离子液体负载铂族金属催化剂综述

离子液体负载铂族金属催化剂综述
离子液体负载铂族金属催化剂综述

负载型镍催化剂的制备

负载型镍催化剂的制备文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

科技论文检索与写作作业 ——负载型镍催化剂的制备 一、制备的目的和意义 1.了解并掌握负载型金属催化剂的原理和制备方法。 2.制备一种以金属镍为主要活性组分的固体催化剂。 意义:催化剂在现代化学工业中占有重要地位。镍基催化剂是一种常用的经典催化剂,具有催化活性高、稳定性好和价格较低等优点,已被广泛应用于加氢、脱氢、氧化脱卤、脱硫等转化过程。 二、制备方法、 1.一种负载型镍催化剂的制备方法,其特征在于,具体包括如下步骤:(1)按钛酸丁酯与无水乙醇体积比为1:1.5~1:3的比例将钛酸丁酯与无水乙醇混合,强力搅拌后得到混合溶液,按无水乙醇与醋酸的体积比为10:1~30:1的比例在混合溶液中加入醋酸形成溶液A;(2)按去离子水与无水乙醇的体积比为1:5~1:10的比例将去离子水与无水乙醇混合得到混合溶液,在混合溶液中加入稀盐酸或稀硝酸调节混合溶液的pH为2~5得到溶液B;(3)按溶液B与溶液A的体积比为1:1~1:4的比例将B溶液加入到A溶液中,然后按钛酸丁酯和十六烷基三甲基溴化铵的摩尔比为1:0.05~1:0.3的比例加入十六烷基三甲基溴化铵形成钛溶胶;(4)按γ?Al2O3和钛酸丁酯的摩尔比为1:0.05~1:0.8的比例在步骤(3)中得到的钛溶胶中加入γ?Al2O3,然后按钛酸丁酯与去离子水的体积比为1:0.5~1:2的比例加入去离子水,静置1~5h后干燥、焙烧得到TiO2?Al2O3复合载体;(5)将 TiO2?Al2O3复合载体于浓度为0.05~1mol/L的硝酸镍水溶液中浸渍4~24h,充分搅拌后干燥、焙烧、通氢还原,得Ni/TiO2?Al2O3负载型镍催化剂。

钯的催化剂种类及其应用

钯的催化剂种类及其应用 钯的催化剂种类及其应用 2011年11月03日 钯催化剂在有机加氢中通常兼有良好的活性和选择性,正是这一特性,使钯催化剂在有机催化加氢中极具实用价值。通常钯催化剂分有载体和无载体两类。其中无载体的钯催化剂主要有钯黑、胶态钯、氧化钯和氢氧化钯等。基本上都用于各种有机催化加氢。钯催化剂的载体,本身具有助催化作用,还能调变催化加氢的选择性。相对于无载体钯催化剂,有载体的钯催化剂价格更实惠。 1. 钯/碳酸钙催化剂 钯/碳酸钙催化剂特点是用稀醋酸铅来处理钯/碳酸钙。由于铅的毒性作用,使钯催化剂加氢活性减弱,加氢选择性加强。还可以加喹啉进一步提高其加氢选择性。它能控制反应固定在碳-碳三键加氢成碳-碳双键这一步上,也能使共轭二烯选择加氢成单烯。 1.1. 钯/碳酸钙催化剂的实验室制备 将50ml 5%的氯化钯水溶液加入50g碳酸钙和400mL水的混合液中,室温下搅拌5 min,80?下搅拌10min,然后通氢气。还原氯化钯为钯。过滤并水洗得钯/碳酸钙。将5g醋酸铅溶于100mL水中,然后浸渍钯/碳酸钙。20?搅拌10min。沸水浴上加热并搅拌40min。滤出、水洗后40?-50?真空干燥得钯/碳酸钙催化剂。 1.2 钯/碳酸钙催化剂的应用 前苏联索科耳斯基等表明:在气相中,用被铅毒化的钯/碳酸钙催化剂可非常顺利地使乙炔加氢成乙烯。在40?-60?和C2H2?H2=1:2 时,乙烯产率达98%-100% 。

另外,由于钯在常态下对羰基和芳环基催化加氢无活性,故钯/碳酸钙催化剂能实现选择性加氢。例如:用被铅毒化的钯/碳酸钙催化剂。催化加氢去氢沉香醇成为沉香醇,该反应炔基加氢停留在烯基这一步上,而醇基并不加氢。 开发钯/碳酸钙催化剂可参考钯、碳酸钙、醋酸铅的质量比例。工艺过程能重新设计。试验室制备中催化剂真空干燥主要考虑到单质钯加热易吸附氧,催化剂活性会下降。真空干燥工业生产不现实,可设计成在惰性气氛中干燥。沸水浴上加热搅拌可设计成在红外或微波中加热。载体也可设计成氧化铝或氧化铝球。也有用醋酸锌作毒物处理钯/ 碳酸钙催化剂的。现在工业中运用较多的是钯载于氧化铝上,用负载铅作毒物。用作催化乙炔选择加氢成乙烯,丙炔选择加氢成丙烯、丁二烯,丁炔选择加氢成丁烯等。 2. 钯/碳催化剂 该催化剂的特点是制备工艺流程较简洁,但使用技术要求很高。在某 碳催化剂用95%乙醇洗净凉干,再用其它溶液洗后能套用3-4次。些反应中,钯/ 2.1. 钯/碳催化剂的实验室制备 根据计算钯在催化剂中的百分含量,将固体氯化钯溶于浓盐酸和水,再用水稀释,浸渍炭,搅拌,蒸干。使用时用氢气还原。一般钯/碳催化剂含钯3%-5% 。 钯/碳催化剂用于腈加氢时,要用硼氢化钠还原附载在炭上的氯化钯,制成钯/碳催化剂。这是因为金属硼化物对腈加氢有良好的活性和选择性。 2.2. 钯/碳催化剂的应用 钯/碳催化剂可用于吡啶加氢制哌啶。将吡啶和醛或酮混合,用钯/碳催化剂加氢,可制得收率很好的N-烷基哌啶。钯/碳(5%钯)催化剂,在乙醇中对芳香族硝基化合物进行加氢时,添加烷基环己烯或脂肪族酮可获得良好效果。用钯/碳(5%钯)

钯-碱金属化合物负载型催化剂及其制备方法和应用

钯-碱金属化合物负载型催化剂及其制备方法和应用 2016-07-20 13:21来源:内江洛伯尔材料科技有限公司作者:研发部 钯催化剂的 XRD 卤代芳胺是一类重要的有机合成中间体,广泛应用于染料、医药、农药、增塑剂、纺织、香料、合成纤维、印染助剂、液晶材料、螯合剂以及聚合物、阻燃剂等有机精细化学品的合成。卤代芳胺的生产方法主要由相应的卤代芳香硝基化合物还原制取。催化加氢还原法因其具有操作过程简单、产品收率高、产品品质好和能耗低等优势而备受关注,是一条环境友好的绿色工艺。但是,卤代芳香硝基化合物加氢还原生成卤代芳胺过程中易发生氢解脱卤副反应造成产品选择性下降。因此,催化加氢还原法的关键问题是如何抑制脱卤副反应的发生。目前,抑制脱卤主要有四条途径:(1) 添加脱卤抑制剂法。(2) 调变活性组分- 助剂- 载体的相互作用。(3) 制备纳米金属胶体。(4) 改变活性组分粒径大小。现有的催化剂存在两大缺点:(1) 添加其它金属助剂或使用氧化物载体,卤代芳胺选择性低,抑制脱卤效果不佳。同时,金属助剂和氧化物载体的加入增加了贵金属活性组分回收再利用过程的分离难度,降低了金属回收率,加重了富含重金属的回收 废液的环境污染;(2) 添加抑制剂、增大活性组分粒子尺寸等强化抑制脱卤效果势必减弱了催化剂的催化加氢活性,降低了加氢反应速率,循环使用过程条件苛刻。同时,降低了贵金属活性组分的有效利用率。 本方法是一种钯/ 碱金属化合物负载型催化剂及其制备,所述催化剂由载体和负载在载体上的活性组分组成,所述载体为活性炭,所述活性组分为单质钯和碱金属化合物,基于载体活性炭的质量,单质钯的负载量为0.25wt%~15.0wt%,碱金属化合物中碱金属元素的理论负载量为0.01wt%~ 5.0wt%;本发明催化剂可应用于卤代芳香硝基化合物和/ 或芳香硝基化合物的催化加氢反应;本发明催化剂催化活

高分子金属配合物催化剂的合成(合成化学报告)解析

高分子金属配合物催化剂的合成 摘要:催化剂可以分为均相催化剂和多相催化剂。均相催化剂如金属配合物、有机金属配合物在最近几十年内受到催化科学界的广泛关注。新的均相催化体系的应用使得一些新的生产工艺应运而生。这些工艺操作条件温和,选择性高。然而,在大规模生产中均相催化剂存在着难回收、不稳定、有腐蚀性的缺点。大多数的多相催化剂在高温、高压下才能较好地发挥催化作用,并且其选择性、活性较弱。因此,人们开始设想通过高分子负载的方法转化均相催化剂使之兼具二者的优点。本文主要介绍高分子金属催化剂的合成、高分子效应及其应用。 关键词:催化剂;配合物;高分子;合成;高分子效应 1、简介 近几十年来,均相催化剂由于其较高的催化活性受到了科学界和工业界的广泛重视与应用,但均相反应的催化剂一般来说存在价格昂贵、易流失、较难回收操作等缺点;另一方面,均相催化剂往往要使用重金属离子,这样既会对产物和反应后处理过程造成污染,又使得反应的催化剂难于回收,导致均相催化剂在有机合成和工业上的应用受到了很大的限制。多相催化剂虽然回收简单,但是,机理研究比价复杂,选择性和活性较低。因此寻找能够重复使用且回收操作简单的催化剂成为有机催化反应领域的研究热点之一。1963年,Merrifield和Letstinger等人[1, 2]首次将聚苯乙烯引入到多肽和低聚糖的合成中,开创了高分子化合物在有机合成中应用的先例。近年来,高分子负载型催化剂得到了迅猛发展。高分子催化剂集合了多相催化剂、均相催化剂的优点[3]。其具有较高的催化活性、立体选择性、较好的稳定性和重复使用性能,并且后处理简单,在反应完成后可方便地借助固-液分离方法将高分子催化剂与反应体系中其他组分分离、再生和重复使用,可降低成本和减少环境污染[4]。杨小暾与江英彦[3]指出,若将多相催化剂、均相催化剂视为第一代、第二代催化剂,那么高分子金属络合物催化剂就是第三代催化剂。 研究表明高分子不仅是负载金属催化剂的惰性载体,而且还可以对催化剂的活性中心进行修饰,并使催化剂的结构发生变化,形成通常在小分子配合物中很难看到的特殊结构,从而影响催化剂的催化反应过程,即同种金属使用不同的载体所得到的化剂其催化活性可能相差很大。此为高分子的基体效应。本文主要介绍高分子金属催化剂的合成、

负载型钯催化剂在Heck反应中的应用

万方数据

万方数据

万方数据

负载型钯催化剂在Heck反应中的应用 作者:陶荣哨, 孙莉, 汪祝胜, 胡卫雅, 裴文 作者单位:浙江工业大学化学工程与材料学院,杭州,310014 刊名: 化工生产与技术 英文刊名:Chemical Production and Technology 年,卷(期):2013,20(4) 参考文献(24条) 1.Mizoroki T.Mori K.Ozaki A Arylation of olefin with aryl iodide catalyzed by palladium 1971 2.Heck R F.Nolley J P Palladium-catalyzed vinylic hydrogen substitution reactions with aryl,benzyl,and styryl halides 1972(14) 3.Farina V High-turnover palladium catalysts in crosscoupling and Heck chemistry:a critical overview 2004 4.Miyazaki F.Yamaguchi K.Shibasaki M The synthesis of a new palladacycle catalyst.Development of a high performance catalyst for Heck reactions 1999 https://www.360docs.net/doc/7d8132046.html,gasi M.Moggi P Anchoring of Pd on silica functionalized with nitrogen containing chelating groups and applications in catalysis 2002(82/183) 6.Steel P G.Teasdale C W T Polymer supported palladium N-heterocyclic carbine complexes:long lived recyclable catalysts for cross coupling reactions 2004 7.Corma A.Garcia H.Leyva A Basic zeolites containing palladium as bifunctional heterogeneous catalysts for the Heck reaction[外文期刊] 2003(01) 8.Artok L.Bulut H Heterogeneous suzuki reactions catalyzed by pd(0)-y zeolite[外文期刊] 2004(20) 9.Tonks L.Anson M S.Hellgardt K Palladium catalysed Heck reactions and allylic substitution reactions using glass bead technology 1997(24) 10.F Zhao.B M Bhanage.M Shirai Heck reactions of iodobenzene and methyl acrylate with conventional supported palladium catalysts in the presence of organic and/or inorganic bases without ligands 2000(06) 11.C P Mehnert.D W Weaver.J Y Ying Heterogeneous Heck catalysis with palladium-grafted molecular sieves 1998 12.M Wagner.K K(o)hler.L Djakovitch Heck reactions catalyzed by oxide-supported palladium-structure-activity relationships 2000 13.Andersson C M.Karabelas K.Hallberg A Palladium/ Phosphinated polystyrene as a catalyst in the Heck arylation.a comparative study 1985 14.刘蒲.王岚.李利民壳聚糖钯(0)配合物催化Heck芳基化反应研究[期刊论文]-有机化学 2004(01) 15.Belen Altava.M Isabel https://www.360docs.net/doc/7d8132046.html,ardo Palladium Nmethylimidazolium supported complexes as efficient catalysts for the Heck reaction 2006 16.G Singh.S Bail.Ajai K Singh Palladium(0) complexes of (P,P) and(P,N) ligands immobilized on silica gel as catalysts in selective Heck type carbon-carbon coupling reactions 2007 17.胡国辉.周健民.杨育林气相法二氧化硅负载胺-钯配合物的制备及对Heck反应催化性能的研究[期刊论文]-浙江大学学报(理学版) 2009(05) 18.Fengyu Zhao.Masayuki Shirai Palladium-catalyzed homogeneous and heterogeneous Heck reactions in NMP and water-mixed solvents using organic,inorganic and mixed bases 2000 19.裴文.董华水相中Pd/C催化的杂环芳卤的还原偶联反应研究[期刊论文]-有机化学 2008(05) 20.周健民.杨育林.赵岚MCM-41固载胺钯配合物的制备及对Heck反应催化性能的研究[期刊论文]-有机化学 2008(05) 21.唐中民.赖国华.周仁贤MCM-41分子筛固载腈钯配合物的合成及其催化Heck偶联反应的性能[期刊论文]-化学通报(印刷版) 2009(09) 22.K K(o)hler.W Magner.L Djakovitch Supported palladium as catalyst for carbon-carbon bond construction (Heck reaction) in organic synthesis 2001

负载型镍催化剂的制备

科技论文检索与写作作业 ——负载型镍催化剂的制备 一、制备的目的和意义 1. 了解并掌握负载型金属催化剂的原理和制备方法。 2. 制备一种以金属镍为主要活性组分的固体催化剂。 意义:催化剂在现代化学工业中占有重要地位。镍基催化剂是一种常 用的经典催化剂,具有催化活性高、稳定性好和价格较低等优点,已被广泛应用于加氢、脱氢、氧化脱卤、脱硫等转化过程。 二、制备方法、 1.一种负载型镍催化剂的制备方法,其特征在于,具体包括如下步骤:(1)按钛酸丁酯与无水乙醇体积比为1:1.5~1:3的比例将钛酸丁酯与无水乙 醇混合,强力搅拌后得到混合溶液,按无水乙醇与醋酸的体积比为 10:1~30:1的比例在混合溶液中加入醋酸形成溶液A;(2)按去离子水与无 水乙醇的体积比为1:5~1:10的比例将去离子水与无水乙醇混合得到混合溶液,在混合溶液中加入稀盐酸或稀硝酸调节混合溶液的pH为2~5得到溶液B;(3)按溶液B与溶液A的体积比为1:1~1:4的比例将B溶液加入到A溶液中,然 后按钛酸丁酯和十六烷基三甲基溴化铵的摩尔比为1:0.05~1:0.3的比例加入 十六烷基三甲基溴化铵形成钛溶胶;(4)按γAl2O3和钛酸丁酯的摩尔比为1:0.05~1:0.8的比例在步骤(3)中得到的钛溶胶中加入γAl2O3,然后按钛酸丁酯与去离子水的体积比为1:0.5~1:2的比例加入去离子水,静置1~5h后干燥、焙烧得到TiO2Al2O3复合载体;(5)将TiO2Al2O3复合载体于浓度为

0.05~1mol/L的硝酸镍水溶液中浸渍4~24h,充分搅拌后干燥、焙烧、通氢还原,得Ni/TiO2Al2O3负载型镍催化剂。 2.一种用于氨分解制氢的负载型镍催化剂,活性组分为Ni,载体为氧化硅、氧化铝或氧化钛;活性组份的质量百分含量为1-50%。其制备步骤为:将可溶性镍盐、pH值调节剂、沉淀剂、载体以及去离子水配成悬浊液;悬 浊液加热至70-110℃沉积60-300分钟;上述悬浮液降至20-30℃后并过滤,水洗涤、过滤;在80-120℃干燥18-24小时,400-900℃焙烧2-6小时;在氢气气氛,或者氢气和氦气的混合气气氛中,于400-900℃活化3-5小时,还 原制成负载型纳米镍催化剂。本发明催化剂对氨分解反应具有较高的活性,可以应用于氨分解制不含COx氢气的工艺,还可用于各种含氨气体的净化处理过程。 3.一种用于浆态床甲烷化负载型镍基催化剂重量百分比组成为: NiO10-40wt%;载体56-90wt%;助剂为0-4wt%。配制浓度为0.5~1.3g/ml 的硝酸镍与助剂的可溶性盐溶液,依次向其中加入催化剂载体和可溶性有机燃料,搅拌条件下浸渍6-24h,浸渍结束后将溶液于60-90℃水浴条件下加 热浓缩,或直接在300-700℃加热点燃,将燃烧后余下粉末收集,研磨,造粒,在固定床500-700℃用还原气进行还原2-6h,即得到负载型镍基催化剂。本发明具有浆态床甲烷化工艺,且催化性能稳定好,可大规模工业化的优点。 4.一种用于α-蒎烯加氢反应负载型镍催化剂的制备方法和应用,该负 载型镍催化剂的制备工艺步骤包括:在钛酸丁酯中加入无水乙醇后强力搅拌,然后加入醋酸,充分搅拌形成溶液A;将去离子水与无水乙醇混合后调节pH 值得到形成溶液B;把B溶液滴加到A溶液中,加入十六烷基三甲基溴化铵

【CN110003458A】一种负载型固体碱催化剂及其应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910355922.7 (22)申请日 2019.04.29 (71)申请人 中国科学院成都有机化学有限公司 地址 610041 四川省成都市高新区创业东 路高新大厦 (72)发明人 王公应 申小龙 刘绍英 李晨  王庆印  (74)专利代理机构 成都睿道专利代理事务所 (普通合伙) 51217 代理人 潘育敏 (51)Int.Cl. C08G 64/30(2006.01) (54)发明名称一种负载型固体碱催化剂及其应用(57)摘要本发明公开了一种负载型固体碱催化剂及其应用,所述催化剂用于制备异山梨醇基聚碳酸酯及其衍生物,所述催化剂包括载体,以及负载于所述载体表面的碱金属化合物;所述载体为碱土金属氧化物或/和稀土金属氧化物,所述碱金属化合物为碱金属的氢氧化物、碱金属的碳酸盐、碱金属的卤化物、碱金属的硝酸盐、碱金属的醋酸盐中的一种。基于上述的负载型固体碱催化剂催化,以碳酸二苯酯和二羟基化合物为原料,经酯交换反应和缩聚反应合成异山梨醇基聚碳酸酯及其衍生物。该催化剂适用于多种聚碳酸酯的合成,具有很好的普适性;合成的聚碳酸酯材料具有较高的产率和品质,可显著提高企业经济 效益。权利要求书1页 说明书8页CN 110003458 A 2019.07.12 C N 110003458 A

权 利 要 求 书1/1页CN 110003458 A 1.一种负载型固体碱催化剂,其特征在于:所述催化剂包括载体,以及负载于所述载体表面的碱金属化合物;所述载体为碱土金属氧化物或/和稀土金属氧化物,所述碱金属化合物为碱金属的氢氧化物、碱金属的碳酸盐、碱金属的卤化物、碱金属的硝酸盐、碱金属的醋酸盐中的一种。 2.根据权利要求1所述的负载型固体碱催化剂,其特征在于:所述碱金属化合物与所述载体的质量比为0.01~1:1。 3.根据权利要求1所述的负载型固体碱催化剂,其特征在于:所述碱金属的氢氧化物为氢氧化锂、氢氧化钠、氢氧化钾、氢氧化铯中的一种或多种的混合; 所述碱金属的碳酸盐为碳酸锂、碳酸钠、碳酸钾、碳酸铯中的一种或多种的混合; 所述碱金属的卤化物为卤化锂、卤化钠、卤化钾、卤化铯中的一种或多种的混合; 所述碱金属的硝酸盐为硝酸锂、硝酸钠、硝酸钾、硝酸铯中的一种或多种的混合; 所述碱金属的醋酸盐为乙酸锂、乙酸钠、乙酸钾、乙酸铯中的一种或多种的混合。 4.根据权利要求1所述的负载型固体碱催化剂,其特征在于:所述碱土金属氧化物为氧化镁、氧化钙、氧化钡、氧化锶中的一种或多种的混合; 所述稀土金属氧化物为氧化镧、氧化铈、氧化铕、氧化镱中的一种或多种的混合。 5.一种如权利要求1所述的负载型固体碱催化剂的制备方法,其特征在于:包括, 将所述碱金属化合物配置成水溶液,再将所述载体浸没于所述水溶液中,混合均匀,然后在60℃~120℃下蒸发干燥,得到前驱体,将所述前驱体于80℃~900℃下焙烧0.5~24h,得所述催化剂。 6.一种异山梨醇基聚碳酸酯及其衍生物的制备方法,其特征在于,基于如权利要求1或5所述的催化剂,以碳酸二苯酯和二羟基化合物为原料,经酯交换反应和缩聚反应合成异山梨醇基聚碳酸酯及其衍生物。 7.根据权利要求6所述的异山梨醇基聚碳酸酯及其衍生物的制备方法,其特征在于,所述催化剂与所述碳酸二苯酯质量比为0.001~5:100。 8.根据权利要求6所述的异山梨醇基聚碳酸酯及其衍生物的制备方法,其特征在于,所述酯交换反应的温度为80℃~200℃,反应体系的气压为1.01×105Pa,反应时间0.5h-5h;所述缩聚反应的温度为200℃~280℃,反应体系的气压大于0Pa小于等于5×102Pa,反应时间为0.5h-6h。 9.根据权利要求6所述的异山梨醇基聚碳酸酯及其衍生物的制备方法,其特征在于:所述二羟基化合物为乙二醇、1,2-丙二醇、1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、新戊二醇、1,6-己二醇、1,3-己二醇、1,7-庚二醇,2,2'-氧代二乙醇、一缩二乙二醇、二缩三乙二醇、聚四氢呋喃、1,3-环戊二醇、1,4-环己二醇、1,4-环己二甲醇、1,10-葵二醇、2, 2,4,4-四甲基-1,3-环丁二醇、异山梨醇、对苯二甲醇、三环葵烷二甲醇、双酚A和4,4-(9-芴)二苯酚中的一种或多种。 10.一种异山梨醇基聚碳酸酯及其衍生物,其特征在于:由权利要求6-9任一所述的异山梨醇基聚碳酸酯及其衍生物的制备方法制得。 2

关于高分子负载催化剂的研究进展

关于高分子负载催化剂的研究进展 陈凯高材1301 摘要:高分子催化剂作为功能高分子的重要一个分支,具有稳定性高、溶剂适用性广、易于产物分离纯化、对环境影响小、易从反应体系中分离回收和重复使用等优点,受到人们极大的重视。本文以高分子负载催化剂的结构,应用等为线索,着重介绍高分子负载金属络合物催化剂,可溶性高分子金属络合物的优缺点及其研究进展,并作出了总结与展望。 关键词:高分子负载催化剂金属络合物结构应用 1.引言: 近几十年来,均相催化反应得到很大的发展,但这些均相反应的催化剂一般来说存在价格昂贵、反应活性低、易流失、较难回收操作等缺点;另一方面,均相催化剂往往要使用重金属离子,这样既会对产物和反应后处理过程造成污染,催化剂又难于回收,总的合成效率也大为降低,因此寻找能够重复使用且回收操作简单的催化剂或配体就成为有机催化反应领域的研究热点之一。自1963年R.B.Merrifield和R.Letziger等人首次将聚苯乙烯引入到多肽和低聚糖的合成中,开创了高分子化合物在有机合成中应用的先例,随之聚合物试剂的研究和在有机合成中的应用得到了很大的发展。其中高分子催化剂更受人们的重视。高分子催化剂又叫聚合物催化剂,它是聚合物试剂中的一类,也是功能高分子的一个重要分支。将具有催化活性的金属离子或金属配合物以化学作用或物理作用方式固定于聚合物载体上所得到的具有催化功能的高分子材料称为高分子负载金属或金属络合物催化剂,简称高分子负载催化剂。高分子负载催化剂由于负载高分子的特殊性,具有:1.可以简化反应步骤。2. 提高了催化剂的稳定性。3.腐蚀性小。4.易于分离,反应后的催化剂可以回收重复使用。4.催化的重现性高。同时,高分子载体不仅仅是作为金属活性中心的惰性支持体,由于其特殊的高分子效应,及其与催化中心、反应底物和产物之间的相互作用,可极大地影响催化剂的催化性能,提高反应的活性和选择性,这正是引起人们研究高分子负载催化剂的兴趣所在。本文以高分子负载催化剂的组成,结构,应用等为线索,着重介绍高分子负载金属络合物催化剂,可溶性高分子金属络合物的优点及其研究进展,并作出了总结与展望。 2 高分子负载金属络合物催化剂: 金属酶催化剂具有高效、专一和无污染等特点. 受金属酶催化作用的启发, 在金属有机化学中均相催化取得辉煌成就的背景下,20世纪60年代末,70年代初开始了设想通过高分子负载的方法, 转化均相催化剂为复相催化剂, 使之兼具二者的优点和避免相互缺点的探索。根据高分子负载催化剂作用方式的不同,将其分为物理吸附催化剂和化学键联催化剂。物理吸附催化剂是指催化活性物质通过物理吸附力直接吸附在高分子上;化学键联催化剂是通过化学键的作用与高分子联接在一起。由于物理吸附催化剂稳定性较差,在使用过程中金属离子或配合物容易流失,高分子骨架或其配合物功能基团也会被破坏,有时金属离子还会形成微晶,因此该类催化剂回收次数不理想。而化学键联催化剂不仅具有较高的稳定性,可回收重复使用多次,而且还具有较高的催化效率,成为高分子负载催化剂的主要研究方向。化学键联的高分子负载催化剂的合成方法主要有以下3种类型:(1) 通过有机反应先对高分子进行官能化,形成新生官能团,然后再与催化活性中心连接。(2)通过具有催化活性单体共聚形成高分子负载催化剂,可以通过控制聚合的条件,以得到合适的孔径、粒度、强度的凝胶或粉末。(3) 高分子骨架中已具备有效官能团,可以通过与催化剂前体进行亲核取代或亲电加成等反应,直接将催化活性物质通过共价键链接到高分子上。 高分子负载催化剂与传统小分子催化剂相比具有如下特点:简化操作过程;活性高;易与

高分子综述(改版)

燕山大学 本科毕业设计(论文)文献综述 课题名称:高分子催化剂 课题性质: 学院(系):材料学院 专业:材料物理与化学 年级:2014级 指导教师:李青山 学生姓名:徐冬阳 2014 年10 月5 日

摘要 在生物体中的酶具有令人向往的功能,它都能在温和的条件下进行各种化学反应,并具有高度的选择性。模拟酶的工作中,一是想模拟酶的结构,一是想模拟酶的功能。高分子催化剂主要想模拟酶的功能。酶具有很高的催化活性及选择性。高分子催化剂能够提高反应速度,但这还不够。我们力求缩短反应时间不如缩短分离和提纯的时间更为合算,这就必须提高催化剂的选择性。与其他非生物催化剂不同的是,酶具有高度的专一性,只催化特定的反应或产生特定的构型。由于酶高效性:酶的催化效率比无机催化剂更高;专一性:一种酶只能催化一种或一类底物;多样性:酶的种类很多;温和性:酶催化的化学反应一般是在较温和的条件下进行的;活性可调节性:包括抑制剂和激活剂调节、反馈抑制调节、共价修饰调节和变构调节等;易变性,在工业和人们的日常生活中的应用也非常广泛。有些酶的催化性与辅助因子有关。近来更注意高分子催化剂选择性的研究。 关键词:酶高分子催化剂选择性

一、前言: 纵观近百年来,工业催化剂发展历程,石油炼制,石油化工,精细化工和合成氨等广义的化学工业发展都离不开催化剂。可以预期,进入新世纪后,环境保护和人类可持续发展同样离不开催化剂。新世纪开发的催化剂和催化工艺,除用以改造传统工艺外,更重要的是开拓其在以天然气为基础的C1化工、烷烃化学、精细与专用化学品生产等领域的应用。从长远看,还包括各种廉价生物质在内的再生资源利用。展望未来,除传统催化工艺将获得新发展外,催化剂和催化工艺还将在新能源和新资源的开发利用、生物工程技术发展和环保新领域中起关键作用,而且催化剂还将为人类创造一个“舒适、安全、清洁、优美”的环境,作出新贡献。 催化剂工业发展对策与建议分析:(1)我国石油化工催化剂的发展必须继续坚持探索、研究、开发、推广并重的思路,不断推进催化剂更新换代。(2)抓住我国新催化材料和新催化剂在石油化工应用研究领域里取得的新的技术生长点和创新点,组织力量,继续努力,取得新突破和新发展。(3)做到研究单位、生产厂和用户紧密结合,科、工、贸、产、学、研,紧密结合,共同推进催化技术发展。(4)组织各种技术小组,深入企业做好售前售后服务,帮助用户增加经济效益,依靠我们的技术优势积极拓展国际市场份额。(5)强化制备工艺、设备和控制手段方面的研究,努力降低物耗、能耗,提高产品收率。(6)转变环保观念,由传统的末端控制和治理转为全过程控制,从单纯的花钱治理向节能降耗、减少污染要效益;大力研究开发环保事业需要的各类催化技术和催化剂,开拓环保催化产业;研究开发有利环境的石油化工催化剂及成套生产工艺技术,减少或避免二次污染,提高原材料、水、能源的使用效率,减少污染物产生量和排放量。 二、课题国内外现状: 催化剂是可以加速化学反应的物质。化学反应若要发生,则反应物分子之间必须有足够能量的发生碰撞以形成活性复合物或过渡态复合物,这个能量就是活化能。而催化剂能够提供一个较低的活化能,因此加速了化学反应的发生。和未添加催化剂的反应的一步实现原理相比,催化反应包含了许多种化合物与过渡态复合物[1]。 催化技术对于目前乃至未来的能源、化学反应、环境工业、石化工业都是至关重要的。原油、煤和天然气向燃料和化学原料的转化,大量石油化工和化学产品的生产,以及CO、NO、碳氢化合物排放物的控制,全都依赖于催化技术。此外,催化剂还是燃料电池电极的必要组分——无论电极使用的是固体氧化物离子还是聚合物质子电解液[2]。催化技术的发展、催化剂的改进和新催化剂的成功开发, 往往会带动已有工艺的改进和新工艺的诞生。据统计,85%以上的化学反应都与催化反应有关[3]。目前工业上采用的催化剂大多为金属、金属盐和金属氧化物等多相催化剂, 其优点是催化性能较稳定, 使用温度比较广, 容易回收重复使用, 但催化活性较低, 反应常常需要高温、高压条件, 而且副反应较多。最近几十年, 发展了以有机金属络合物为主的均相催化剂, 为化学工业带来革命性进步。这种催化剂分散度高, 活性中心均一, 结构明确, 催化剂活性和选择性都较高, 反应可以在很温和的条件下进行[4]。近年来,随着科学技术的突飞猛进,合成了许多具有独特功能的高分子材料。其中,高分子催化剂在化学工业中初露头角,显示许多优良的性能,将有可能却带无极催化剂。高分子催化剂就是高分子化的催化剂,催化剂在高分子上,高分子是载体,因此有时也称负载催化剂。 最早报道的高分子催化剂是Haag[5-7] 等在1969 年采用聚苯乙烯磺酸树脂负载的阳离子金属络合物,并证明可用于氢化醛化反应到了七十年代后期几乎所有的小分子都被负载在有机和无机高分子上, 这些高分子催化剂是用带有配位原子N,S,P,O等的高分子作为配位体与过度金属形成络合物在这方面发表了许多综述和专著。高分子催化剂是一种对化学反应具有催化作用的高分子。 是一种高活性、高选择性的天然高分子催化剂,但由于是水溶性的,故在工业应用上受

碳负载钯催化剂的制备

碳负载钯催化剂的制备 2016-07-11 13:22来源:内江洛伯尔材料科技有限公司作者:研发部 负载型钯碳催化剂的制备 负载型贵金属催化剂具有优异的催化性能,在石油化工、制药、环保、农药等各种行业领域得到了广泛的应用。催化性能优异的负载型钯催化剂在结构上应具有以下的特点:1) 钯纳米粒子的粒径应在纳米尺度,表面所暴露出的活性位多;2) 催化剂载体比表面积大,活性组分在载体表面具有良好的分散性;3) 钯纳米粒子与催化剂载体之间存在较强的相互作用,避免钯纳米粒子在使用过程中发生在载体表面的迁移、团聚长大。催化剂的性能与催化剂的结构密切相关。具有同样组成和含量的负载型贵金属纳米催化剂,由于催化剂结构上的差异常常导致催化剂在活性、选择性和稳定性等方面存在极大的差异。目前,制备负载型钯碳催化剂的主要方法包括沉淀- 沉积法、浸渍法和化学还原法等。通过上述传统方法可以有效的将钯纳米粒子负载于多种具有高比表面积的催化剂载体上,但由于钯纳米粒子与催化剂载体之间较弱的相互作用,在实际催化应用过程中,钯纳米粒子在载体表面上极易发生迁移、团聚长大,造成催化剂在活性、选择性和稳定性等性能方面的快速下降,甚至使催化剂完全失活。 为了解决上述问题,制备一种新型,高效的催化剂包括以下步骤: 1) :以氯钯酸钠合成贵金属钯纳米粒子水溶液; 2) :在贵金属钯纳米粒子水溶液加入到含有氨基官能团修饰的二氧化硅球水溶液中;在超声条件下,贵金属钯纳米粒子吸附于二氧化硅表面,形成钯/ 二氧化硅复合球; 3) :在步骤2) 得到的反应溶液中加入多巴胺,在碱性条件下,多巴胺在钯/二氧 化硅复合球表面发生聚合形成一层聚多巴胺壳层,形成钯/ 二氧化硅/ 聚多巴胺复合球; 4) :将步骤3) 得到的反应溶液进行离心、洗涤和干燥,得到固体产物; 5) :将步骤4) 得到的固体产物在惰性气体保护下进行高温碳化,温度为600℃以上。 6) :将步骤5) 得到的碳化后的固体产物浸入到碱性溶液中去除二氧化硅小球,即得负载型钯碳催化剂。

高分子催化剂材料认识

高分子催化剂 概念 高分子催化剂是一种对化学反应具有催化作用的高分子。生物体内的酶就 是一种高活性、高选择性的天然高分子催化剂,但由于是水溶性的,故在工业应用上受到限制,因而又发展了不溶于水的固定化酶——一种半合成的高分子催化剂。目前开发应用的合成高分子催化剂主要有离子交换树脂型催化剂和高分子金属催化剂两类。多以有机或无机高分子为骨架,在骨架上连有各种具有催化作用的功能基团。这类催化剂不仅具有很高的活性和选择性,而且比较稳定,分离、回收方便,可以重复使用,有的还具有光学活性等特殊的机能。目前已应用到各种有机反应、有机合成及某些高分子合成反应中。 分类 对化学反应具有催化作用的高分子。主要有天然高分子催化剂和合成高分子催化剂两大类。前者如酶,后者如固定化酶、模拟酶和高分子金属催化剂等。 酶 在生物体内所进行的化学反应,几乎全部是酶催化的。酶是由各种氨基酸联结组成的高分子,有的还含有金属离子(金属酶)。酶的特点是在常温常压下具有很高的活性和选择性。发酵工业早就使用酶作为催化剂。但是,酶是水溶性的,不容易回收再使用,因此在实际应用上受到很大的限制。为了克服这个缺点,到了20世纪50年代,人们开始研究把酶连接在合成高分子上的所谓固定化酶。 固定化酶利用酶的官能团(—NH2、—COOH、—SH、咪唑基、苯酚基等)与合成高分子的官能团进行反应可以制得。例如,含—C6H4NCS的聚丙烯酰胺与含—NH2的酶作用,可得如下的固定化酶(见结构式a): 固定化酶可用于催化氧化、还原、重排、水解、异构化等反应。例如,固定化氨基酰化酶可使N-酰化-D,L-氨基酸进行选择性水解。所产生的L-氨基酸可利用溶解度的差别,与N-酰化-D-氨基酸分离,此法已工业化。固定化酶属于半合成高分子催化剂。 模拟酶 60年代,关于模拟酶的合成高分子催化剂的研究逐渐活跃起来。酶的催化作用,与其具有光学活性的特殊高级结构和高分子链上的各种官能团所引起的分子

石墨烯负载钯催化剂及其制备方法和应用

石墨烯负载钯催化剂及其制备方法和应用 2016-08-05 12:54来源:内江洛伯尔材料科技有限公司作者:研发部 石墨烯负载钯催化剂 Heck 在1972 年发现了Heck 反应。从二十世纪末,Heck 反应已经逐渐发展成 为一种应用日益广泛的有机合成方法, 进入二十世纪后,Heck 反应一直是催化化学和有机化学的研究热点。绿色化学一直是现代有机合成化学的发展方向,包括高选 择性( 立体选择性、区域选择性和化学选择性)、反应条件温和、高产率、操作简便、环境污染少等。反应的催化体系是学者们研究得较多的方面,目前主要概括为均相 催化剂,如贵金属钯化合物、钯配合物催化剂和负载型催化剂、钯配合物的制备及 其Heck 反应的催化性能。其中负载型催化剂是人们研究的重点,因为其克服了均 相催化剂难以分离的缺点且与均相催化剂具有同等的催化效果,载体通常有天然产 物( 如纤维素、碳) 和合成化合物( 如石墨烯) 两种。加氢反应,包括羰基加氢, 烯烃加氢,硝基和亚硝基加氢也常用石墨烯负载Pd 催化剂做为催化剂。 一种石墨烯负载钯催化剂,其原料按体积份包括:A 物料2-10 份,乙二醇30-50 份,石墨烯100-150 份,KTiNbO5纳米片溶液5-20 份;其中,A 物料的原料包括PdCl2和浓度为30-37%盐酸,PdCl2与盐酸的重量体积比g :ml 为0.01-0.1 : 10-40 ;针对于目前工业上主要是利用Perkin 反应来合成肉桂酸,其不足是乙酐 活性低、反应温度高(140-180℃ )、产率低(38-45% ) 等,不利于工业化生产,实验室以苯甲醛与丙二酸为原料,通过Knoevenagel 缩合反应合成肉桂酸,在90℃下回流反应1.5h,肉桂酸的产率可达到96.28%,但是以上方法都有使用苯甲醛为原料,所以为了阻止苯甲醛之间的聚合,不仅需加入阻聚剂( 如4 一叔丁基邻苯二酚),且苯甲醛易被氧化为苯甲酸,从而难以与产物肉桂酸分离,且反应后处理需水蒸汽 蒸馏,活性炭脱色耗时耗力的过程的问题,石墨烯负载钯催化剂改变传统合成方法,不需加入表面活性剂,材料粒径小,操作简单,可应用于肉桂酸的合成过程中,肉 桂酸产率高,制备过程易分离,后处理简单,且反应条件温和、绿色、经济。

高分子试剂催化剂及应用综述

高分子试剂催化剂及其应用 xxxx(姓名) (学校位置代码) 摘要:本文主要介绍了高分子试剂催化剂的概念、对高分子试剂催化剂进行系统分类并对个别高聚物试剂催化剂进行详细表述从而介绍其性能及应用。紧接根据近些年来高分子试剂催化剂的研究进展情况进行展望。 关键词:高分子试剂催化剂 一、高分子试剂催化剂概述 催化剂是可以加速化学反应的物质。化学反应若要发生,则反应物分子之间必须有足够能量的发生碰撞以形成活性复合物或过渡态复合物,这个能量就是活化能。而催化剂能够提供一个较低的活化能,因此加速了化学反应的发生。和未添加催化剂的反应的一步实现原理相比,催化反应包含了许多种化合物与过渡态复合物[1]。 催化技术对于目前乃至未来的能源、化学反应、环境工业、石化工业都是至关重要的。原油、煤和天然气向燃料和化学原料的转化,大量石油化工和化学产品的生产,以及CO、NO、碳氢化合物排放物的控制,全都依赖于催化技术。此外,催化剂还是燃料电池电极的必要组分——无论电极使用的是固体氧化物离子还是聚合物质子电解液[2]。催化技术的发展、催化剂的改进和新催化剂的成功开发, 往往会带动已有工艺的改进和新工艺的诞生。据统计,85%以上的化学反应都与催化反应有关[3]。目前工业上采用的催化剂大多为金属、金属盐和金属氧化物等多相催化剂, 其优点是催化性能较稳定, 使用温度广, 容易回收重复使用, 但催化活性较低, 反应常常需要高温、高压条件, 而且副反应较多。最近几十年, 发展了以有机金属络合物为主的均相催化剂, 为化学工业带来革命性进步。这种催化剂分散度高, 活性中心均一, 结构明确, 催化剂活性和选择性都较高, 反应可以在很温和的条件下进行[4]。 近年来,随着科学技术的突飞猛进,合成了许多具有独特功能的高分子材料。其中,高分子催化剂在化学工业中初露头角,显示许多优良的性能,将有可能却带无极催化剂。高分子催化剂就是高分子化的催化剂,催化剂在高分子上,高分子是载体,因此有时也称负载催化剂。 最早报道的高分子催化剂是Haag[5-7] 等在1969 年采用聚苯乙烯磺酸树脂负载的阳离子金属络合物,并证明可用于氢化醛化反应到了七十年代后期几乎所有的小分子都被负载在有机和无机高分子上, 这些高分子催化剂是用带有配位原子N,S,P,O等的高分子作为配位体与过度金属形成络合物在这方面发表了许多综述和专著。 高分子催化剂是一种对化学反应具有催化作用的高分子。 是一种高活性、高选择性的天然高分子催化剂,但由于是水溶性的,故在工业应用上受到限制,因而又发展了不溶于水的固定化酶——一种半合成的高分子催化剂【8】。目前开发应用的合成高分子催化剂主要有离子交换树脂型催化剂和高分子金属催化剂两类。多以有机或无机高分子为骨架,在骨架上连有各种具有催化作用的功能基团。这类催化剂不仅具有很高的活性和选择性,而且比较稳定,分离、回收方便,可以重复使用,有的还具有光学活性等特殊的机能。目前已应用到各种有机反应、有机合成及某些高分子合成反应中。此外许多研究表明高分子载体不仅仅是作为金属活性中心的惰性支持体,由于其特殊的高分子效应及其与催

无机物负载型钯催化剂的研究进展_焦建丽

2010,Vol.27No.3 化学与生物工程 Chemistry &Bioengineering 4  基金项目:教育部留学回国人员科研启动基金资助项目收稿日期:2009-11-22 作者简介:焦建丽(1982-),女,山东济宁人,硕士研究生,研究方向:负载型金属催化剂;通讯作者:滕大为,教授。E 2mail :jianlijiaol @1631com ,dteng @qust 1edu 1cn 。 无机物负载型钯催化剂的研究进展 焦建丽,黄龙江,滕大为 (青岛科技大学化工学院,山东青岛266042) 摘 要:钯催化剂是重要的金属催化剂,近年来,负载型钯催化剂作为一类新型催化剂广受关注。介绍了以硅胶、MCM 241分子筛、活性炭和金属氧化物等无机物为载体的负载型钯催化剂的特征及应用,并展望了其在不对称反应中的开发应用前景。 关键词:无机物载体;负载型钯催化剂;不对称反应 中图分类号:O 643136 TQ 138123 文献标识码:A 文章编号:1672-5425(2010)03-0004-05 钯催化剂作为应用较广泛的金属催化剂,在有机合成和石油化工中有着极其重要的地位。在有机合成中,由于钯具有未充满的4d 轨道,可与多种组分配位,通过改变配体和反应物的组合,有可能使许多不易发生的反应得以顺利进行。另外,钯配合物催化的反应一般具有反应条件温和、产率高和选择性好等特点[1]。但均相钯催化反应中,均相催化剂如Pd (OAc )2和PdCl 2等在反应过程中易产生钯黑,使催化活性下降,且催化剂难以从反应体系中分离回收和重复使用。这些因素严重影响了均相钯催化剂的工业应用。而对石油化工、炼油等很多工业催化反应,开发高活性、高选择性的钯催化剂也是研究热点[2]。近年来,在钯催化剂的研发中,负载型钯催化剂作为一类新型催化剂引起了人们的极大关注。一方面,将钯催化剂负载于固体载体上,不仅可以保持其催化活性,而且在反应结束后,通过简单的过滤即可实现催化剂的回收利用;另一方面,通过对负载型钯催化剂中各组分的改进,可提高催化剂的活性及选择性。 负载型钯催化剂按其载体形式主要分为有机载体负载型和无机载体负载型。有关有机载体负载型钯催化剂已有很多报道[3~6]。与有机高分子载体相比,无机载体负载催化剂较易回收,无需加入不良溶剂沉淀,而其良好的机械强度及对反应介质的稳定性,在很大程度上避免了载体的溶胀以及由此带来的一系列副作用,使其可以应用于连续反应中。作者在此对以硅胶、MCM 241分子筛、活性炭和金属氧化物等无机物为载体的负载型钯催化剂的特征、应用及在不对称反应中的开发利用等方面的研究进展进行综述。 1 各种无机载体负载的钯催化剂 111 硅胶负载钯催化剂 载体类型的选择是决定负载型催化剂性能的关键因素。选择载体时,要求载体在反应过程中有很好的化学热稳定性且有相应大的比表面积(>100m 2?g -1)。对大多数液相反应而言,需具有中孔结构(孔径>20!,以使反应物能很好地分散到活性位上)。硅胶可作为最有效的载体之一,这是由于硅胶具有高的热稳定性(除了有少量亲核基团,尤其是O H -和F -)和大的比表面积(>600m 2?g -1),并且孔径的范围可从微孔到中孔[7]。由于硅胶表面裸露羟基,可利用硅烷化等作用对其表面进行化学修饰,然后通过化学键将各种钯配合物锚定,从而形成一系列负载型钯催化剂。 Cai 等[8]以气相法二氧化硅为载体,通过中间产物(“Si ”22P )与氯化钯反应,制得硅胶负载的双齿膦钯配合物,并应用于Heck 羰基化反应(图1)。反应底物以碘苯为例,当催化剂表面钯的负载量为115%(摩尔分数)时,催化效果最好。此催化剂可回收利用3次,产率保持在80%左右,无明显降低。这表明双齿膦配体可以有效锚定钯配合物,避免钯的流失。 目前,硅胶负载型钯催化剂形式多样。主要表现在硅胶表面各种官能化修饰方面,其中与钯配合物锚联的配体,除传统的膦配体外,还有巯基配体[9~13]、含氮原子的配体[14~17]以及含硒配体[18]。从催化性能上看,硅胶负载型钯催化剂的催化效果较好,但催化剂一般只能回收利用3~4次,有待进一步提高。

相关文档
最新文档