积木块,是遗传算法构造答案的基本材料。但归根到底,要使遗传算法有效工作必须按照遗传算法的模式定理(或积木块假设) 根据具体问题设计合理的编码方案。

在运行遗传算法程序时,需要对一些参数作事先选择,它们包括种群的大小、染色体长、交叉率、变异率、最大进化代数等,这些参数对GA 的性能都有很重要的影响。在试验中参数一般选取如下:种群大小N= 20~100 ,交叉概率

p= 0.4

c

~0.9 ,变异概率

p= 0.001~0.1 ,最大进化代数maxgen = 100~500。

m

遗传算法是具有“生成+检测”的迭代过程的搜索算法。它的基本处理流程如图1所示。

遗传算法的基本流程描述如下:

(1)编码:将解空间的解数据进行二进制编码,表达为遗传空间的基因型串

(即染色体)结构数据,如将数据9编码为“1001”;

(2)初始化种群:定义整数pop_size 作为染色体的个数,并且随机产生pop_size

个染色体作为初始种群;

(3)评估种群中个体适应度:评价函数对种群中的每个染色体(chromosome )

求得其个体适应度)(fitness f i ;

(4)选择:选择把当前群体中适应度较高的个体按某种规则或者模型遗传到

下一代种群中,这里所用的规则是:染色体在种群中被选择的可能性与其个体的适应度的大小成正比;

(5)交叉:定义参数c p 作为交叉操作的概率,由(4)选择得到的两个个体

以概率c p 交换各自的部分染色体,得到新的两个个体;

(6)变异:定义参数m p 作为变异操作的概率,由(5)得到每个个体中的每

个基因值都以概率m p 进行变异;

(7)演化:经过选择、交叉和变异操作,得到一个新的种群,对上述步骤经

过给定的循环次数(maxgen )的种群演化,遗传算法终止。

五、背包问题的遗传算法求解描述

基于背包问题的模型(*),我们设计了针对于背包问题的染色体编码方法:将待求解的各量X 表示成长为n 的二进制字符串]j [x ,j=1,2, …,n 。0]j [x =表示物体j 不放入背包内,1]j [x =表示物体j 放入背包内。例如:111001100…000111代表一个解,它表示将第1、2、3、6、7…n-2,n-1,n 号物体放入背包中,其它的物体则不放入。

根据遗传算法的基本流程,我们确定了求解背包问题的遗传算法: 步骤1、初始化过程

1.1 确定种群规模popsize 、杂交概率c p 、变异概率m p 、染色体长度lchrom 及最大进化代数maxgen ;

1.2 读入背包问题的相关信息,如每个物体的重量weight[j]、每个物体的收

益profit[j]和背包的容量contain ,其中

1)lchrom (,1,0j -= ; 1.3 取1)lchrom (,1,0j )1,0(u ]j [x -== ,其中)1,0(u 表示0-1整数的均匀分布函数,即随机地生成数0或1,生成的]j [x 串即可看为一个染色体个体。

若不满足模型(*)的约束条件,则拒绝接受,由1.2重新生成一个新的染色体个体chrom ;如果产生的染色体可行,则接受它作为种群的一名成员,经过有限次的1.2抽样后,得到popsize 个可行的染色体chrom ,形成新的种群。

1.4 置种群的代数gen=0;

步骤2、计算种群中个体适应度以及统计种群适应度情况

2.1 按照下列公式计算种群中个体适应度:

)1(1l c h r o m 0j ]j [c h r o m *]j [w e i g h

t w e i g h t ∑-==;

)2(contain

ifweight )contain weight (*alpha ]j [chrom *]j [profit contain ifweight ]j [chrom *]j [profit fitness 1lchrom 0j 1

lchrom 0j ???????>--≤=∑∑-=-= 公式(2)的下半部分即为适应度的惩罚函数,其中参数 1.0alpha >。

2.2 按公式(3)计算种群的总体适应度,

)3(]i [f i t n e s s

s u m f i t n e s s 1p o p s i z e 0i ∑-==

并且按照排序的方法统计出种群中的最大、最小适应度的染色体个体,分别标记为maxpop 、minpop ;

步骤3、选择操作

3.1 生成一个随机数rand_Number ,要求1_0<

3.2 按照赌轮法选择个体,赌轮法的算法描述如下:

int selection( )

{

i=0; //个体的编号

sum=0; //部分个体适应度的累加和

基于遗传算法的一种新的约束处理方法

基于遗传算法的一种新的约束处理方法 苏勇彦1,王攀1,范衠2 (1武汉理工大学 自动化学院, 湖北 武汉 430070) (2丹麦理工大学 机械系 哥本哈根) 摘 要:本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 关键词:遗传算法、约束处理、可行解、不可行解、两种群混合交叉 1引言 科学研究和工程应用中许多问题都可以转化为求解一个带约束条件的函数优化问题[1]。遗传算法(Genetic Algorithm )与许多基于梯度的算法比较,具有不需要目标函数和约束条件可微,且能收敛到全局最优解的优点 [2],因此,它成为一种约束优化问题求解的有力工具。目前,基于GA 的约束处理方法有拒绝策略,修复策略,改进遗传算子策略以及惩罚函数策略等。但是这些方法都存在一些问题[3]:修复策略对问题本身的依赖性,对于每个问题必须设计专门的修复程序。改进遗传算子策略则需要设计针对问题的表达方式以及专门的遗传算子来维持解的可行性。惩罚策略解的质量严重依赖于惩罚因子的选取,当惩罚因子不适当时,算法可能收敛于不可行解。 本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 2约束处理方法描述 2.1单目标有约束优化问题一般形式 )(max x f ..t s ;0)(≤x g i 1,,2,1m i L L =;0)(=x h i )(,,1211m m m m i +=+=L X x ∈ 这里都是定义在m m m m h h h g g g f ,,,;,,;2121111L L ++n E 上的实值函数。X 是n E 上的 子集,x 是维实向量,其分量为。上述问题要求在变量满足约 束的同时极大化函数。函数通常为目标函数。约束n n x x x ,,,21L n x x x ,,,21L f f ;0)(≤x g i 称为不等式约束;约束称为等式约束。集合;0)(=x h i X 通常为变量的上下界限定的区域。向量且满足所有约束,则称之为问题的可行解。所有可行解构成可行域。否则,为问题的不可行解,所有不可行解构成不可行域。问题的目标是找到一个可行解X x ∈x 使得)()(x f x f ≤对于所有可行解x 成立。那么,x 为最优解[4]。 2.2算法描述 目前,最常采用的约束处理方法为惩罚函数法。但优化搜索的效率对惩罚因子的选择有

遗传算法并行化的研究.doc

遗传算法并行化的研究 学号:SC02011036 姓名:黄鑫 摘要 本文是针对遗传算法并行化进行了研究,首先简要给出了基本遗传算法的形式化描述,然后做了并行性的分析,详细介绍了遗传算法的结构化并行模型:步进模型,岛屿模型,邻接模型,最后指出了进一步要研究的课题。 关键词:遗传算法,并行计算,结构化GA 1引言 遗传算法(GA)是根据达尔文进化论“优胜劣汰,适者生存”的一种启发式搜索算法。采用选择,交叉,变异等基本变化算子在解空间同时进行多点搜索,本身固有并行性。随着大规模并行机的迅速发展,将并行机的高速性与遗传算法并行性结合起来,从而促进遗传算法的发展。然而,仅仅将基本遗传算法硬件并行化伴随着大量通讯开销等问题,从而必须对标准GA的进行改进,使得并行遗传算法不单单是遗传算法硬件并行实现,更重要的是结构化的遗传算法。本文首先给出了GA形式化描述,对基本GA的可并行性做出分析,然后给出了并行GA的模型,最后指出了并行遗传算法还需要解决的问题。 2 基本遗传算法 在这里我们不对遗传算法做过多的介绍,只是给出基本遗传算法的形式化描述:begin (1)initialization (1.1)产生一个初始群体 (1.2)评估第一代整个群体的适应度值 (2)while running do (2.1)选择父代 (2.2)交叉操作 (2.3)子代变异 (2.4)评估子代的适应度 (2.5)子代取代父代,形成新的一带个体 endwhile end 3 遗传算法的并行性分析 从第一节对遗传算法的描述,我们可以看出基本遗传算法模型是一个反复迭代的进化计算过程,通过对一组表示候选解的个体进行评价、选择、交叉、变异等操作,来产生新一代的个体(候选解),这个迭代过程直到满足某种结束条件为止。对应于基本遗传算法的运行过程,为实现其并行化要求,可以从下面四种并行性方面着手对其进行改进和发展。 并行性Ⅰ:个体适应度评价的并行性。 个体适应度的评价在遗传算法中占用的运行时间比较大。通过对适应度并行计算方法的研究,可提高个体适应度评价的计算效率。 并行性Ⅱ:整个群体各个个体适应度评价的并行性。

用遗传算法解决0-1背包问题概述

实现遗传算法的0-1背包问题 求解及其改进 姓名: 学号: 班级: 提交日期:2012年6月27日

实现遗传算法的0-1背包问题求解 摘要:研究了遗传算法解决0-1背包问题中的几个问题: 1)对于过程中不满足重量限制条件的个体的处理,通过代换上代最优解保持种群的进化性 2)对于交换率和变异率的理解和处理方法,采用逐个体和逐位判断的处理方法 3)对于早熟性问题,引入相似度衡量值并通过重新生成个体替换最差个体方式保持种群多样性。4)一种最优解只向更好进化方法的尝试。 通过实际计算比较表明,本文改进遗传算法在背包问题求解中具有很好的收敛性、稳定性和计算效率。通过实例计算,表明本文改进遗传算法优于简单遗传算法和普通改进的遗传算法。 关键词:遗传算法;背包问题;优化 1.基本实现原理: 一、问题描述 0-1背包问题属于组合优化问题的一个例子,求解0-1背包问题的过程可以被视作在很多可行解当中求解一个最优解。01背包问题的一般描述如下: 给定n个物品和一个背包,物品i的重量为Wi,其价值为Vi,背包的容量为C。选择合适的物品装入背包,使得背包中装入的物品的总价值最大。注意的一点是,背包内的物品的重量之和不能大于背包的容量C。在选择装入背包的物品时,对每种物品i只有两种选择:装入背包或者不装入背包,即只能将物品i装入背包一次。称此类问题为0/1背包问题。 其数学模型为: 0-1背包问题传统的解决方法有动态规划法、分支界限法、回溯法等等。传统的方法不能有效地解决0-1背包问题。遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。 二、遗传算法特点介绍: 遗传算法(Genetic Algorithm, GA)是1962年Holland教授首次提出了GA算法的思想是近年来随着信息数据量激增,发展起来的一种崭新的全局优化算法,它借用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高。 基本遗传算法求解步骤: Step 1 参数设置:在论域空间U上定义一个适应度函数f(x),给定种群规模N,交叉率P c 和变异率P m,代数T; Step 2 初始种群:随机产生U中的N个染色体s1, s2, …, s N,组成初始种群S={s1, s2, …, s N},置代数计数器t=1; Step 3计算适应度:S中每个染色体的适应度f() ; Step 4 判断:若终止条件满足,则取S中适应度最大的染色体作为所求结果,算法结束。Step 5 选择-复制:按选择概率P(x i)所决定的选中机会,每次从S中随机选定1个染色体并将其复制,共做N次,然后将复制所得的N个染色体组成群体S1; Step 6 交叉:按交叉率P c所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2; Step 7 变异:按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3; Step 8 更新:将群体S3作为新一代种群,即用S3代替S,t=t+1,转步3;

遗传算法与优化问题

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm —GA),就是模拟达尔文的遗传选择与自然淘汰的生物进化过程的计算模型,它就是由美国Michigan大学的J、Holla nd教授于1975 年首先提出的?遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算? 1. 遗传算法的基本原理 遗传算法的基本思想正就是基于模仿生物界遗传学的遗传过程?它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体?这个群体在问题特定的环境里生存 竞争,适者有最好的机会生存与产生后代?后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解?值得注意的一点就是,现在的遗传算法就是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身就是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法就是由进化论与遗传学机理而产生的直接搜索优化方法;故而 在这个算法中要用到各种进化与遗传学的概念? 首先给出遗传学概念、遗传算法概念与相应的数学概念三者之间的对应关系这些概念

(2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要就是:先把问题的解表示成“染色体”,在算法中也就就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则从中选 择出较适应环境的“染色体”进行复制 ,再通过交叉、变异过程产生更适 应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就就是问题的最优解. 下面给出遗传算法的具体步骤,流程图参见图1: 第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间; 第二步:定义适应函数,便于计算适应值; 第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数; 第四步:随机产生初始化群体; 第五步:计算群体中的个体或染色体解码后的适应值; 第六步:按照遗传策略,运用选择、交叉与变异算子作用于群体,形成下一代群体; 第七步:判断群体性能就是否满足某一指标、或者就是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步. 图1 一个遗传算法的具体步骤

遗传算法求解背包问题

遗传算法求解背包问题 信管专业李鹏 201101002044 一、遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。 二、背包问题描述 背包问题是一个典型的组合优化问题,在计算理论中属于NP完全问题,主要应用于管理中的资源分配,资金预算,投资决策、装载问题的建模。传统“0/1”背包问题可以描述为:把具有一定体积和价值的n件不同种类物品放到一个有限容量的背包里,使得背包中物品的价值总量最大。 三、数学模型 背包问题可以描述如下:假设有n个物体,其重量用表示,价值用表示,背包的最大容量为b。这里和b都大于0。问题是要求背包所装的物体的总价值最大。背包问题的数学模型描述如下: (1) (2) (3) 约束条件(3)中表示物体i被选入背包,反之,表示物体i没有被选入背包。约束条件(2)表示背包的容量约束。

四、使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。 五、程序整体流程 (1)读取存取包的限种、商品的重要和价值的TXT文件; (2)初始化种群; (3)计算群体上每个个体的适应度值(Fitness) ; (4)评估适应度,对当前群体P(t)中每个个体Pi计算其适应度F(Pi),适应度表示了该个体的性能好坏; (5)依照Pc选择个体进行交叉操作; (6)仿照Pm对繁殖个体进行变异操作 (7)没有满足某种停止条件,则转第3步,否则进入8 ; (8)输出种群中适应度值最优的个体。 六、代码 function Main() %定义全局变量 global VariableNum POPSIZE MaxGens PXOVER PMutation VariableNum=3 %变量个数 POPSIZE=50 %种群大小 MaxGens=1000 %种群代数 PXOVER=0.8 %交叉概率 PMutation=0.2 %变异概率 %读取数据文件

matlab、lingo程序代码3-背包问题(遗传算法)复习过程

背包问题---遗传算法解决 function Population1=GA_copy(Population,p,w0,w) %复制算子 %Population为种群 n=length(Population(:,1)); fvalue=zeros(1,n); for i=1:n fvalue(i)=GA_beibao_fitnessvalue(Population(i,:),p,w0,w); end fval=fvalue/sum(fvalue); F(1)=0; for j=1:n F(j+1)=0; for k=1:j F(j+1)=F(j+1)+fval(k); end end for i=1:n test=rand; for j=1:n if((test>=F(j))&&(test

POP(j,z)=Population(i,z); end POP(j,l+1)=i; p(j)=randint(1,1,[1 l-1]); j=j+1; end end k0=j-1; k=floor(k0/2); if k>=1 for m=1:k for t=p(2*m-1)+1:l s=POP(2*m-1,t); POP(2*m-1,t)=POP(2*m,t); POP(2*m,t)=s; end end for m=1:k0 for i=1:l Population1(POP(m,l+1),i)=POP(m,i); end end end function fitnessvalue=GA_fitnessvalue(x,p,w0,w) %使用惩罚法计算适应度值 %x为染色体 %p为背包问题中每个被选物体的价值 %w0为背包问题中背包总容积 %w为背包问题中每个被选物品的容积 l=length(x); for i=1:l a(i)=p(i).*x(i); end f=sum(a); b=min(w0,abs(sum(w)-w0)); for i=1:l wx(i)=w(i).*x(i); end if abs(sum(wx)-w0)>b*0.99 p=0.99;

并行遗传算法

并行遗传算法及其应用 1、遗传算法(GA)概述 GA是一类基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解。生物遗传物质的主要载体是染色体,在GA中同样将问题的求解表示成“染色体Chromosome”,通常是二进制字符串表示,其本身不一定是解。首先,随机产生一定数据的初始染色体,这些随机产生的染色体组成一个种群(Population),种群中染色体的数目称为种群的大小或者种群规模。第二:用适值度函数来评价每一个染色体的优劣,即染色体对环境的适应程度,用来作为以后遗传操作的依据。第三:进行选择(Selection),选择过程的目的是为了从当前种群中选出优良的染色体,通过选择过程,产生一个新的种群。第四:对这个新的种群进行交叉操作,变异操作。交叉、变异操作的目的是挖掘种群中个体的多样性,避免有可能陷入局部解。经过上述运算产生的染色体称为后代。最后,对新的种群(即后代)重复进行选择、交叉和变异操作,经过给定次数的迭代处理以后,把最好的染色体作为优化问题的最优解。 GA通常包含5个基本要素:1、参数编码:GA是采用问题参数的编码集进行工作的,而不是采用问题参数本身,通常选择二进制编码。2、初始种群设定:GA随机产生一个由N个染色体组成的初始种群(Population),也可根据一定的限制条件来产生。种群规模是指种群中所含染色体的数目。3、适值度函数的设定:适值度函数是用来区分种群中个体好坏的标准,是进行选择的唯一依据。目前主要通过目标函数映射成适值度函数。4、遗传操作设计:遗传算子是模拟生物基因遗传的操作,遗传操作的任务是对种群的个体按照它们对环境的适应的程度施加一定的算子,从而实现优胜劣汰的进化过程。遗传基本算子包括:选择算子,交叉算子,变异算子和其他高级遗传算子。5、控制参数设定:在GA的应用中,要首先给定一组控制参数:种群规模,杂交率,变异率,进化代数等。 GA的优点是擅长全局搜索,一般来说,对于中小规模的应用问题,能够在许可的范围内获得满意解,对于大规模或超大规模的多变量求解任务则性能较差。另外,GA本身不要求对优化问题的性质做一些深入的数学分析,从而对那些不

遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题 一、问题描述 给定n种物品和容量为C的背包。物品i的重量是wi,其价值为vi。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 二、知识表示 1、状态表示 (1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。 (2)基因:染色体的每一个比特。 (3)种群:解的集合。 (4)适应度:衡量个体优劣的函数值。 2、控制参数 (1)种群规模:解的个数。 (2)最大遗传的代数 (3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。 3、算法描述 (1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T; (2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1; (3)计算S中每个个体的适应度f() ; (4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。 (5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1; (6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2; (7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3; (8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。 三、算法实现 1、主要的数据结构 染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。 种群:用二维数组表示,每一行表示一个染色体。 具有最大价值的染色体:由于每一个染色体经过选择、交叉、变异后都可能发生变化,所以对于产生的新的总群,需要记录每个物品的选中状态。同时保存该状态下物品的最大价值,如果新的总群能够产生更优的值,则替换具有最大价值的染色体。

遗传算法求解y=x2 - 副本

初始遗传算法及一个简单的例子 遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。 下面我以一个实例来详细表述遗传算法的过程 例:求下述二元函数的最大值: 2 =] y x x∈ ,0[ 31 1、编码: 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L为一固定的数,如本例的编码为 s1 = 1 0 0 1 0 (17) s2 = 1 1 1 1 0 (30) s3 = 1 0 1 0 1 (21) s4 = 0 0 1 0 0 (4) 表示四个个体,该个体的染色体长度L=5。 2、个体适应度函数 在遗传算法中,根据个体适应度的大小来确定该个体在选择操作中被选定的概率。个体的适应度越大,该个体被遗传到下一代的概率也越大;反之,个体的适应度越小,该个体被遗传到下一代的概率也越小。基本遗传算法使用比例选择操作方法来确定群体中各个个体是否有可能遗传到下一代群体中。为了正确计算不同情况下各个个体的选择概率,要求所有个体的适应度必须为正数或为零,不能是负数。这样,根据不同种类的问题,必须预先确定好由目标函数值到个体适应度之间的转换规则,特别是要预先确定好目标函数值为负数时的处理方法。

遗传算法的并行实现

遗 传 算 法 (基于遗传算法求函数最大值) 指导老师:刘建丽 学号:S201007156 姓名:杨平 班级:研10级1班

遗传算法 一、 遗传算法的基本描述 遗传算法(Genetic Algorithm ,GA )是通过模拟自然界生物进化过程来求解优化问题的一类自组织、自适应的人工智能技术。它主要基于达尔文的自然进化论和孟德尔的遗传变异理论。多数遗传算法的应用是处理一个由许多个体组成的群体,其中每个个体表示问题的一个潜在解。对个体存在一个评估函数来评判其对环境的适应度。为反映适者生存的思想,算法中设计一个选择机制,使得:适应度好的个体有更多的机会生存。在种群的进化过程中,主要存在两种类型的遗传算子:杂交和变异。这些算子作用于个体对应的染色体,产生新的染色体,从而构成下一代种群中的个体。该过程不断进行,直到找到满足精度要求的解,或者达到设定的进化代数。显然,这样的思想适合于现实世界中的一大类问题,因而具有广泛的应用价值。遗传算法的每一次进化过程中的,各个体之间的操作大多可以并列进行,因此,一个非常自然的想法就是将遗传算法并行化,以提高计算速度。本报告中试图得到一个并行遗传算法的框架,并考察并行化之后的一些特性。为简单起见(本来应该考虑更复杂的问题,如TSP 。因时间有些紧张,做如TSP 等复杂问题怕时间不够,做不出来,请老师原谅),考虑的具有问题是:对给定的正整数n 、n 元函数f ,以及定义域D ,求函数f 在D 内的最大值。 二、 串行遗传算法 1. 染色体与适应度函数 对函数优化问题,一个潜在的解就是定义域D 中的一个点011(,,...,)n x x x -,因此,我们只需用一个长度为n 的实数数组来表示一个个体的染色体。由于问题中要求求函数f 的最大值,我们可以以个体所代表点011(,,...,)n x x x -在f 函数下的值来判断该个体的好坏。因此,我们直接用函数f 作为个体的适应度函数。 2. 选择机制 选择是遗传算法中最主要的机制,也是影响遗传算法性能最主要的因素。若选择过程中适应度好的个体生存的概率过大,会造成几个较好的可行解迅速占据种群,从而收敛于局部最优解;反之,若适应度对生存概率的影响过小,则会使算法呈现出纯粹的随机徘徊行为,算法无法收敛。下面我们介绍在实验中所使用的选择机制。

人工智能之遗传算法求解01背包问题实验报告

人工智能之遗传算法求解0/1背包问题实验报告 Pb03000982 王皓棉 一、问题描述: 背包问题是著名的NP完备类困难问题, 在网络资源分配中有着广泛的应用,已经有很多人运用了各种不同的传统优化算法来解决这一问题,这些方法在求解较大规模的背包问题时,都存在着计算量大,迭代时间长的弱点。而将遗传算法应用到背包问题的求解,则克服了传统优化方法的缺点,遗传算法是借助了大自然的演化过程,是多线索而非单线索的全局优化方法,采用的是种群和随机搜索机制。 遗传算法(GA)是一类借鉴生物界自然选择和自然遗传机制的随机化的搜索算法,由美国J.Holland教授提出,其主要特点是群体搜索策略、群体中个体之间的信息交换和搜索不依赖于梯度信息。因此它尤其适用于处理传统搜索方法难于解决的复杂和非线性问题,可广泛应用于组合优化,机器学习,自适应控制,规划设计和人工生命领域。 GA是一种群体型操作,该操作以群体中的所有个体为对象。选择,交叉和变异是遗传算法的三个主要算子,他们构成了遗传算法的主要操作,使遗传算法具有了其它传统方法所没有的特性。遗传算法中包含了如下五个基本要素:1 .参数编码,2.初始群体的设置,3.适应度函数的设计, 4.遗传操作设计,5.控制参数设定,这个五个要素构成可遗传算法的核心内容。 遗传算法的搜索能力是由选择算子和交叉算子决定,变异算子则保证了算法能够搜索到问题空间的每一个点,从而使其具有搜索全局最优的能力.而遗传算法的高效性和强壮性可由Holland提出的模式定理和隐式并行性得以解释。 二、实验目的: 通过本实验,可以深入理解遗传算法,以及遗传算法对解决NP问题的作用。 三、算法设计: 1、确定种群规模M、惩罚系数 、杂交概率c p、变异概率m P、染色体长度n及最大 max. 进化代数gen x=1表 2、采用二进制n维解矢量X作为解空间参数的遗传编码,串T的长度等于n, i x=0表示不装入背包。例如X={0,1,0,1,0,0,1}表示第2,4,7示该物件装入背包, i 这三个物件被选入包中。

基于遗传算法的TSP问题解决

基于遗传算法的TSP问题解决 —余小欢B07330230 概述:TSP问题是一个经典的运筹学的组合优化问题,针对此问题,研究人员提出了个中各样的算法,主要有贪婪算法,遗传算法,混沌搜索算法等。在本文中分别用贪婪算法和遗传算法去解决30个城市的最短路径问题,并把两者得到了最优解进行比较,发现用遗传算法解决TSP问题非常具有优越性,同时在文章的最后提出了对此遗传算法进行改进的方向。 1.贪婪算法 x=[18 87 74 71 25 58 4 13 18 24 71 64 68 83 58 54 51 37 41 2 7 22 25 62 87 91 83 41 45 44]; y=[54 76 78 71 38 35 50 40 40 40 42 44 60 58 69 69 62 67 84 94 99 64 60 62 32 7 38 46 26 21 35]; a=zeros(30,30); for i=1:30 for j=1:30 a(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); %求取距离矩阵的值end a(i,i)=1000; %主对角线上的元素置为1000作为惩罚 end b=0; c=zeros(30); for j=1:30 [m,n]=min(a(:,j)); b=b+m; %得到的b值即为贪婪最佳路径的总距离 a(n,:)=1000; %已经选择的最小值对应的行的所有值置为1000作为惩罚 c(j)=n; end x1=zeros(30); y1=zeros(30); for t=1:30

x1(t)=x(c(t)); y1(t)=y(c(t)); end plot(x1,y1,'-or'); xlabel('X axis'), ylabel('Y axis'), title('ì°à·?·??'); axis([0,1,0,1]); axis([0,100,0,100]); axis on 用贪婪算法得出的最佳路径走遍30个城市所走的路程为449.3845km 其具体的路径图如下: 2.遗传算法 1主函数部分 clc; clear all;

遗传算法解决01背包问题

遗传算法解决01背包问题2015 ~2016 学年第二学期 学生姓名 专业 学号 2016年 6 月

目录 一:问题描述 (3) 二:遗传算法原理及特点 (3) 三:背包问题的遗传算法求解 (3) 1.文字描述 (3) 2.遗传算法中的抽象概念在背包问题的具体化 (3) 3.算法求解的基本步骤 (4) 四:算法实现 (4) 1.数据结构 (4) 2.部分代码 (5) 五:结论 (8) 六:参考文献 (8)

一、问题描述 0-1背包问题属于组合优化问题的一个例子,求解0-1背包问题的过程可以被视作在很多可行解当中求解一个最优解。 01背包问题的一般描述如下: 给定n个物品和一个背包,物品i的重量为Wi,其价值为Vi,背包的容量为C。问应如何选择合适的物品装入背包,使得背包中装入的物品的总价值最大。注意的一点是,背包内的物品的重量之和不能大于背包的容量C。在选择装入背包的物品时,对每种物品i只有两种选择:即装入背包或者不装入背包,不能讲物品i装入背包多次,也不能只装入部分的物品,称此类问题为0/1背包问题。 二、遗传算法原理及特点 遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法有着鲜明的优点:(1)遗传算法的操作对象是一组可行解,而非单个可行解;搜索轨道有多条,而非单条,因而具有良好的并行性.(2)遗传算法只需利用目标的取值信息,而无需递度等高价值信息,因而适用于任何规模,高度非线形的不连续多峰函数的优化以及无解析表达式的目标函数的优化,具有很强的通用性.(3)遗传算法择优机制是一种“软”选择,加上良好的并行性,使它具有良好的全局优化性和稳健性.(4)遗传算法操作的可行解集是经过编码化的(通常采用二进制编码),目标函数解释为编码化个体(可行解)的适应值,因而具有良好的可操作性与简单性. 三、背包问题的遗传算法求解 1、文字描述 0-1背包问题传统的解决方法有动态规划法、分支界限法、回溯法等等。传统的方法不能有效地解决0-1背包问题。在物品不是很多的时候用这些算法来处理背包问题效率上还是可以接受的,一旦物品过多(如50件物品)这些算法的效率就大打折扣了,因此采用一些智能的启发式搜索算法来处理就显得很有必要,遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。 2、遗传算法中的抽象概念在背包问题的具体化 (1)基因:0或1,代表相应的商品选还是不选。 (2)染色体:本实验中固定有50个商品,所以染色体就是50个基因序列,也就是40个0、1串,代表了一种往包里装商品的组合。一个染色体例:0111101101011011110101110101010101011110。 (3)群体:一定数量的基因个体组成了群体(population),群体中个体的数量叫做群体大小。本实验的背包问题中,种群大小为100,代表100个往包里装商品的组合。 (4)适应度:各个个体对环境的适应程度叫做适应度。本实验的背包问题中,每染色体个体的适应度为选入包中的商品的价值和。

遗传算法的原理及MATLAB程序实现

1 遗传算法的原理 1.1 遗传算法的基本思想 遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。 遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。这一过程循环执行,直到满足优化准则,最终产生问题的最优解。图1-1给出了遗传算法的基本过程。 1.2 遗传算法的特点 1.2.1 遗传算法的优点 遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点: 1. 遗传算法以控制变量的编码作为运算对象。传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。 2. 遗传算法具有内在的本质并行性。它的并行性表现在两个方面,一是遗传

遗传算法的0-1背包问题(c语言)

基于遗传算法的0-1背包问题的求解 摘要: 一、前言 组合优化问题的求解方法研究已经成为了当前众多科学关注的焦点,这不仅在于其内在的复杂性有着重要的理论价值,同时也在于它们能在现实生活中广泛的应用。比如资源分配、投资决策、装载设计、公交车调度等一系列的问题都可以归结到组合优化问题中来。但是,往往由于问题的计算量远远超出了计算机在有效时间内的计算能力,使问题的求解变为异常的困难。尤其对于NP 完全问题,如何求解其最优解或是近似最优解便成为科学的焦点之一。 遗传算法已经成为组合优化问题的近似最优解的一把钥匙。它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。 背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其 计算复杂度为 )2(O n ,传统上采用动态规划来求解。设w[i]是经营活动 i 所需要的资源消耗,M 是所能提供的资源总量,p[i]是人们经营活动i 得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。 二、问题描述 背包问题( Knapsack Problem)的一般提法是:已知n 个物品的重量(weight )及其价值(或收益profit )分别为0>i w 和0>i p ,背包的容量(contain )假设设为0>i c ,如何选择哪些物品装入背包可以使得在背包的容量约束限制之内 所装物品的价值最大? 该问题的模型可以表示为下述0/1整数规划模型: 目标函数:∑==n i i i n x c x x x f 1 21),,(max Λ ????? =∈≤∑=) ,2,1(}1,0{t .s 1n i x p x w i n i i i i Λ (*)

并行遗传算法

1、遗传算法(GA)概述 GA是一类基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解。生物遗传物质的主要载体是染色体,在GA中同样将问题的求解表示成“染色体Chromosome”,通常是二进制字符串表示,其本身不一定是解。首先,随机产生一定数据的初始染色体,这些随机产生的染色体组成一个种群(Population),种群中染色体的数目称为种群的大小或者种群规模。第二:用适值度函数来评价每一个染色体的优劣,即染色体对环境的适应程度,用来作为以后遗传操作的依据。第三:进行选择(Selection),选择过程的目的是为了从当前种群中选出优良的染色体,通过选择过程,产生一个新的种群。第四:对这个新的种群进行交叉操作,变异操作。交叉、变异操作的目的是挖掘种群中个体的多样性,避免有可能陷入局部解。经过上述运算产生的染色体称为后代。最后,对新的种群(即后代)重复进行选择、交叉和变异操作,经过给定次数的迭代处理以后,把最好的染色体作为优化问题的最优解。 GA通常包含5个基本要素:1、参数编码:GA是采用问题参数的编码集进行工作的,而不是采用问题参数本身,通常选择二进制编码。2、初始种群设定:GA随机产生一个由N个染色体组成的初始种群(Population),也可根据一定的限制条件来产生。种群规模是指种群中所含染色体的数目。3、适值度函数的设定:适值度函数是用来区分种群中个体好坏的标准,是进行选择的唯一依据。目前主要通过目标函数映射成适值度函数。4、遗传操作设计:遗传算子是模拟生物基因遗传的操作,遗传操作的任务是对种群的个体按照它们对环境的适应的程度施加一定的算子,从而实现优胜劣汰的进化过程。遗传基本算子包括:选择算子,交叉算子,变异算子和其他高级遗传算子。5、控制参数设定:在GA的应用中,要首先给定一组控制参数:种群规模,杂交率,变异率,进化代数等。 GA的优点是擅长全局搜索,一般来说,对于中小规模的应用问题,能够在许可的范围内获得满意解,对于大规模或超大规模的多变量求解任务则性能较差。另外,GA本身不要求对优化问题的性质做一些深入的数学分析,从而对那些不太熟悉数学理论和算法的使用者来说,无疑是方便的。 2、遗传算法的运行机理: 对GA运行机理的解释有两类: 一是传统的模式理论;二是1990 年以后发展起来的有限状态马尔可夫链模型。 (1)模式理论:由Holland创建,主要包括模式定理,隐并行性原理和积木块假说三部分。模式是可行域中某些特定位取固定值的所有编码的集合。模式理论认为遗传算法实质上是模式的运算,编码的字母表越短,算法处理一代种群时隐含处理的模式就越多。当算法采用二进制编码时,效率最高,处理规模为N的一代种群时,可同时处理O(N3)个模式。遗传算法这种以计算少量编码适应度而处理大量模式的性质称为隐并行性。模式理论还指出,目标函数通常满足积木块假说,即阶数高,长度长,平均适应度高的模式可以由阶数低,长度短,平均适应度高的模式(积木块)在遗传算子的作用下,接合而生成。而不满足积木块假说的优化问题被称为骗问题(deceptive problem)。模式理论为遗传算法构造了一条通过在种群中不断积累、拼接积木块以达到全局最优解的寻优之路。但近十多年的研究,特别是实数编码遗传算法的广泛应用表明,上述理论与事实不符。 (2)有限状态马尔可夫链模型:由于模式理论的种种缺陷,研究者开始尝试利用有限状态马尔可夫链模型研究遗传算法的运行过程。对于遗传算法可以解决的优化问题,问题的可行域都是由有限个点组成的,即便是参数可以连续取值的问题,实际上搜索空间也是以要求精度为单位的离散空间,因此遗传算法的实际运行过程可以用有限状态马尔可夫链的状态转移过程建模和描述。对于有m 个可行解的目标函数和种群规模为N的遗传算法,N 个个体共有种组合,相应的马尔可夫模型也有个状态。实际优化问题的可行解数量m 和种群规模

遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。 一.进化论知识 作为遗传算法生物背景的介绍,下面内容了解即可: 种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。 个体:组成种群的单个生物。 基因 ( Gene ) :一个遗传因子。 染色体 ( Chromosome ):包含一组的基因。 生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。 遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。 简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。 二.遗传算法思想 借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。 举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中

相关文档
最新文档