behavioural assay using zebrafish neuron

behavioural assay using zebrafish  neuron
behavioural assay using zebrafish  neuron

Review

Behavioural assessments of neurotoxic effects and neurodegeneration in zebra ?sh ☆

Keith B.Tierney ?

Department of Biological Sciences,University of Alberta,Z 718Biological Sciences Building,Edmonton,Alberta,Canada T6G 2E9

a b s t r a c t

a r t i c l e i n f o Article history:

Received 2December 2009

Received in revised form 27September 2010Accepted 21October 2010

Available online 28October 2010Keywords:Zebra ?sh Behaviour Activity

Sensorimotor

Learning endpoints

Altered neurological function will generally be behaviourally apparent.Many of the behavioural models pioneered in mammalian models are portable to zebra ?sh.Tests are available to capture alterations in basic motor function,changes associated with exteroceptive and interoceptive sensory cues,and alterations in learning and memory performance.Excepting some endpoints involving learning,behavioural tests can be carried out at 4days post fertilization.Given larvae can be reared quickly and in large numbers,and that software solutions are readily available from multiple vendors to automatically test behavioural responses in 96larvae simultaneously,zebra ?sh are a potent and rapid model for screening neurological impairments.Coupling current and emerging behavioural endpoints with molecular techniques will permit and accelerate the determination of the mechanisms behind neurotoxicity and degeneration,as well as provide numerous means to test remedial drugs and other therapies.The emphasis of this review is to highlight unexplored/underutilized behavioural assays for future studies.This article is part of a Special Issue entitled Zebra ?sh Models of Neurological Diseases.

?2010Elsevier B.V.All rights reserved.

1.Introduction

1.1.The importance of behavioural endpoints

In animals,and arguably all life throughout the biological kingdoms,behaviours are ways to integrate into the biotic and abiotic environment.Behaviours are the actions and reactions taken to internal and external cues that are intended to place organisms in a preferable position with respect to ?tness.Conditions and situations that cause deviant or impaired behaviours therefore have clear survival implications.The inclusion of a behavioural assessment endpoint in studies of disease and neurotoxin exposure,especially those involving non-lethal impairments,will help address whether sub-organismal changes will affect survival.However,there is another reason to include behavioural endpoints —they can be used to rapidly and effectively detect changes of molecular to system level origins.

In vertebrates,all behaviours are achieved through nervous control.However,not all behavioural modi ?cations are of neurolog-ical origin.Non-neurological alterations can also affect behaviour —some musculoskeletal issues,for example,such as those arising

through injury and developmental abnormalities,can cause altered behaviours.Malformed limbs or other morphologically-based condi-tions may be associated with behaviours not apparent in normal individuals.There are also a suite of developmental issues that are related to neurological function,however,they are not related to neurotoxins or neurodegeneration.Cerebral palsy,for instance,can affect gross and/or ?ne motor control and have very apparent behavioural abnormalities [1].Additionally,in healthy animals,internal,physiological processes can also modify neuron function and these can result in behaviour phenotypes.For the purposes of this review,only behavioural alterations arising though neurological pathways and directly involving neurotoxin exposure or progressive neurological pathologies will be given consideration.

Behavioural alterations arising from neurotoxin exposure and neurodegeneration come about through very different means,even though the behavioural “phenotype ”(observable manifestation)may appear similar in some instances.Neurotoxic agents affect the functionality of “normal ”neurons and may be reversible and of limited duration.In contrast,neurodegeneration collectively refers to a group of typically irreversible processes that work at the genetic to system level,all of which result in the loss of neurons and/or their functionality.Mechanistically,neurotoxic agents act in one of two ways:in general,non-speci ?c ways (e.g.polar or non-polar narcosis [2]);or through affecting genetic and/or protein receptors.Either mode of action can cause changes at molecular,cellular,system and levels beyond.It must be noted that the ?rst mode of action could include disruption of cells in addition to neurons.With neurodegen-eration,mechanisms of action include protein misfolding and conformational disorders (proteopathies)and/or astrogliosis,i.e.an

Biochimica et Biophysica Acta 1812(2011)381–389

Abbreviations:AChE,acetylcholinesterase;Anti-AChE,anticholinesterase;CPP,conditioned place preference;CS,conditioned stimulus;dpf,days post fertilization;OKR,optokinetic response;OMR,optomotor response;OP,organophosphorus agent;OSN,olfactory sensory neuron;PEA,phenylethyl alcohol;PTZ,pentylenetetrazole;UCS,unconditioned stimulus

☆This article is part of a Special Issue entitled Zebra ?sh Models of Neurological Diseases.

?Tel.:+17804925339.

E-mail address:ktierney@ualberta.ca

.0925-4439/$–see front matter ?2010Elsevier B.V.All rights reserved.doi:

10.1016/j.bbadis.2010.10.011

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j o u r na l h o m e p a g e :w w w.e l se v i e r.c o m /l o c a t e /b b a d i s

increase in astrocytes due to neuron death.For each mechanism of neuron(or neural tissue)impairment,it should be possible to isolate an individual behavioural phenotype for screening purposes.

All behaviours involve motion,and so given the appropriate methods, all are quanti?able.The evolution of software solutions in the last decade or so,including solutions from EthoVision(https://www.360docs.net/doc/7e8266061.html,),LocoScan (https://www.360docs.net/doc/7e8266061.html,),Loligo(https://www.360docs.net/doc/7e8266061.html,),and Video-Track(www.viewpoint.fr)has greatly facilitated the accurate assessment of subtle and directed movements.However,unlike the movement of mammalian models,?sh move in three dimensions.In studies of?sh motion,movement in the vertical plane is typically ignored or minimized (i.e.by keeping the tank water shallow)[3–5],however,in at least one case,a proprietary protocol was developed to include it[6].Nevertheless, with a model such as a zebra?sh,the best solution may be to minimize water depth,to perhaps twice body length.This depth does not appear to result in overt stress and most?sh settle down(acclimate)within30min (personal observation).Current technology permits the rapid,and potentially repeated,non-lethal testing of numerous?sh(e.g.4+adults to96larvae)[7,8].Additionally,a method has been constructed to calculate very subtle differences in the swimming mechanics of individual

?sh[4].Caveats exist in behavioural https://www.360docs.net/doc/7e8266061.html,anisms are designed with systems that provide resilience and can act to retain higher level responses[9].Also,factors that affect responses at lower organisational levels,e.g.protein level,may not necessarily have an obvious behavioural phenotype.Behavioural studies clearly need a mechanistically-based rationale for including a motion-based endpoint.

1.2.The relevance of zebra?sh models

Ten years ago,zebra?sh were identi?ed as an up and coming model for genetic disorders and developmental biology in humans[10].Since this time,the zebra?sh genome has been fully sequenced and many genes of high mammalian homology have been identi?ed.Five years ago,zebra?sh were proposed as an untapped behaviour-genetic model organism[11].There are now high-throughput behavioural zebra?sh-based screens able to detect speci?c neurological alterations/patholo-gies,some of which take advantage of protocols similar in function and purpose to those used on rodents(e.g.olfactory-based endpoints). Furthermore,zebra?sh are more amenable to manipulation and behavioural testing during early development.Their transparent larvae facilitate localization of proteins and the use of morpholino manipula-tion.For these reasons,and given that rodents are more expensive and require greater growth periods than zebra?sh,the adoption of zebra?sh models continues in typically rodent dominated?elds.This review is intended to communicate the current use of behavioural endpoints in zebra?sh,and how protocols used with other animals may be adapted. Numerous behavioural assessment avenues remain unexplored.

2.Types of behavioural endpoints

As with most animals,?shes exhibit intricate behaviours that depend on locomotion and may be the result of complex decisions [12].Behavioural responses must be viewed in a three-part hierarchical manner:(1)basic motor responses,which underlie(2)sensorimotor responses,that facilitate and/or integrate with(3)learning and memory (Fig.1).Although the?rst“behavioural level,”arguably does not involve true behaviour since it does not necessarily include sensory responses, many studies have included locomotory(activity)changes as a behavioural endpoint[13–15].While this endpoint may appear simplistic,it does not mean it is not meaningful,in fact,quite the opposite:all behaviours are predicated on the ability to move. Furthermore,in tests of higher-level behaviours,such as those involving learning,it may be dif?cult to rule out potential neurological issues of the lower founding“levels.”For example,if feeding response decreased in?sh exposed to a dissolved neurotoxin such as an organophosphorus (OP)insecticide,the effect could be the result of impaired locomotory ability,and/or impaired olfactory sensory neuron(OSN)function,and/ or cognitive ability.

Implicit in neurodegeneration and neurotoxin exposure is that organism condition,and so likely behavioural responses,will change with time.With neurotoxins,there are four temporal phases to describe their effects:direct,secondary,tertiary and quaternary effects.The?rst two phases deal with the presence and actions of an agent within the organism,and the latter two,without.Direct effects are those local or systemic effects that occur over the short run and would typically be the“intended”effects,such as the actions of an anticholinesterase(anti-AChE)drug.Secondary effects consist of adaptations made over longer periods to restore equilibrium from drug actions,such as upregulation of acetylcholinesterase(AChE) expression.Tertiary effects are those that follow from the discontin-uation of administration of an agent that has become physically depended,i.e.involve withdrawal and stress.Over extended periods, tertiary effects may give way to quaternary effects,such as malnutrition.The majority of behavioural assays focus on direct and secondary effects,however,there are studies of tertiary effects,e.g. withdrawal from cocaine[16].

In the following,a diverse array of endpoints using apparatus from simple,one chambered tests,to complex multi-chamber,decision-based challenges are discussed(Table1).The majority of the behavioural endpoints can be conducted on zebra?sh3–4days post fertilization[17,18],excepting learning/memory-based endpoints.

2.1.Basic motor response endpoints

Compounds that modulate neuron?ring rate have potential to affect locomotory activity.In?shes,locomotory activity endpoints include swimming speed[19],distance covered[14],and turning rate (angular velocity)[20].Changes in zebra?sh activity have been noted in studies investigating the mechanisms of addiction to ampheta-mines[21],cocaine[16],ethanol[11,22],and nicotine[23],as well as the effects of pesticides[24,25].

Whether any given drug/neurotoxin increases or decreases activity is related to concentration/dose and time.For example, exposure to a low concentrations of D-amphetamine caused hyper-activity while higher concentrations caused hypoactivity[21]. Cholinesterase inhibiting drugs/pesticides are well known to have similar effects[26–29].Clearly,agonizing stimulatory receptors or inhibiting neurotransmitter degradation will potentially lead to activity increases in the short run that are not sustainable in the long.In fact,persistent stimulation may result in excitotoxicity and neuron apoptosis.Behavioural manifestations of neurotoxin exposure may not appear until later in life.Additionally,some activity

changes Fig.1.Behavioural responses can be evoked by internal and external signals and/or be altered by impaired neurological condition.With zebra?sh,assessment methodologies exist to test neurological performance in absence of signals through to the ability of the brain to retain and integrate sensory signals of diverse origins,which makes zebra?sh a powerful model for testing compounds that affect neurons over brief to life-spanning timeframes.CPP=conditioned place preference.

382K.B.Tierney/Biochimica et Biophysica Acta1812(2011)381–389

may only be evident after the removal of the drug,i.e.during withdrawal [16].

Zebra ?sh activity has proven a viable endpoint for detecting neurological impairments received during development.For example,embryonic zebra ?sh exposed to chlorpyrifos,an organophosphorus insecticide and ubiquitous environmental pollutant,had reduced swimming activity 6+days later [24].If persisting neurological impairment or neurodegeneration are not readily apparent,a drug can be used to evoke activity.Altered neurology will be apparent in a lower response threshold to the drug.The convulsant (seizure inducing drug)pentylenetetrazole (PTZ)has been used in recent studies in zebra ?sh [30],including high throughput 24and 96well plate assays [3,31,32],for just such a purpose.Speci ?cally,zebra ?sh embryos injected with domoic acid (DA),a neurotoxin of diatom origin,reduced the concentration of PTZ required to evoke stage I and II seizure activity [33].Activity endpoints can also be used to detect neurodegeneration.Speci ?cally,to model the effects of Parkinson disease,neurotoxic drugs can be injected directly into speci ?c brain regions (using microinjection),although this has historically not carried out on ?sh [34].A recent study demonstrated that unilateral injection of the drugs 1,2,3,6-tetrahydropyridine (MPTP)and 6-hydroxydopamine (6-OHDA),two neurotoxins with speci ?c targets,reduced the speed and distance zebra ?sh travelled [14].Microinjec-tion techniques make the zebra ?sh model portable to a variety of neural ablation studies.

A consideration for activity-based sensory endpoints is that they may not actually be stimulus-free.When a ?sh or other animal is introduced into a new environment,such as a test tank,they will likely begin searching and forming a cognitive map of their new surroundings [35].This process will draw upon one or more senses and involve synaptic plasticity (discussed below).Even with elimi-nation of searching behaviour,perhaps accomplished through tank acclimation,activity changes may be based on input from the interoceptive senses,i.e.the perception of internal movement and/or pain (aspects of the somatosensory system).Activity-based

endpoints clearly have application,but they may be more of an umbrella for other neurological impairments isolatable through sense-speci ?c tests.2.2.Sensorimotor endpoints

Fishes have a suite of exteroceptive senses analogous to those of mammals.These include vision (photoreceptor-based),audition (mechanoreceptor-),olfaction,gustatory (both chemosensor-),balance and somatosensory,which includes touch (mechanoreceptor-),pres-sure,temperature (thermoreceptor-)and pain (nociceptor-).Fishes also posses senses that do not have mammalian analogs,e.g.magnetorecep-tion.Furthermore,some of the analogous senses,e.g.gustation,are morphologically dissimilar —?shes,including zebra ?sh,have solitary chemosensory cells (SCCs),which are externally-located taste buds [36,37].And unlike mammals,sound and motion are not only perceived by the ear and vestibular (inertial detection)system,but by an additional system,the lateral line.In this system,neuromast cells structurally similar to inner ear mechanoreceptor “hair ”cells,detect changes in water pressure and motion relative to themselves.These cells can also detect sounds and provide information regarding acceleration and velocity [38].In the below,known and potential sensorimotor endpoints will be discussed.

The senses enable re ?exive,innate responses to “unconditioned stimuli ”(UCS),as well as learned responses to “conditioned stimuli ”(CS).Both UCS and CS can be used to test sensorimotor responses,and can be positive (attractive)or aversive.UCS evoked behavioural responses stimuli have been included in this section,but their modi ?cation is included in the proceeding section on learning and memory.Positive UCS or CS stimuli may arrive via various senses but uniformly enable the organism to place itself in an actual or perceived improved ?tness position that otherwise offers some bene ?t or reward;example stimuli include food,cover,mate call or odour.Aversive stimuli do the opposite;examples stimuli include electric shocks,abrupt and severe changes in lighting,temperature,sound,

Table 1

Behavioural test endpoints and their associated stimuli available to ?shes,including zebra ?sh.Some endpoints that are underutilized or hold promise in toxicity or degenerative studies are in bold.Apparatus Stimulus

Stim.type Type of test

References

Open arena

None None Activity level A

[14,16,20–22,24,25,30]Space

Vis Searching behaviour A [22,23,70,90]Food,dead Vis;Olf Appetitive behaviour A [37]

Food,alive Vis;Olf Prey capture A

[40,42,43]Tap

Aud

Startle response A [7]Glass bead Aud;Vis Startle response A [58]Predator

Vis Alarm response A [39,40]Predator scent

Olf Alarm response B [68–70]Simulated conspeci ?c Social Aggressiveness B [11,22]Con ?ned tube,or ?ume

Water ?ow Motion

U crit B

[83,84]Social

Vis;Motion Schooling B [58,59]Moving background (striped drum)Simulated object Vis OMR A [47,49,50]Vis OKR A

[51,52]Counter-current olfactometer Odours ?Vis;Olf Attraction;avoidance B [15,74,75]Y-maze Odours ?

Olf Attraction B [76–79]T-maze

Preferred location Vis CPP B [93]Food Chemo CPP B [97]Location Drug CPP B [97,98]Two-chamber tank

Shade

Vis CPP B

[22]Electric ?eld Pain Aversive CPA B [16]Colour

Vis

CPP B

[99]Three-chamber,gated Con ?nement Vis;Stress CPP,CPA B [100]Three-chamber,separated

Social

Vis

Schooling B

[22]

Abbreviations:Aud,auditory;CPA,conditioned place aversion;CPP,conditioned place preference;OKR,optokinetic response;Olf,olfactory;OMR,optomotor response;U crit,critical swimming speed;Vis,visual.Note:Zebra ?sh age may affect whether speci ?c endpoints are appropriate,as the endpoints may depend on the development of swimming ability,sensory responses,and memory.In general,assays requiring swimming or sensory-evoked swimming are available as soon as 48post hatch (~4dpf;endpoints marked A )[37,106].Swimming intensive and memory based endpoints have mostly been conducted on adults (approx.≥3months),however many of these assays could likely be conducted on juveniles (endpoints marked B ).An exception:OMR relies on immobilizing ?sh,and so ?sh cannot be N 7dpf [51].A caveat:olfactory-based alarm responses may be most robust and least variable at 50dpf [73].

?Odours include food,conspeci ?c,pheromones,predator,and synthetic compounds.

383

K.B.Tierney /Biochimica et Biophysica Acta 1812(2011)381–389

(unpleasant)odours,or other sensory assaults causing discomfort. Stimuli can also be neutral,i.e.perceptible but without an associated behaviour[8].For behavioural endpoints,both CS and UCS stimuli are routinely used in behavioural studies in?shes,including those with and without conditioning.

Changes in sensory responses can be due to impaired sensory perception or due to impaired motor performance.Separating perceptual vs.motor impairment in sensory studies may involve using an additional endpoint,such as cell or tissue level assessment of neuron function.Another challenge is that most behaviours are multisensory,and isolating speci?c impairments may be dif?cult or impossible.Nevertheless,behavioural endpoints exist to evoke responses through each of the senses.

2.2.1.Visual endpoints

Unless experiments are conducted under darkness or with visually occluded?sh,all behavioural endpoints arguably have some visual component.In?sh,vision speci?c endpoints include predator (simulated or actual)avoidance,prey capture,optomotor and optokinetic responses.All of these methods have clearly de?ned endpoints and involve coordination,except the last,which uses immobilized?sh.

One of the most basic assays draws upon phototaxis,i.e.light seeking behaviour.Zebra?sh are active during the day,and so should spend time in light unless they perceive a risky(predation-prone) condition.When given a choice between a lighted or shaded area in an open arena,zebra?sh did indeed spend less time under shade(~40%) [22].Ethanol exposure caused a concentration-dependent decline in the proportion of time spent under shade.With exposures to ethanol, zebra?sh sheltering was reduced to~10–15%,i.e.exposure evoked risky behaviour.Such a robust and easily quanti?able behavioural contrast could be exploited to test other neurological impairments.

Alarm(antipredator)behaviours are often used in?sh research, although they are usually investigated using olfactory cues.Neverthe-less,visual cues can be used to evoke alarm[39,40].Speci?cally, presenting?sh with a large shape modelled after a predator or an actual predatory?sh,such as in a neighbouring tank,can evoke dashing,freezing and shelter seeking.Fast start responses(s-starts) have been shown to increase in response to the presentation of a simulated predator(painted falcon tube),and be sensitive to the effects of ethanol exposure[22].A recent paper suggested that alarm response could be a very valuable tool for mechanistically understanding the roles of signalling molecules,speci?c receptors and neurons in neural circuitry[41].One of the advantages to aversive responses is that they are easy to score either manually or through video analysis.However, in some stocks of lab reared?sh,innate responses may have been lost. In this case,conditioning would need to be carried out.

Visually guided prey capture(as opposed to chemosensory-guided) has been used in a variety of?sh species,although not typically on such a small one.Nevertheless,visually guided appetitive behaviours can be carried out even in7-day-old zebra?sh using paramecia[42].Other prey items such as daphnia,hyalella and brine shrimp have been used in other species,and there is no reason why they cannot also be used with zebra?sh.Assay endpoints include time to initiate attack(latency), number of attacked or captured prey,capture ef?ciency,and time to cessation[40,42,43].For example,a recent study on striped bass noted that time to prey capture was increased6days following exposure to an anti-AChE pesticide,the OP diazinon[44].Another used zebra?sh larvae with laser ablated premotor neurons in the retinotectum and reticulospinal neurons to isolate neural circuitry associated with visually directed prey capture[42].Tracking software currently uses contrast (i.e.a dark object,the animal,against a light background)to track as many as ten objects in one open arena(EthoVision;https://www.360docs.net/doc/7e8266061.html,). However,prey may not be easily discernable,and their removal from an arena may not yet be easily quanti?able.A high throughput version of this assays remains for development.

A test of optomotor response(OMR)was pioneered over80years ago(see[45])and has been frequently used on a variety of animals since,including mice[46]and zebra?sh[47].The test is one of tracking:animals re?exively keep pace with a rotating a striped or “grated”drum.At a high enough rotation speed,the lines will blur and ?sh will cease to follow.The parameter of interest is the point at which the animal ceases to track.Excitatory and inhibitory drugs should increase and decrease this point,respectively,and neurode-generation will obviously affect it.Another way to conduct the test is to hold the drum speed constant but vary the illumination[48].This method was capable of resolving optomotor differences between strains.A different version of the test replaces the uniform stripes with one large stripe.The large stripe represents a threatening object, and so?sh will swim away from it.This test proved capable of detecting retinal degeneration in a“night blind”mutant[49].

A variation of the OMR assay includes using competing visual grating[50].Speci?cally,a background reference grating is kept at a constant speed in one direction while a test grating of variable speed is moved in the other.Fish will move in the direction of the more strongly perceived cue.Three scenarios are possible:the?sh will track the reference cue when the test cue is of lower contrast,or they will track the test cue when it is of higher contrast,or when there is insuf?cient contrast between the two,they will stop moving.The null motion point provides an index of visual guided response,with acuity inversely related to contrast.This test identi?ed performance differences from a mutation in a vesicular glutamate transporter.

The OMR has been adapted to isolate eye tracking ability in static larval zebra?sh[51,52].In this“optokinetic response”(OKR)assay, larvae are immobilized in methylcellulose gel,placed in the same visual scenario as adults(a circular arena with a rotating striped perimeter),and smooth tracking and rapid saccades with stripe sweep are recorded.Impaired altered visual performance will be evident in decreased saccadic movement[52–54].The output of eye velocity in degrees/s can be determined using computer software(a protocol is available[55]).A consideration is that?sh cannot be N7 dpf because gel immobilization becomes problematic[51].The OKR test is functionally equivalent to the?nger tracking-based?eld sobriety test,where the degree at which eye motion switches from smooth tracking to saccadic movement is indicative of intoxication.

Zebra?sh are a schooling species that exhibits territoriality[56,57]. Although schooling and aggressive behaviour are not solely driven by vision–they can rely on sensory input from the octavolateralis(sound/ motion),etc.–they are predicated on it.The propensity of a small group of zebra?sh that was physically but not visually isolated from a larger school to swim near the larger group,i.e.their“social preference,”was inhibited in a concentration-speci?c manner by ethanol[22].School cohesion,apparent in“nearest neighbour distance”(NND),may also be used as a sensitive indicator of intoxication[58]and genetic-based differences[59].Aggressive behaviour(agonistic behaviour)consists of alternating and/or coincident?n displays and attack behaviours. Displays consist of erection of dorsal,pectoral or anal?ns,and/or slapping of the caudal?n;attack behaviours include biting motions and directed swimming at the attacker[22].An inclined mirror can be used to simulate a conspeci?c,and assess aggression[11,22].In an “aggressiveness test,”ethanol exposure was correlated with increased time near the mirror and aggressive displays[22].Automatic video analysis of?n motions obviously poses a challenge,but changes in speed and distance near the mirror would be easy to determine.

2.2.2.Olfactory endpoints

In?sh,olfaction is so important to so many behaviours that it cannot be done without(reviewed in[60]).This is the reason numerous studies have focused on its impairment through exposure to a variety of neurotoxic contaminants(reviewed in[61]).In humans,olfaction is not so indispensable,however,its loss does correlate with neurodegener-ative diseases such as Parkinson's and Alzheimer's[62].The use of

384K.B.Tierney/Biochimica et Biophysica Acta1812(2011)381–389

zebra?sh olfactory-based behavioural endpoints of neurodegeneration remains largely unexplored.A recent publication suggests olfactory endpoints may also be viable in prion research[63].

In?shes,odorants and odorant classes are associated with speci?c behavioural responses,which facilitate isolating speci?c neuronal impairments.Odorants include amino acids,bile salts and pheromones, which evoke feeding and antipredator,social(assumed),alarm and mating-based responses,respectively[60].Amino acids associated with food,such as L-alanine[64],evoked appetitive behaviours such attraction (directed movement up a concentration gradient)[65].A mixture of ten amino acids,including L-alanine,evoked increases in turning rate and activity level at4dpf[37],suggesting the possibility of using amino acid responses in high throughput assays.Bile salts remain untested as behavioural modulators in zebra?sh,but given their ef?cacy at evoking OSN responses[66],they may be of use in olfactory-based assays. Pheromone-based behavioural endpoints of mating have been restricted to other species(e.g.F-type prostaglandins evoke substrate probing in salmonids[67]),however,the behaviours evoked by alarm pheromone are well studied.

Alarm pheromone is anxiogenic and makes for a very reliable endpoint since it is an innate re?ex.Alarm responses involve a set of stereotypical behaviours,which include dashing,freezing,jumping and erratic movements[68–70].All the actions are“?ght or?ight”in nature, and are associated with increases in stress hormone concentrations[70]. Many?sh studies have included alarm response as an endpoint of olfactory neuron function[61].Numerous neurotoxic agents,including anti-AChE pesticides,alter alarm response,possibly through impairing both peripheral(OSNs)and central neurons[61,71].Alarm behaviour endpoints are highly sensitive,with some OPs impairing responses with exposures to just1ppb[28,71].Studies wishing to test the functionality of the hypothalamic-pituitary-interrenal(HPI)axis(analogous to the hypothalamic-pituitary-adrenal(HPA)axis in mammals)may bene?t from the inclusion of an alarm assay[41].

A recent study found that hypoxanthine3-N-oxide(H3NO) evoked alarm response in zebra?sh[72].Whether this compound is alarm pheromone or a component thereof,this discovery has great potential to improve the standardization of alarm response testing, since a molecularly based behavioural concentration-response curve can now be constructed.The previous alarm response testing methods involved the use of a skin extract or?ltrate derived from the skin of conspeci?cs.These methods suffer by not being able to standardize the unknown(s)pheromone,however some did endeavour to do so by measuring total protein[6].In zebra?sh,the alarm response may be most robust and least variable50dpf[73].

One of the simplest tests for olfactory-evoked motion involves the use of an avoidance trough or“counter current olfactometer.”In this device,water/odour sources?ow from either end of rectangular trough and exit in the center without mixing appreciably.In this way, there are effectively two odour zones in the tank,and?sh can choose to spend time in either one.As long as a?sh is swimming back and forth prior to odorant introduction(i.e.has not preferred an end before stimulus introduction),both attractive and aversive responses can be determined[15,74,75].This test is not unlike a Y-maze,where odours?ow down two arms to a null or mixing zone.Y-maze can be problematic in some cases because?sh may elect to make no decision, i.e.not explore the arms.Nevertheless,both Y-mazes and avoidance troughs have been useful in?sh studies of the attractive or aversive qualities of amino acids,pheromones and neurotoxic contaminants [76–79].

2.2.

3.Auditory endpoints

Even though the anatomy of the zebra?sh ear is dissimilar to that of mammals(i.e.no cochlea),the neuron hair cell structure is highly conserved.Additionally,the lateral line cells are structurally and functionally the same as ear hair cells.Both ear and later line cells can be disturbed by compounds of human origin(i.e.“ototoxic”agents).For example,the antibiotic streptomycin can negatively affect?sh behaviour[80].For these reasons,hair cell alteration has mammalian parallel(reviewed in[17]).

An auditory-evoked startle response has recently been adapted from rodents to zebra?sh[7].In the study,adult zebra?sh were placed individually in an eight tank array and video was recorded from overhead.The stimulus consisted of an automated,mechanical“tap”to the tank bottom.Fish swimming distance was determined over the following5s,and the taps were repeated every minute for a total of ten times.This session was then subsequently repeated.This design is particularly interesting because its neurological assessment is two-dimensional:it tests an innate,behavioural re?ex(which includes integration of sound and space,and depends on physiological condition),as well as the ability to adapt(habituate)rapidly to a stimulus.In their study,they found that both endpoints could show changes due to larval exposure to chlorpyrifos.However,it was arguably the ability to adapt that highlighted the biggest neurological alteration.The difference in startle response magnitude was greater and more signi?cant with repetition.The purpose of this high throughput auditory-based test was to assess the persisting effects of chlorpyrifos exposure,however there is no reason this assay could not be used to screen/assess a variety of neurological conditions/ pathologies.Furthermore,given their?ndings regarding habituation, studies including other stimuli(such as odorants),could bene?t from including such a parameter.

2.2.4.Interoceptive sensory endpoints

Fish rely on balance and experience pain.However,unlike mammals,equilibrioception(balance)is accomplished through the octavolateralis system,which includes neurons that perceive sound and motion.Additionally,?sh do not rely upon their“limbs”(i.e.?ns) for balance.In fact,removing two or more?ns has frequently been used as a non-invasive,low impact means of identifying?sh[81,82]. Nevertheless,neurotoxins affecting the vestibular portion(i.e.inertial sense)of the inner ear,or neurodegeneration in general,may conceivably affect balance,and so may impair rheotactic ability. Performance de?ciencies could be gauged through measuring the time to current orientation.

Decades of research on?sh swimming performance has relied on mild electrical shock to evoke swimming[83,84].Detecting altered neurological performance through nociceptor-based response is not common in?sh,but it does show promise,particularly with agents/ conditions which modify anxiety.A surprising result of a recent study was that cocaine did not alter a behavioural avoidance of a mild electrical?eld[16].Given that establishing a local electric?eld in an open arena is not dif?cult,and that?sh will instinctively avoid it,this method has promise for screening neurotoxins with anaesthetic effects.

2.3.Learning and memory based endpoints

In mammals,the hippocampus is involved with cognitive plasticity.Zebra?sh lack a hippocampus,but they do have a developmentally similar region,the lateral pallium,that appears functionally equivalent[85].Reference memory(i.e.acquired mem-ories)and working memory(i.e.the attentional component of short-term memory),and their interplay(i.e.cognitive plasticity)can be tested in a variety of ways,including both classical(Pavlovian)and operant(instrumental)conditioning.Both conditioning methods evoke response(s)using a pre-existing behaviour(evoked by either CS or UCS),but for classical conditioning,a neutral stimulus is converted into a positive CS(through their repeated pairing),and in operant conditioning consequences are used to reinforce or extinguish a CS.In the below,endpoints are discussed for(1)attention,for(2)searching (map building)behaviour,for(3)the acquisition of responses to neutral stimuli(classical conditioning),as well as for(4)the

385

K.B.Tierney/Biochimica et Biophysica Acta1812(2011)381–389

reinforcement or extinguishment of positive and negative stimuli (operant conditioning).

2.3.1.Attentional endpoints

Behaviours generally result from the integration of multiple signals.What is important is the ability to discern important signals amidst background noise.Neurological?ltering in vertebrates has been referred to as the“cocktail party effect,”coined to describe the ability of a person to hear a signal such as their name spoken in a room full of chatting people[86].Implicit in“selective attention”is that distracting signals be ignored.One assessment methodology used in non-human primates involves coupling a positive stimulus,such as food,with the occurrence of another stimulus,such as a particular visual signal,and varying delay between the two[87].Distractability can be assessed though inserting irrelevant stimuli in the delay period.Since?ltering draws upon reference memory and working memory,it is a useful correlate of neurological function.While numerous paradigms exist to test selective attention-based tests in rodents and primates[87,88],no obvious correlate currently exist for zebra?sh.However,a functionally similar test might be carried out by challenging zebra?sh with competing cues of?tness relevance.For example,?sh could be exposed to a food odorant,which would initiate appetitive behavioural response,then interrupted with an alarm cue,which should evoke anti-predator behaviour.The degree and rate at which the appetitive behaviour is replaced and anti-predator responses exhibited(i.e.evokes attention)could prove meaningful endpoints of sensorimotor function and cognition.To explicitly test memory function,the UCS food and/or predator cues could be replaced with CS cues,such as behaviourally neutral amino acids or PEA.An attentional endpoint could be especially useful in testing cholinergic system functionality,since working memory is dependent on it[89],and since many drugs agonize or antagonize cholinergic receptors and neurodegenerative diseases such as Alzheimer's impair it.

2.3.2.Searching(spatial)endpoints

Introduction to new surroundings will stimulate searching behav-iour and map building[35].The formation of a new cognitive map is another form of neural plasticity and therefore a possible performance metric for neurological impairment.Numerous studies have already validated that searching behaviour in an open arena is a meaningful endpoint in zebra?sh[22,70,90].Searching behaviour was recently used in combination with two anxiogenic factors,alarm pheromone or caffeine,and two axiolytic factors,ethanol and?uoxetine(i.e.the SSRI Prozac),as an endpoint in“a novel tank test”[70].Release into a new tank evoked a bottom seeking in control?sh,which was followed by subsequent upper tank exploration.With alarm pheromone and caffeine exposure,the number of upper tank explorations was reduced, and the time taken to explore(latency)increased.With exposure to ethanol or?uoxetine,the reverse pattern was noted:transitions to the upper tank increased,and the latency to upper tank searching was greatly diminished.Nicotine had the opposite effect,?sh were not as inclined to dive to the tank bottom[23].

Spatial memory is mediated through the lateral pallium.Studies have found that lesioning the functionally equivalent region in rats (hippocampus),abolished searching behaviour[91].Given the ability to focally lesion larval zebra?sh brain tissue and neurons using laser ablation[42],studies of searching hold promise for cognitive endpoints.A tried and true test of spatial memory in rats is the Morris water navigation task,which is essentially map building under stress and with visual cue reference.The rate of learning of the platform location can be gauged by the latency to platform discovery and distance covered in successive trials.Learning under stress in?sh could be accomplished in a variety of means,such as by the ability to ?nd an escape portal(to another potion of a test tank),under the threat of predation,evoked by visual or olfactory stimuli.One zebra?sh study using a net as a freight stimulus showed that the latency to discover an escape portal decreased signi?cantly over six training sessions[92].

2.3.3.Classical conditioning endpoints

Zebra?sh studies have demonstrated that both visual[93]and olfactory[8]cues unassociated with behavioural response(s)can be converted to behavioural response cues.For example,over a few (b10)trials,zebra?sh were able to visibly discriminate and select coloured arms of a T-maze where they would receive a food reward [93].As for odorant-based learning,a recent study demonstrated that by pairing PEA(a neutral stimulus)with food odours(L-alanine and L-valine)over a number of training sessions,appetitive swimming behaviour(turning rate)could be evoked by the addition of PEA alone (i.e.it was converted to a CS)[8].Classical conditioning endpoints may be increasingly adopted since conditioning can be achieved rapidly.For example,just one pairing of a neutral stimulus(red light) with alarm pheromone(UCS)evoked signi?cant conditioning in a related species(fathead minnow)[94].These data suggest that the strength of the innate response determines the rate of learning.

In many species of vertebrates,shaping is used to evoke a desired behaviour.This method consists of reinforcing successive steps towards a target behaviour.This method of reference memory creation may be unreasonable for?sh;however autoshaping may be a viable option.Autoshaping was developed in pigeons and consisted of the pairing of a visual cue(light)with food.Initially the pigeons will respond(peck)to the UCS,but over time will respond to the CS alone[95].There is no reason why this model would not also work in?sh.Zebra?sh will swim into odour sources and sometimes “bite”at water in?ows including food odour(personal observation). With repeated trials,they could be expected to bite at a water?ow source alone.

2.3.4.Operant conditioning endpoints

A variety of methods using open arena to multi-chambered arenas exist to test stimulus reinforcement or extinguishment.Open arenas have been used for tests involving food odour and predator scent.In the?rst,an appetitive response to food?ake was enhanced by pairing it with amino acids food odours[8].In the second,a study of a closely related species(fathead minnow)found that it took6to8days and two to four days to visually and olfactorily acquire a predator, presumably by the pairing of a UCS(alarm pheromone)with visual cues and scent,respectively[39].Visual and odorant cues clearly have potential for assessing cognition,and the differential time course could provide a valuable diagnostic tool.

A common method of operant conditioning involves presenting an animal with one or more choices between arena arms or areas,and based on the decision,either rewarding the animal with food or punishing it with pain or stress.A popular paradigm is“conditioned place preference”(CPP)or sometimes just“place preference”(PP),in which animals are rewarded with a drug after selecting a particular location[96].The reinforcing stimulus needs to be a positive psychoactive stimulant,such as cocaine[97]or amphetamine[98].

A version of CPP is“conditioned place avoidance”(CPA),which is where the conditioned area was initially avoided[99].For example,by “addicting”zebra?sh to D-amphetamine,preference for a side of the tank with two large freight inducing black dots could be evoked[99]. In general,CPP and CPA are good models for testing the neurological bases for addiction,but they remain largely unadopted but available in toxicity or degenerative studies.

At least two methods exist to test vision-based learning in?shes, the T-maze and the three chambered arena.Both methods share some similarities to the radial arm maze(RAM),frequently used in mammalian models.In the T-maze,?sh are introduced into the long arm(base of the T)and they will generally swim to one or both of the sort arms.However,as many as5%?sh may not move from the base

386K.B.Tierney/Biochimica et Biophysica Acta1812(2011)381–389

arm unless provoked[97].The intended outcome is for a?sh to favour one arm based on the desirability of the settings(“spatial preference”)

[97],or a reward coupled to a visual cue[93].In tests using the three chambered arena,?sh are introduced to a center area that is?anked on either side by gated chambers[100].To generate avoidance behaviour of one of the side chamber,?sh are penalized(using con?nement)for making repeated selections of one tank side(in general,to condition an animal to avoid an area based on a visual cue, nociceptor and stress based methods are used[101]).The three chamber con?nement test demonstrated that cholinergic agonization can improve the number of correct decisions[100].

In all operant models discussed above,a conditioned CS will lose its behavioural stimulatory ef?cacy as its repeated presentation goes unpaired with the initial pre-existing,positive stimulus[8].As with acquisitional endpoints,the rate of change in the reinforced decision can provide a correlate of neurological function[102].

3.Problems associated with behavioural endpoints

Variation in responses/traits/parameters increases with organisa-tional level,and so behaviours are obviously the most variable of organismal responses.Additionally,in?sh,as other animals,their state will affect memory recall and motivation,and they are not without personality.Furthermore,with aquatic species,special consideration must be made for the water source.Municipal water is often rife with neurotoxic contaminants,which may vary in concentration considerably even over brief time periods.Water needs to be carbon?ltered and tested to remove/account for any confounding chemical effects.

An appreciable amount of individual variation can be accounted for by classifying behavioural phenotypes,such as low or high activity subgroups.Doing so will increase the power of the test;however,not all traits that appear obviously related to behaviour may be so.In juvenile brook trout,for example,swimming performance ability was not associated with actual(conative)swimming activity[103].Some temporal issues can be exploited;food responsiveness and willing-ness to take risks,for example,are enhanced with brief periods of food deprivation[65,103].Social status can also affect stress level which will in turn modulate activity and stimuli responses[103].If social endpoint was to be used,accounting for dominance behaviour in?sh may present a challenge.Careful observation and selective removal of individuals of stronger resource utilization(e.g.food consumption) could help resolve variation.

4.Conclusions

Vertebrates have been proposed as the best models for elucidating mechanisms of neurodegeneration[104].Among vertebrate models, zebra?sh are?nding ever increasing application.In studies of drugs, zebra?sh make for excellent models,since delivery can be achieved in many cases by simple addition to the tank water.Furthermore, microinjection techniques are now available to deliver agents directly to speci?c cells/tissues,even within larval?sh[105].This review has highlighted behavioural endpoints available to zebra?sh that probe basic neurological function,that test behaviours predicated on the function of diverse types of sensory neurons,and that investigate cognitive performance.Some behavioural endpoints test multiple neurologically-based abilities;this review is intended to provide a template by which to link and/or apportion speci?c physiological, perceptual and cognitive impairments.Most methodologies described herein have very tight parallel with mammalian models.Furthermore, many behavioural tests,especially those using high throughput screens,remain in evolution.The future holds promise for the development of a suite of standardized behavioural assays that can be used to determine the mechanisms by which neurotoxic effects and neurodegenerative diseases develop and progress.Acknowledgments

The author is grateful to W.Ted Allison for motivation in doing this work,and for grants to KBT from the Canadian Wildlife Federation (CWF)and the University of Alberta.

References

[1]R.N.Boyd,M.E.Morris,H.K.Graham,Management of upper limb dysfunction in

children with cerebral palsy:a systematic review,Eur.J.Neurol.8(2001) 150–166.

[2] D.W.Roberts,J.F.Costello,Mechanisms of action for general and polar narcosis:a

difference in dimension,QSAR Comb.Sci.22(2003)226–233.

[3]S.C.Baraban,M.R.Taylor,P.A.Castro,H.Baier,Pentylenetetrazole induced

changes in zebra?sh behavior,neural activity and c-fos expression,Neuroscience 131(2005)759–768.

[4] E.Fontaine,D.Lentink,S.Kranenbarg,U.K.Muller,J.L.van Leeuwen,A.H.Barr,J.W.

Burdick,Automated visual tracking for studying the ontogeny of zebra?sh swimming,J.Exp.Biol.211(2008)1305–1316.

[5] https://www.360docs.net/doc/7e8266061.html,m,V.Korzh,U.Strahle,Zebra?sh embryos are susceptible to the

dopaminergic neurotoxin MPTP,Eur.J.Neurosci.21(2005)1758–1762.

[6]J.F.Sandahl,D.H.Baldwin,J.J.Jenkins,N.L.Scholz,A sensory system at the

interface between urban stormwater runoff and salmon survival,Environ.Sci.

Technol.41(2007)2998–3004.

[7] D.Eddins,D.Cerutti,P.Williams,E.Linney,E.D.Levin,Zebra?sh provide a

sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure:Comparison with nicotine and pilocarpine effects and relationship to dopamine de?cits,Neurotoxicology and Teratology In Press, Corrected Proof(2009).

[8]O.R.Braubach,H.-D.Wood,S.Gadbois,A.Fine,R.P.Croll,Olfactory conditioning

in the zebra?sh(Danio rerio),Behav.Brain Res.198(2009)190–198.

[9]K.B.Tierney,C.J.Kennedy,Chapter6:Background Toxicology,in:P.J.Walsh,S.L.

Smith,L.E.Fleming,H.Solo-Gabriele,W.H.Gerwick(Eds.),Oceans and Human Health:Risks and Remedies from the Seas,vol.1,Elsevier Science Publishers, New York,2008,pp.101–120.

[10]L.I.Zon,Zebra?sh:A new model for human disease,Genome Res.9(1999)

99–100.

[11]R.Gerlai,Zebra?sh:an uncharted behavior genetic model,Behav.Genet.33

(2003)461–468.

[12]V.A.Braithwaite,Cognitive ability in?sh,in:K.A.Sloman,R.W.Wilson,S.

Balshine(Eds.),Behaviour and physiology of?sh,vol.24,Academic Elsevier Press,San Diego,2006,pp.1–37.

[13]W.Boehmler,T.Carr, C.Thisse, B.Thisse,V.A.Can?eld,R.Levenson,D4

Dopamine receptor genes of zebra?sh and effects of the antipsychotic clozapine on larval swimming behaviour,Genes Brain Behav.6(2007)155–166.

[14]O.V.Anichtchik,J.Kaslin,N.Peitsaro,M.Scheinin,P.Panula,Neurochemical and

behavioural changes in zebra?sh Danio rerio after systemic administration of 6-hydroxydopamine and1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,J.

Neurochem.88(2004)443–453.

[15]K.B.Tierney,C.R.Singh,P.S.Ross,C.J.Kennedy,Relating olfactory neurotoxicity to

altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides,Aquat.Toxicol.81(2007)55–64.

[16]M.A.López-Pati?o,L.Yu,H.Cabral,I.V.Zhdanova,Anxiogenic effects of cocaine

withdrawal in zebra?sh,Physiol.Behav.93(2008)160–171.

[17]T.T.Whit?eld,P.Mburu,R.E.Hardisty-Hughes,S.D.M.Brown,Models of

congenital deafness:mouse and zebra?sh,Drug Discov.Today:Disease Models 2(2005)85–92.

[18]L.Li,Zebra?sh mutants:behavioral genetic studies of visual system defects,Dev.

Dyn.221(2001)365–372.

[19]S.L.Beauvais,S.B.Jones,J.T.Parris,S.K.Brewer, E.E.Little,Cholinergic and

behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss),Ecotoxicol.Environ.Saf.49(2001)84–90.

[20]S.L.Beauvais,S.B.Jones,S.K.Brewer,E.E.Little,Physiological measures of neurotoxicity

of diazinon and malathion to larval rainbow trout(Oncorhynchus mykiss)and their correlation with behavioral measures,Environ.Toxicol.Chem.19(2000)1875–1880.

[21]T.D.Irons,R.C.MacPhail, D.L.Hunter,S.Padilla,Acute neuroactive drug

exposures alter locomotor activity in larval zebra?sh,Neurotoxicol.Teratol.32 (2010)84–90.

[22]R.Gerlai,https://www.360docs.net/doc/7e8266061.html,hav,S.Guo,A.Rosenthal,Drinks like a?sh:zebra?sh(Danio rerio)

as a behavior genetic model to study alcohol effects,Pharmacol.Biochem.Behav.

67(2000)773–782.

[23] E.D.Levin,Z.Bencan,D.T.Cerutti,Anxiolytic effects of nicotine in zebra?sh,

Physiol.Behav.90(2007)54–58.

[24] E.D.Levin,H.A.Swain,S.Donerly,E.Linney,Developmental chlorpyrifos effects

on hatchling zebra?sh swimming behavior,Neurotoxicol.Teratol.26(2004) 719–723.

[25] C.E.W.Steinberg,R.Lorenz,O.H.Spieser,Effects of atrazine on swimming

behavior of zebra?sh,Brachydanio rerio,Water Res.29(1995)981–985. [26]K.N.Baer,K.Olivier,C.N.Pope,In?uence of temperature and dissolved oxygen on

the acute toxicity of profenofos to fathead minnows(Pimephales promelas),Drug Chem.Toxicol.25(2002)231–245.

[27]S.Bretaud,P.Saglio,J.-P.Toutant,Effets du carbofuran sur l'activitéde

l'acétylcholinestérase cérébrale et sur l'activitéde nage chez Carassius auratus (Cyprinidae),Cybium25(2001)33–40.

387

K.B.Tierney/Biochimica et Biophysica Acta1812(2011)381–389

[28]J.F.Sandahl,D.H.Baldwin,J.J.Jenkins,N.L.Scholz,Comparative thresholds for

acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos,Environ.Toxicol.Chem.24(2005)136–145.

[29]S.K.Brewer,E.E.Little,A.J.DeLonay,S.L.Beauvais,S.B.Jones,M.R.Ellersieck,

Behavioral dysfunctions correlate to altered physiology in rainbow trout (Oncorynchus mykiss)exposed to cholinesterase-inhibiting chemicals,Arch.

Environ.Contam.Toxicol.40(2001)70–76.

[30]K.B.Tierney,X.Ren,Z.Alyasha'e, B.Zielinski,Towards a mechanistic

understanding of food odor driven motion using zebra?sh(Danio rerio),15th International Symposium on Olfaction and Taste,vol.33,Oxford Univ Press,San Francisco,CA,2008,pp.S156–S157.

[31]M.J.Winter,W.S.Redfern,A.J.Hay?eld,S.F.Owen,J.-P.Valentin,T.H.Hutchinson,

Validation of a larval zebra?sh locomotor assay for assessing the seizure liability of early-stage development drugs,Journal of Pharmacological and Toxicological Methods57,176–187.

[32]S.C.Baraban,M.T.Dinday,P.A.Castro,S.Chege,S.Guyenet,M.R.Taylor,A large-

scale mutagenesis screen to identify seizure-resistant zebra?sh,Epilepsia48 (2007)1151–1157.

[33]J.A.Tiedeken,J.S.Ramsdell,Embryonic exposure to domoic acid increases the

susceptibility of zebra?sh larvae to the chemical convulsant pentylenetetrazole, Environ.Health Perspect.115(2007)1547–1552.

[34]M.F.Beal,Experimental models of Parkinson's disease,Nat.Rev.Neurosci.2

(2001)325–334.

[35]W.J.Bell,Searching behaviour:the behavioural ecology of?nding resources,

Chapman and Hall,Cambridge,1991.

[36]K.Kotrschal,W.-D.Krautgartner, A.Hansen,Ontogeny of the solitary

chemosensory cells in the zebra?sh,Danio rerio,Chem.Senses22(1997) 111–118.

[37]S.M.Lindsay,R.G.Vogt,Behavioral responses of newly hatched zebra?sh(Danio rerio)

to amino acid chemostimulants,Chem.Senses29(2004)93–100.

[38] C.B.Braun,S.Coombs,R.R.Fay,What is the nature of multisensory interaction

between octavolateralis sub-systems?Brain Behav.Evol.59(2002)162–176.

[39]G.E.Brown,D.P.Chivers,R.J.F.Smith,Differential learning rates of chemical

versus visual cues of a northern pike by fathead minnows in a natural habitat, Environ.Biol.Fish.49(1997)89–96.

[40]V.N.Mikheev,J.Wanzenbock,A.F.Pasternak,Effects of predator-induced visual

and olfactory cues on0+perch(Perca?uviatilis L.)foraging behaviour,Ecol.

Freshw.Fish15(2006)111–117.

[41]S.J.Jesuthasan,A.S.Mathuru,The alarm response in zebra?sh:Innate fear in a

vertebrate genetic model,J.Neurogenet.22(2008)211–228.

[42] E.Gahtan,P.Tanger,H.Baier,Visual prey capture in larval zebra?sh is controlled

by identi?ed reticulospinal neurons downstream of the tectum,J.Neurosci.25 (2005)9294–9303.

[43]J.Savitz,L.Bardygula-Nonn,Behavioral interactions between coho(Oncorhynchus

kisutch)and chinook salmon(Oncorhynchus tshawytscha)and prey?sh species,Ecol.

Freshw.Fish6(1997)190–195.

[44]K.M.Gaworecki,A.P.Roberts,N.Ellis,A.D.Sowers,S.J.Klaine,Biochemical and

behavioral effects of diazinon exposure in hybrid striped bass,Environ.Toxicol.

Chem.28(2009)105–112.

[45] C.Schlieper,Farbensinn der tiere und optomotorische reaktionen,https://www.360docs.net/doc/7e8266061.html,p.

Physiol.A Neuroethol.Sens.Neural Behav.Physiol.6(1927)453–472.

[46]J.Abdeljalil,M.Hamid,O.Abdel-mouttalib,R.Stéphane,R.Raymond,A.Johan,S.

José, C.Pierre,P.Serge,The optomotor response:a robust?rst-line visual screening method for mice,Vis.Res.45(2005)1439–1446.

[47] A.Krauss,C.Neumeyer,Wavelength dependence of the optomotor response in

zebra?sh(Danio rerio),Vis.Res.43(2003)1275–1284.

[48]K.Ijiri,Vestibular and visual contribution to?sh behavior under microgravity,

Adv.Space Res.25(2000)1997–2006.

[49]L.Li,J.E.Dowling,A dominant form of inherited retinal degeneration caused by a

non-photoreceptor cell-speci?c mutation,Proc.Natl https://www.360docs.net/doc/7e8266061.html,A94(1997) 11645–11650.

[50]M.C.Smear,H.W.Tao,W.Staub,https://www.360docs.net/doc/7e8266061.html,er,N.J.Gosse,Y.Liu,K.Takahashi,M.-m.

Poo,H.Baier,Vesicular glutamate transport at a central synapse limits the acuity of visual perception in zebra?sh,Neuron53(2007)65–77.

[51]S.E.Brockerhoff,J.B.Hurley,U.Janssen-Bienhold,S.C.Neuhauss,W.Driever,J.E.

Dowling,A behavioral screen for isolating zebra?sh mutants with visual system defects,Proc.Natl https://www.360docs.net/doc/7e8266061.html,A92(1995)10545–10549.

[52]O.Rinner,J.M.Rick,S.C.F.Neuhauss,Contrast sensitivity,spatial and temporal

tuning of the larval zebra?sh optokinetic response,Investig.Ophthalmol.Vis.Sci.

46(2005)137–142.

[53] F.M.Richards,W.K.Alderton,G.M.Kimber,Z.Liu,I.Strang,W.S.Redfern,J.P.

Valentin,M.J.Winter,T.H.Hutchinson,Validation of the use of zebra?sh larvae in visual safety assessment,J.Pharmacol.Toxicol.Meth.58(2008)50–58.

[54]T.P.Barros,W.K.Alderton,H.M.Reynolds,A.G.Roach,S.Berghmans,Zebra?sh:

an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery,Br.J.Pharmacol.154(2008) 1400–1413.

[55] C.Hodel,S.C.F.Neuhauss,Computer-based analysis of the optokinetic response

in zebra?sh larvae,Cold Spring Harbor Protocols2008(2008)8pdb.prot4961-.

[56]R.Spence,G.Gerlach,https://www.360docs.net/doc/7e8266061.html,wrence,C.Smith,The behaviour and ecology of the

zebra?sh,Danio rerio,Biol.Rev.83(2008)13–34.

[57] C.Brown,https://www.360docs.net/doc/7e8266061.html,land,Social learning in?shes:a review,Fish Fish.4(2003)

280–288.

[58] C.A.Dlugos,R.A.Rabin,Ethanol effects on three strains of zebra?sh:model

system for genetic investigations,Pharmacol.Biochem.Behav.74(2003) 471–480.[59]K.B.Tierney,D.A.Paterson,C.J.Kennedy,The in?uence of maternal condition on

offspring performance in sockeye salmon(Oncorhynchus nerka Walbaum),J.Fish Biol.75(2009)1244–1257.

[60]H.Hino,https://www.360docs.net/doc/7e8266061.html,es,H.Bandoh,H.Ueda,Molecular biological research on

olfactory chemoreception in?shes,J.Fish Biol.75(2009)945–959.

[61]K.B.Tierney,D.H.Baldwin,T.J.Hara,P.S.Ross,N.L.Scholz,C.J.Kennedy,Review:

olfactory toxicity in?shes,Aquat.Toxicol.(2009)1–25,doi:10.1016/j.

aquatox.2009.09.019.

[62] C.Hawkes,Olfaction in neurodegenerative disorder,Mov.Disord.18(2003)

364–372.

[63] C.E.Le Pichon,M.T.Valley,M.Polymenidou,A.T.Chesler,B.T.Sagdullaev,A.

Aguzzi,S.Firestein,Olfactory behavior and physiology are disrupted in prion protein knockout mice,Nat.Neurosci.12(2009)60–69.

[64]W.E.S.Carr,https://www.360docs.net/doc/7e8266061.html,herton III,R.A.Gleeson,C.D.Derby,Stimulants of feeding

behavior in?sh:analyses of tissues of diverse marine organisms,Biol.Bull.190 (1996)149–160.

[65] C.W.Steele,D.W.Owens,A.D.Scarfe,Attraction of zebra?sh,Brachydanio rerio,to

alanine and its suppression by copper,J.Fish Biol.36(1990)341–352.

[66]W.C.Michel, D.S.Derbidge,Evidence of distinct amino acid and bile salt

receptors in the olfactory system of the zebra?sh,Danio rerio,Brain Res.764 (1997)179–187.

[67] https://www.360docs.net/doc/7e8266061.html,berge,T.J.Hara,Behavioural and electrophysiological responses to F-prostaglan-

dins,putative spawning pheromones,in three salmonid?shes,J.Fish Biol.62(2003) 206–221.

[68]K.von Frisch,über einen Schreckstoff der Fischhaut und seine biologische

Bedeutung,Z.Vgl.Physiol.29(1941)46–145.

[69]N.Speedie,R.Gerlai,Alarm substance induced behavioral responses in zebra?sh

(Danio rerio),Behav.Brain Res.188(2008)168–177.

[70]R.J.Egan,C.L.Bergner,P.C.Hart,J.M.Cachat,P.R.Canavello,M.F.Elegante,S.I.

Elkhayat,B.K.Bartels,A.K.Tien,D.H.Tien,S.Mohnot,E.Beeson,E.Glasgow,H.

Amri,Z.Zukowska,A.V.Kalueff,Understanding behavioral and physiological phenotypes of stress and anxiety in zebra?sh,Behav.Brain Res.205(2009) 38–44.

[71]N.L.Scholz,N.K.Truelove,B.L.French,B.A.Berejikian,T.P.Quinn,E.Casillas,T.K.

Collier,Diazinon disrupts antipredator and homing behaviors in chinook salmon (Oncorhynchus tshawytscha),Can.J.Fish.Aquat.Sci.57(2000)1911–1918. [72]K.V.Parra,J.C.Adrian Jr.,R.Gerlai,The synthetic substance hypoxanthine3-N-oxide

elicits alarm reactions in zebra?sh(Danio rerio),Behav.Brain Res.205(2009) 336–341.

[73]S.R.Blechinger,R.C.Kusch,K.Haugo,C.Matz,D.P.Chivers,P.H.Krone,Brief

embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory de?cits in juvenile zebra?sh,Toxicol.Appl.Pharmacol.224(2007)72–80.

[74] E.E.Little,S.E.Finger,Swimming behavior as an indicator of sublethal toxicity in

?sh,Environ.Toxicol.Chem.9(1990)13–19.

[75]J.A.Hansen,D.F.Woodward,E.E.Little,A.J.Delonay,H.L.Bergman,Behavioral

avoidance:possible mechanism for explaining abundance and distribution of trout species in a metal-impacted river,Environ.Toxicol.Chem.18(1999) 313–317.

[76]Y.Ishida,H.Kobayashi,Avoidance behavior of carp to pesticides and decrease of

the avoidance threshold by addition of sodium lauryl sulfate,Fish.Sci.Tokyo61 (1995)441–446.

[77]J.D.Morgan,G.A.Vigers,A.P.Farrell,D.M.Janz,J.F.Manville,Acute avoidance

reactions and behavioral responses of juvenile rainbow trout(Oncorhynchus mykiss)to Garlon4?Garlon3A?and Vision?herbicides,Environ.Toxicol.

Chem.10(1991)73–79.

[78]H.Yambe,M.Shindo,F.Yamazaki,A releaser pheromone that attracts males in

the urine of mature female masu salmon,J.Fish Biol.55(1999)158–171. [79]T.J.Hara,Feeding behaviour in some teleosts is triggered by single amino acids

primarily through olfaction,J.Fish Biol.68(2006)810–825.

[80]J.M.Gardiner,J.Atema,Sharks need the lateral line to locate odor sources:

rheotaxis and eddy chemotaxis,J.Exp.Biol.210(2007)1925–1934.

[81]I.K.Birtwell,R.Fink,D.Brand,R.Alexander,C.D.McAllister,Survival of pink

salmon(Oncorhynchus gorbuscha)fry to adulthood following a10-day exposure to the aromatic hydrocarbon water-soluble fraction of crude oil and release to the Paci?c Ocean,Can.J.Fish.Aquat.Sci.56(1999)2087–2098.

[82]K.B.Tierney,E.Stockner,C.J.Kennedy,Changes in immunological characteristics

and disease resistance of juvenile coho salmon(Oncorhynchus kisutch Walbaum) in response to dehydroabietic acid exposure under varying thermal conditions, Water Qual.Res.J.Can.39(2004)176–184.

[83] C.H.Hammer,Fatigue and exercise tests with?sh,Comp.Biochem.Physiol.A

Physiol.112(1995)1–20.

[84]K.B.Tierney,M.Casselman,S.Takeda,A.P.Farrell,C.J.Kennedy,The relationship

between cholinesterase inhibition and two types of swimming performance in chlorpyrifos-exposed coho salmon(Oncorhynchus kisutch),Environ.Toxicol.

Chem.26(2007)998–1004.

[85] F.Rodríguez,J.C.López,J.P.Vargas,C.Broglio,Y.Gómez,C.Salas,Spatial memory

and hippocampal pallium through vertebrate evolution:insights from reptiles and teleost?sh,Brain Res.Bull.57(2002)499–503.

[86] E.C.Cherry,Some experiments on the recognition of speech,with one and with

two ears,J.Acoust.Soc.Am.25(1953)975–979.

[87]M.A.Prendergast,Assessment of distractability in non-human primates

performing a delayed matching task,in:J.J.Buccafusco(Ed.),Methods of Behavior Analysis in Neuroscience,CRC Press,Boca Raton,2001,pp.123–140.

[88]P.J.Bushnell,B.J.Strupp,Assessing attention in rodents,in:J.J.Buccafusco(Ed.),

Methods of Behavior Analysis in Neuroscience,CRC Press,Boca Raton,2009.

388K.B.Tierney/Biochimica et Biophysica Acta1812(2011)381–389

[89]M.I.Miranda,G.Ferreira,L.Ramírez-Lugo, F.Bermúdez-Rattoni,Role of

cholinergic system on the construction of memories:taste memory encoding, Neurobiol.Learn.Mem.80(2003)211–222.

[90]R.Blaser,R.Gerlai,Behavioral phenotyping in zebra?sh:comparison of three

behavioral quanti?cation methods,Behav.Res.Meth.38(2006)456–469. [91]J.O'Keefe,L.Nadel,The hippocampus as a cognitive map,Oxford University

Press,Oxford,1978.

[92] D.Arthur,E.Levin,Spatial and non-spatial visual discrimination learning in

zebra?sh(Danio rerio),Anim.Cogn.4(2001)125–131.

[93]R.M.Colwill,M.P.Raymond,L.Ferreira,H.Escudero,Visual discrimination

learning in zebra?sh(Danio rerio),Behav.Process.70(2005)19–31.

[94]W.K.Yunker,D.E.Wein,B.D.Wisenden,Conditioned alarm behavior in fathead

minnows(Pimephales promelas)resulting from association of chemical alarm pheromone with a nonbiological visual stimulus,J.Chem.Ecol.25(1999) 2677–2686.

[95] C.M.Locurto,H.S.Terrace,J.Gibbon,Autoshaping and conditioning theory,in:C.M.

Locurto,H.S.Terrace,J.Gibbon(Eds.),Autoshaping and Conditioning Theory, Academic Press,New York,1981,p.313.

[96]J.R.James,R.Young,J.A.Rosecrans,Conditioned place preference:an approach to

evaluating positive and negative drug-induced stimuli,in:J.J.Buccafusco(Ed.), Methods of Behavior Analysis in Neuroscience,CRC Press,Boca Raton,2001,pp.81–90.

[97]T.Darland,J.E.Dowling,Behavioral screening for cocaine sensitivity in

mutagenized zebra?sh,Proc.Natl https://www.360docs.net/doc/7e8266061.html,A98(2001)11691–11696.

[98]J.Ninkovic,A.Folchert,Y.V.Makhankov,S.C.F.Neuhauss,I.Sillaber,U.Straehle,L.

Bally-Cuif,Genetic identi?cation of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebra?sh,J.Neurobiol.66(2006) 463–475.

[99]J.Ninkovic,L.Bally-Cuif,The zebra?sh as a model system for assessing the

reinforcing properties of drugs of abuse,Methods39(2006)262–274. [100] E.Levin,J.Limpuangthip,T.Rachakonda,M.Peterson,Timing of nicotine effects on learning in zebra?sh,Psychopharmacology184(2006)547–552.

[101]J.Garcia,https://www.360docs.net/doc/7e8266061.html,siter,F.Bermudez-Rattoni,D.A.Deems,A general theory of aversion learning,Ann.NY Acad.Sci.443(1985)8–21.

[102]T.E.Orr,P.A.Walters,R.L.Elkins,Fundamentals,methodologies,and uses of taste aversion learning,in:Buccafusco(Ed.),Methods of Behavior Analysis in Neuroscience,CRC Press,Boca Raton,2001,pp.51–70.

[103]M.Farwell,R.L.McLaughlin,Alternative foraging tactics and risk taking in brook charr(Salvelinus fontinalis),Behav.Ecol.20(2009)913–921.

[104]J.D.Cooper,C.Russell,H.M.Mitchison,Progress towards understanding disease mechanisms in small vertebrate models of neuronal ceroid lipofuscinosis, Biochim Biophys Acta(BBA),Mol.Basis Dis.1762(2006)873–889.

[105] C.Cianciolo Cosentino,B.L.Roman,I.A.Drummond,N.A.Hukriede,Intravenous microinjections of zebra?sh larvae to study acute kidney injury,J.Vis.Exp.42 (2010)e2079.

[106]J.S.S.Easter,G.N.Nicola,The development of vision in the zebra?sh(Danio rerio), Dev.Biol.180(1996)646–663.

389

K.B.Tierney/Biochimica et Biophysica Acta1812(2011)381–389

管理学原理与方法周三多第五版重点.docx

管理学原理与方法(周三多第五版) 总论 人类活动的特点:目的性,依存性,知识性 管理的概念:管理是管理者为了有效地实现组织目标(目的性有效性协调性过程性) 1:管理是人类有意识有目的的活动。2:管理应当是有效的。 3:管理的本质是协调。4:协调是运用各种管理职能的过程。 管理的职能:决策、组织、领导、控制、创新,是一切管理活动最基本的职能。 1:决策:所有管理者必须制定符合并支持组织的总体战略目标。(制定目标、行动) 2:组织:设计岗位,授权分工,使整个组织协调地运转。(设计、授权) 3:领导:指导人们的行为,通过沟通增强互相理解,统一思想和行动,激励成员自觉地为实现组织目标共同努力。(指导、沟通、激励) 4:控制:使实践活动符合于计划,计划是控制的标准。(衡量、纠偏) 5:创新:与其他职能结合中表现。 管理二重性:1、管理的自然属性--反映人与自然的关系不以人的意志为转移,也不因社会制度形态的不同而有所改变,这完全是一种客观存在。 2、管理的社会属性--反映社会关系 管理者的角色:明茨伯格这十种角色可归入三类。 人际角色:代表人角色、领导人角色、联络者角色 信息角色:监督者、发言人、传播人 决策角色:企业家、干扰对付者、资源分配者、谈判者 管理者三种技能:卡次 1:技术技能,运用管理者所监督的专业领域中的过程、惯例、技术和工具的能力。 2:人际技能,成功地与人打交道并与人沟通的能力。 3:概念技能,把观点设想出来并加以处理以及将关系抽象化的精神能力。 管理学的研究方法:归纳法、试验法、演绎法 中国传统管理思想的要点: 1:宏观管理的治国学--(财政赋税、人口管理、货币管理、等) 2:微观管理的治生学--(农副业、手工业、运输、建筑工程等) 顺道、重人、人和、守信、利器、求实、对策、节俭、法治 西方早期思想产生的三个人物:亚当斯密巴贝奇罗伯特欧文 泰罗创立的科学管理理论 主要观点:1:科学管理的根本目的--谋求最高工作效率 2:达到最高效率的重要手段--用科学的管理方法代替旧的经验方法 3:实施科学管理的核心问题-要求管理人员和工人双方在精神上和思想上来一个彻底的改变 提出的以下管理制度:1:对工人提出科学的操作方法,以便合理利用工时,提高效率 2:在工资制度上实行差别计件制3:对工人进行科学的选择,培训和提高 4:制定科学的工艺规程5:使管理和劳动分离 评价:1:它冲破了传统地落后地经验管理办法,将科学引进了管理领域,创立了一套具体地科学管理方法2:科学地管理方法和科学地操作程序使生产效率提高了二三倍,推动了生产地发展,适应了资本主义地发展。 3:由于管理职能于执行职能地分离,企业中开始有一些人专门从事管理工作 4:泰罗把人看成会说话的机器,只能按照管理人员的决定、指示、命令执行劳动,在体力技能上受很大的压榨 缺陷:适应历史发展的需要而产生的,同时也受到历史条件和个人经历的限制,他的科学管理所涉及的问

管理学原理与方法周三多第六版

第一篇 第一章管理与管理学 第一节人类的管理活动 一:人类活动的特点(目的性、依存性、知识性) 二:管理的必要性 三:管理的概念 第二节管理的职能与性质 一:管理的职能(计划、组织、领导、控制、创新) 二:管理的自然属性 三:管理的社会属性 第三节管理者的角色与职能 一:管理者的角色(人际角色、信息角色、决策角色) 二:管理者的职能 罗伯特卡次的研究,管理者必须具备三种技能:(技术技能、人际技能、概念机能)第四节管理学的对象与方法 一:管理学的研究对象 二:管理学的研究方法 (一)归纳法(二)试验法(三)演绎法 第二章管理思想的发展 第一节中国传统管理思想 一:中国传统思想形成的社会文化背景 二:中国传统管理思想的要点 第二节西方传统管理思想 一:西方早期管理思想的产生 1:亚当斯密《国富论》1776(英国) 2:查理巴贝奇(英国) 3:罗伯特。欧文(英国的空想主义家) 二:科学管理理论的产生和发展(19世纪末20世纪初) (一)“泰罗”的科学管理理论——科学管理之父 亨利。甘特:布雷斯及他的妻子: (二)对“泰罗制”的评价 (三)法约尔的“组织管理理论” 第三节西方现代管理思想的发展 一:行为科学学派 霍桑试验: 1:需求层次理论——马斯洛 2:双因素理论——赫茨伯格 3:X、Y理论 4:Z理论——威廉。大内 二:“管理科学”学派 三:“决策理论”学派 四:对现代管理理论的思考 五:新经济时代管理思想的变革

(一)管理思想的创新 (二)管理原则的创新 (三)经营目标创新 (四)经营战略创新 (五)生产系统创新 (六)企业组织创新 第三节中国现代管理思想的发展 一:中国现代管理思想形成的历史背景 (一)中国官僚资本企业和民族资本企业的管理 (二)我国革命根据地公营企业的管理 (三)全面学习西方的管理模式 (四)探索中国现在管理模式 二:社会主义经济管理体制改革 (一)由国内管理向国际化管理转化 (二)由科学管理向信息化管理转化 (三)由首长管理向人性化管理转化 (四)由政府管理向民营化管理转化 (五)由封闭式实体管理向开放式虚拟管理转化 第三章管理的基本原理 第四章第一节管理原理的特征 第五章一:管理原理的主要特征 第六章二:研究管理原理的意义 第七章第二节系统原理 第八章一:系统的概念 第九章二:系统的特征 第十章三:系统原理要点 第十一章第三节人本原理 第十二章一:职工是企业的主体 第十三章二:有效管理的关键是职工参与 第十四章三:现代管理的核心是使人性得到最完美的发展 第十五章四:管理是为人服务的 第十六章第四节责任原理 第十七章一:明确每个人的职责 第十八章二:职位设计和权限委任要合理 第十九章三:奖惩要分明,公正而及时 第二十章第五节效益原理 第二十一章一:效益的概念 第二十二章二:效益的评价 第二十三章三:效益的追求 第四章信息化管理 第一节信息与信息化 一、信息的含义 二、信息化的内涵 三、信息化的影响

经典层序地层学的原理与方法

第二章 经典层序地层学的原理与方法 经典层序地层学为分析沉积地层和岩石关系提供了有力的方法手段,其原理和实践已被大多数地质学家所接受。理论上,层序地层学特别重视海平面升降周期对地层层序形成的重要影响;实践上,它通过年代地层格架的建立,对地层分布模式作出解释和同时代成因地层体系域的划分,为含油气盆地地层分析和盆地规模的储层预测提供坚实的理论和油气勘探的有效手段,有力的推动了地质学,特别是石油地质学的发展,它的推广与应用标志着隐蔽油气藏勘探研究进入了一个全新的精细描述、精细预测阶段。 第一节经典层序地层学中的两种层序边界 Vail等在硅质碎屑岩层系中已经识别出两类不同的层序,即Ⅰ类层序和Ⅱ类层序,这两类层序在碳酸盐岩研究中得到了广泛应用。以下详细论述这两类层序边界的含义、特征和识别标志。 一、Ⅰ型层序边界及其特征和识别标志 当海平面迅速下降且速率大于碳酸盐台地或滩边缘盆地沉降速率、海平面位置低于台地或滩边缘时,就形成了碳酸盐岩的Ⅰ型层序界面。Ⅰ型层序界面以台地或滩的暴露和侵蚀、斜坡前缘侵蚀、区域性淡水透镜体向海方向的运动以及上覆地层上超、海岸上超向下迁移为特征(图1-2-1)。 图1-2-1碳酸盐岩Ⅰ型层序边界特征(据Sarg,1988) 1.碳酸盐台地或滩边缘暴露侵蚀的岩溶特征 碳酸盐台地广泛的陆上暴露和合适的气候条件为形成Ⅰ型层序界面提供了地质条件,层

序界面以下的沉积物具有明显的暴露、溶蚀等特征,碳酸盐台地或陆棚沉积背景上的陆上暴露,可通过古岩溶特征来识别,因此,风化壳岩溶是识别碳酸盐台地碳酸盐岩Ⅰ型层序的重要特征。 ①古岩溶面常是不规则的,纵向起伏几十至几百米。岩溶地貌常表现为岩溶斜坡和岩溶凹地。如我国鄂尔多斯盆地奥陶系顶部、新疆奥陶系顶部、川东石炭系黄龙组顶部等发育的古岩溶。 ②地表岩溶主要特征为出现紫红色泥岩、灰绿色铝土质泥岩以及覆盖的角砾灰岩、角砾白云岩的古土壤。风化壳顶部的岩溶角砾岩往往成分单一,分选和磨圆差。碎屑灰岩和碎屑如鲕粒、生物碎屑常被溶解形成铸模孔等。 ③古岩溶存在明显的分带性,自上而下可分为垂直渗流岩溶带、水平潜流岩溶带和深部缓流岩溶带。 ④岩溶表面和岩溶带中出现各种岩溶刻痕和溶洞,如细溶沟、阶状溶坑、起伏几十米至几百米的夷平面、落水洞、溶洞以及均一的中小型蜂窝状溶孔洞等。 ⑤溶孔内存在特征充填物,可充填不规则层状且分选差的角砾岩、泥岩或白云质泥的示底沉积,隙间或溶洞内充填氧化铁粘土和石英粉砂以及淡水淋虑形成的淡水方解石和白云岩。 ⑥具有钙质壳、溶解后扩大的并可被粘土充填的解理、分布广泛的选择性溶解空隙。 ⑦岩溶地层具有明显的电测响应,如明显的低电阻率、相对较高的声波时差、较高的中子孔隙度、较明显的扩径、杂乱的地层倾角模式和典型的成像测井响应。 ⑧古岩溶面响应于起伏较明显的不规则地震反射,古岩溶带常对应于明显的低速异常带。此外,古岩溶面上下地层的产状、古生物组合、微量元素及地化特征也有明显的差别。 2.斜坡前缘的侵蚀作用 在Ⅰ型层序界面形成时,常发生明显的斜坡前缘的侵蚀,导致台地和滩缘斜坡上部大量沉积物被侵蚀掉,结果造成大量碳酸盐砾屑的向下滑塌堆积作用和碳酸盐砂的碎屑流、浊流沉积作用和碳酸盐砂砾的密度流沉积作用(图1-2-1)。斜坡前缘侵蚀作用可以是局部性或区域性的,向上可延伸到陆棚区形成发育良好的海底峡谷,滩前沉积物可被侵蚀掉几十至几百米。 在碳酸盐缓坡和碳酸盐台地边缘出现的水道充填砾屑灰岩,以及向陆方向由河流回春作用引起的由海相到陆相、碳酸盐岩到碎屑岩的相变沉积物以及向上变浅的沉积序列也是Ⅰ型层序边界的标志。 3.淡水透镜体向海的方向运动 Ⅰ型层序界面形成时发生的另一种作用,就是淡水透镜体向海或向盆地方向的区域性迁移(图1-2-1)。淡水透镜体渗入碳酸盐岩剖面的程度与海平面下降速率、下降幅度和海平面保持在低于台地或滩边缘的时间长短有关。在大规模Ⅰ型层序边界形成时期,当海平面下降75~100米或更多并保持相当长的时间时,在陆棚上就会长期地产生淡水透镜体,它的影响会充分地深入到地下,并可能深入到下伏层序。若降雨量大,剖面浅部就会发生明显的淋滤、溶解作用,潜流带出现大量的淡水胶结物,如不稳定的文石、高镁方解石可能被溶解,形成低镁方解石沉淀(Sarg,1998)。Vail的海平面升降曲线表明,在全球海平面下降中,少见大规模的Ⅰ型海平面下降。一般的海平面下降幅度不超过70~100m。也就是说,在小规模Ⅰ型层序边界形成时期,淡水透镜体未被充分建立起来,只滞留在陆架地层的浅部,没有造成广泛的溶解和地下潜水胶结物的沉淀。在Ⅰ型层序边界形成时期,在适宜的构造、气候和时间条件下可能发育风化壳。同时,伴随Ⅰ型界面形成期间,可发生不同规模的混合水白云化和强烈蒸发作用而引起的白云化。 二、Ⅱ型层序界面及其特征、识别标志

《管理学原理与方法》周三多(第四版)权威笔记最新整理

1.以指定教材为中心,重视基础,善于总结 2.在理解的基础上记忆,并能联系实际 3.答题要有逻辑,条理要清楚 讲义分为两部分:宋体部分是教材内容的结构和要点,应以此为复习框架; 楷体部分是对教材内容的补充,对于完善答题内容,充实知识结构有帮助; 讲义最后另附有重要理论的补充,这是教材上没有详述但是作为管理类 学生必须掌握的知识。 祝学员金榜题名,马到成功!

目录 第一章管理与管理学................................................................................................................ - 1 - 第一节人类的管理活动.................................................................................................... - 1 - 第二节管理的职能与性质................................................................................................ - 2 - 第三节管理者的角色与职能............................................................................................ - 2 - 第四节管理学的对象与方法............................................................................................ - 3 - 第二章管理思想的发展............................................................................................................ - 4 - 一、管理实践、管理思想与管理理论三者之间的关系.......................................................... - 4 - 二、管理学形成的阶段划分...................................................................................................... - 4 - 三、美国出现“管理运动”的必然性 ...................................................................................... - 5 - 第一节中国传统管理思想................................................................................................ - 5 - 第二节西方传统管理思想................................................................................................ - 5 - 第三节西方现代管理思想的发展.................................................................................... - 7 - 第三节中国现代管理思想的发展.................................................................................. - 12 - 第三章管理的基本原理.......................................................................................................... - 13 - 第一节管理原理的特征.................................................................................................. - 13 - 第二节系统原理.............................................................................................................. - 13 - 第三节人本原理.............................................................................................................. - 13 - 第四节责任原理............................................................................................................. - 14 - 第五节效益原理.............................................................................................................. - 14 - 第六节伦理原理.............................................................................................................. - 15 - 第四章管理的基本方法.......................................................................................................... - 16 - 第一节管理的方法论...................................................................................................... - 16 - 第二节管理的法律方法.................................................................................................. - 16 - 第三节管理的行政方法.................................................................................................. - 16 - 第四节管理的经济方法.................................................................................................. - 17 - 第五节管理的教育方法.................................................................................................. - 17 - 第六节管理的技术方法.................................................................................................. - 18 - 第五章管理伦理...................................................................................................................... - 19 - 第一节有关伦理的几种观点.......................................................................................... - 19 - 第二节伦理管理的特征和影响伦理的因素.................................................................. - 19 - 第三节改善伦理行为的途经........................................................................................ - 20 - 第四节伦理行为的具体表现.......................................................................................... - 20 - 第六章组织文化...................................................................................................................... - 22 - 第一节组织文化的概念和基本特征.............................................................................. - 22 - 第二节组织文化的基本要素.......................................................................................... - 22 - 第三节组织文化的功能.................................................................................................. - 22 - 第四节塑造组织文化的主要途经.................................................................................. - 23 - 2:全面归纳.............................................................................................................................. - 23 - 补充:企业文化的四种类型............................................................................................ - 23 - 第七章管理信息...................................................................................................................... - 25 - 第一节信息概述.............................................................................................................. - 25 -

层序地层学讲义

层序地层学在油气勘探中的应用 (培训教材) 编写人:张振生 刘社平 石油物探局 二00一年四月

前言 随着近些年层序地层学理论的不断发展和应用领域的不断扩展,“层序地层学成为每位勘探学家必备的实用工具”的看法已经得到广泛的认可。事实上,层序地层学在勘探和开发中已不仅仅是一种通用工具。对于应用地球预测科学,在许多方面它还是一种重要的模型。 “层序地层学”是一门新学科,自八十年代后期问世以来,很快在石油勘探业得到响应,并得以广泛的应用。这不仅是因为它是在地震地层学的基础发展起来的,容易被人们接受外,它提出的模式也大大提高了生油层、储层、盖层及潜在的地层圈闭的预测能力,并能提供一种更精确的地质时代对比、古地理再造和在钻前预测生、储、盖层的先进方法,更适用于当今石油勘探业的需要。因此被认为是地层学上的一场革命,它开创了了解地球历史的一个新阶段,是盆地分析中最有用的工具之一。 近几年,国内外已应用层序地层学理论,进行了浩繁的研究工作,取得了丰富的地质成果和勘探效果。此外许多学者还发表了许多有关层序地层学方面的文章,从不同角度和不同研究方面论述了层序地层学的原理及应用,并拓宽了层序地层学理论和应用范围。本文旨在重点介绍层序地层学的发展状况、基本概念及在应用中应注意的问题,以帮助大家对其有大致了解和具备实际应用能力。 一、层序地层学产生的历史背景 自物探方法于30年代应用于石油勘探以来,地震勘探大致经历了三个发展阶段: 1、30~70年代构造地震学 2、70~80年代地震地层学 3、80年代~今层序地层学 早期地震资料主要用来勾绘构造图,受当时物探技术的限制(五一型光点记录及模拟磁带记录),人们不可能得到更多的信息和认识。到60年代未期,随着计算机的发展及数字模拟剖面的出现,地震剖面质量得以改善,也促成了具有深远意义的地震地层学新学科的出现。 自从美国石油地质家协会于1977年推出“地震地层学”专辑(AAPG,Memior26)以来,地震资料的解释已不再是简单地做构造图,它冲破了过去从地震资料只能解释地下构造形态的束缚,力图充分利用当代先进的数字地震和计算机处理所获得的高质量地震资料,结合现代沉积学的概念对地震剖面进行专门分析,预测古代沉积环境、生油层和储层的分布以及可能的有利含油气相带。 地震地层学最主要的贡献在于将地震信息与其包含的地质含义紧密地结合起来,根据地震信息和少数钻井来研究岩性、岩相。正如Brown,1977年指出的那样:“地震地层学引起的‘革命’至少在两个方面有特殊的兴趣和用途: (1)一种是利用计算机分析速度、振幅和周期等参数,目的在于大范围和相当精确地鉴别和合成包含岩石成份、流体含量及其它同类参数的模型的物理学方法;

(最新)周三多管理学原理与方法(第五版)课后答案考试必备

(最新)周三多管理学原理与方法(第五版)课后答案考试必 备 考研或者是考试必备,加油啊~ 第一章: 第一题答案:1:目的性:人类正是在为实现预期目的的活动中,在不断地劳动,思考,谋划,设计和组织管理的过程中,逐步进化的。2:依存性:人类的目的性来源于对外部环境和人类自身的相互依存关系。3:知识性:人类能从过去的实践中学习,从前人的经验中学习,并能把学到的知识加以记忆,积累,分析和推理,从而形成人类独有的知识体系。人类活动的上述三个特点为人类的管理实践提供了客观条件,也回 答了为什么管理实践与人类历史同样悠久的原因。 第二题答案:管理是社会组织中,为了实现预期的目标,以人为中心进行的协调活动调。管理的最基本的特征是:1:管理的载体是一个组织2:管理的基本对象是人3:在管理的资源配置中,人才是第一资源。4:管理的任务:在一般意义上讲,它是通过采取某些具体的手段和措施,设计、营造、维护一种环境,包括组织内部和外部的环境,使所有管理对象在特定的环境中,做到协调而有序地进行活动。第三题答案:许多新的管理论和管理学实践已一再证明:计划、组织、领导、控制、创新这五种管理职能是一切管理活动最基本的职能。计划:制定目标并确实为达成这些目标所必需的行动。组织中所有的管理者都必须从事计划活动。根据工作的要求与人员的特点,设计岗位,通过授权和分工,将适当的人员安排在适当的岗位上,用制度规定各个岗位的职责和上下左右的相互关系,形成一个有机的组织结构,使整个组织协调运转——这就是组织的职能组织目标决定着组织的具体形式和特点指导人们的行为,通过沟通增强人们的相互理解,统一人们的思想和行动,激励每个

管理学原理与方法周三多 第六版

第一篇 第一章? 管理与管理学 第一节人类的管理活动 一:人类活动的特点(目的性、依存性、知识性) 二:管理的必要性 三:管理的概念 第二节? 管理的职能与性质 一:管理的职能(计划、组织、领导、控制、创新) 二:管理的自然属性 三:管理的社会属性 第三节? ?管理者的角色与职能 一:管理者的角色(人际角色、信息角色、决策角色) 二:管理者的职能 罗伯特卡次的研究,管理者必须具备三种技能:(技术技能、人际技能、概念机能)第四节? 管理学的对象与方法 一:管理学的研究对象 二:管理学的研究方法 (一)?归纳法(二)试验法(三)演绎法 第二章? ?管理思想的发展 第一节? 中国传统管理思想 一:中国传统思想形成的社会文化背景 二:中国传统管理思想的要点 第二节? 西方传统管理思想 一:西方早期管理思想的产生 1:亚当斯密《国富论》1776(英国) 2:查理巴贝奇(英国) 3:罗伯特。欧文(英国的空想主义家) 二:科学管理理论的产生和发展(19世纪末20世纪初) (一)“泰罗”的科学管理理论——科学管理之父 亨利。甘特:布雷斯及他的妻子: (二)对“泰罗制”的评价 (三)法约尔的“组织管理理论” 第三节? ?西方现代管理思想的发展 一:行为科学学派 霍桑试验: 1:需求层次理论——马斯洛 2:双因素理论——赫茨伯格 3:X、Y理论 4:Z理论——威廉。大内 二:“管理科学”学派 三:“决策理论”学派 四:对现代管理理论的思考 五:新经济时代管理思想的变革

(一)管理思想的创新 (二)管理原则的创新 (三)经营目标创新 (四)经营战略创新 (五)生产系统创新 (六)企业组织创新 第三节? ? ? ? 中国现代管理思想的发展 一:中国现代管理思想形成的历史背景 (一)?中国官僚资本企业和民族资本企业的管理 (二)?我国革命根据地公营企业的管理 (三)?全面学习西方的管理模式 (四)?探索中国现在管理模式 二:社会主义经济管理体制改革 (一)?由国内管理向国际化管理转化 (二)?由科学管理向信息化管理转化 (三)?由首长管理向人性化管理转化 (四)?由政府管理向民营化管理转化 (五)?由封闭式实体管理向开放式虚拟管理转化 第三章? ?管理的基本原理 第四章第一节? ?管理原理的特征 第五章一:管理原理的主要特征 第六章二:研究管理原理的意义 第七章第二节? ?系统原理 第八章一:系统的概念 第九章二:系统的特征 第十章三:系统原理要点 第十一章第三节人本原理 第十二章一:职工是企业的主体 第十三章二:有效管理的关键是职工参与 第十四章三:现代管理的核心是使人性得到最完美的发展 第十五章四:管理是为人服务的 第十六章第四节? 责任原理 第十七章一:明确每个人的职责 第十八章二:职位设计和权限委任要合理 第十九章三:奖惩要分明,公正而及时 第二十章第五节? ?效益原理 第二十一章一:效益的概念 第二十二章二:效益的评价 第二十三章三:效益的追求 第四章信息化管理 第一节信息与信息化 一、信息的含义 二、信息化的内涵 三、信息化的影响

层序地层学原理及应用

事件地层学的原理及地质事件简介 1概念、原理与特点 事件地层学,狭义是指利用稀有的、突发的事件及其地质记录来对比地层;广义是指利用一切事件及其地质记录来进行地层的划分对比的学科。这里指的是狭义的概念。 原理:地质事件都可能在地层中留下相应的地质记录。根据这些记录便可推断事件的类别、性质及规模,可以探讨事件的成因及其地层价值。地质事件造成的影响及产物在地层构架中以生物界变革或沉积特征变化记录下来,成为事件地层学研究的基本依据,成为地层对比划分的标志。 例如,火山喷发形成火山岩层,大范围内火山灰降落形成凝灰岩;全球性气候降温可导致冰川广布,堆积冰碛岩;地磁极倒转都可能在各地的沉积物中被记录下来;天体撞击能形成特殊的粘土层,其岩石性质、产状、地球化学特点等与普通沉积岩十分不同,其厚度小、分布广、富含铱等稀有元素,形成所谓“界线粘土层”。 事件地层学其具有等时性、大区域性、自然性的特点。 2地质事件简介 地质事件可以划分为两类:地内事件和地外事件。

地内事件包括生物绝灭、地磁极倒转、缺氧环境出现、冰期事件、海平面升降、火山喷发及火山灰降落、洋中脊体积变化、地壳运动、气候变化、沉积环境变化、浊流和风暴等。 地外事件包括陨星和彗星撞击地球、超新星爆发、太阳辐射强度变化等。 2.1生物绝灭事件 生物灭绝又叫生物绝种。它并不总是匀速的,逐渐进行的,经常会有大规模的集群灭绝,即生物大灭绝。整科,整目甚至整纲的生物在可以很短的时间内彻底消失或仅有极少数残存下来。在集群灭绝过程中,往往是整个分类单元中的所有物种,无论在生态系统中的地位如何,都逃不过这次劫难,而且还常常是很多不同的生物类群一起灭绝,却总有其它一些类群幸免于难,还有一些类群从此诞生或开始繁盛。大规模的集群灭绝有一定的周期性,大约6200万年就会发生一次,但集群灭绝对动物的影响最大,而陆生植物的集群灭绝不象动物那样显著。 地史中生物大灭绝的概况: 2.1.1第一次生物大灭绝: 时间:为距今4.4亿年前的奥陶纪末期。 事件:导致大约85%的物种绝灭。 原因:古生物学家认为这次物种灭绝是由全球气候变冷造成的。在大约4.4亿年前,现在的撒哈拉所在的陆地曾经位于南极,当陆地

碳酸盐岩层序地层学概论

中国地质大学(北京)“层序地层学应用”报告——碳酸盐岩层序地层学发展概论 课程名称:层序地层学基本原理及应用 老师:陈开远 学生:李东 学号:2110120011 学院:地信学院 日期:2012年12月5日

碳酸盐岩层序地层学发展概论 一、碳酸盐岩层序地层学概述 Vail 等于1987 年提出层序地层学( sequencest rat igraphy ) 的概念,在1988 年, Van Wag oner 又提出了新的定义: 研究以侵蚀面或无沉积作用面或可相互对比整合面为界的年代地层学格架中有成因相关意义的岩相的科学。层序是最基本的单元,一个层序又可分为若干个体系域,体系域内部是个或多个准层序或准层序组。准层序即是在成因上具有联系的、相对整一的一套岩层或岩层组。 确定层序所必需的许多信息来源于地震资料(当然也可以从露头和井孔中获得)。除了对早期的硅质碎屑岩讨论以外,对碳酸盐岩层序地层学的讨论也是有用的,因为这样可以唤起对沉积倾向性的理解。所有的沉积体系都记录了相同的基本过程的影响,但它们的记录又各有所侧重,地质学家应该了解沉积体系在记录海平面变化、气候或其它环境因素中的倾向性,这样便能更加全面地对层序地层学进行学习和研究。 碳酸盐体系不同于硅质碎屑体系. 碳酸盐沉积物是在盆内形成的,因此除了区域构造沉降和海平面变化外,海洋气候和水文条件也控制着碳酸盐的沉积过程。J. S. Sang在对世界不同碳酸盐台地研究后认:为短期的全球海平面变化( 相对海平面变化)是控制碳酸盐生产率、碳酸盐台地或碳酸盐滩发育及其相分布的主要因素。 1、海相碳酸盐岩——生物礁层序地层学研究 目前,涉及我国新生代、中生代和古生代海相碳酸盐岩一生物礁油气层序地层学最为突出的几个成功研究实例是四川普光、新疆塔里木和南中国海油气区,获得了油气突破性发现。首先研究涉及层序单元划分与基本特征、主要层序界面识别、层序单元划分等内容, 完成了上第三系生物礁——碳酸盐岩层序地层格架、典型生物礁储层层序格架、层序界面或单元划分、层序地层格架下的沉积体系域特征与沉积体系控制因素等研究。 2、碳酸盐岩沉积及层序发育的主要控制因素 大地构造作用决定碳酸盐沉积作用背景, 大地构造背景下的盆地结构是影响碳酸盐岩 层序几何形态的一个关键因素。目前已经识别出五种类型的碳酸盐台地: 缓坡型、镶边大架型、孤立型、陆表海型及淹没型( M. E. Tucker, 1990)。全球海平面水位也是碳酸盐沉积作用的主要控制因素之一,大多数厚的、广泛分布的层序都形成在海平面高位期。相对海平面变化控制可容纳空间的变化,控制碳酸盐的沉积潜力, 控制碳酸盐岩地层分布和岩相分布。碳酸盐岩沉积物多是在沉积环境中原地生长的。大部分碳酸盐岩沉积物是由生物产生, 其中不少是光合作用的副产物。因此,这种生产过程取决于光照程度,随着水深增加光照强度迅速降低高碳酸盐岩产率主要分布在海水上部50—100m 的水体中,因为该深度内悬浮着大量能 进行光合作用的生物。有意义的是,在10m水深内碳酸盐岩产率最高, 而在10~20m内剧减。气候决定水的盐度、水的循环,影响碳酸盐岩沉积物的产率、稳定性和早期成岩的潜力。气候影响沉积层序中的沉积类型。在干旱气候和水体循环较局限的环境下,陆棚上的盆地、泻湖、朝上坪等环境会产生蒸发岩沉积。若陆源沉积物供源点邻近碳酸盐岩台地,那么气候差异将会影响硅质碎屑沉积物供给的类型,干旱气候有利于风成硅质碎屑沉积, 潮湿气候有利于河流三角洲硅质碎屑物的沉积。 二、碳酸盐建造

周三多《管理学原理与方法》考研考博参考书目的院校

周三多《管理学原理与方法》考研考博参考书目的院校

下面是2012年指定周三多《管理学原理与方法》教材为考研考博参考书目的部分院校列表。高校对应学院(专业) 同济大 学 经济与管理学院、电子与信息工程学院、交通运输工程学院、中德学院、软件学院350 华南理工大学工商管理学院、公共管理学院 350网上提供考试大纲《管理学——原理与方法》(第五版),周三多、陈传明、鲁明泓等编著,复旦大学出版社,2009年12月。 北京第二外国语学院旅游管理学院企业管理、旅游管理专业、旅游发展研究院旅游管理专业340 820管理学: 《管理学--原理与方法》(第5版),周三多、陈传明、鲁明泓主编,复旦大学出版社,2009年。 东华大学旭日工商管理学院 350 《管理学原理与方法》(第五版),周三多主编,复旦大学出版社,2009年版 上海海 事大学 经济管理学院 340 《管理学-原理与方法》周三多等复旦大学出版社(第五版)2009年 上海海洋大学 经济管理学院 340 《管理学—原理与方法》(第四版),周三多等编著,复旦大学出版社,2005年 《管理学》(第七版),[美]罗宾斯等著,孙健敏等译,人民大学出版社,2004年 说明: (1)上表仅仅是指定周三多《管理学原理与方法》教材为考研考博参考书目的部分院校,报考其他院校的学员也可以学习该课程。 (2)部分院校将该书列为相关专业考研复试参考书目,在本表中在相关专业后标注了“(复试)”字样。 (3)部分院校将该书列为相关专业考博参考书目,本表中在相关学院(专业)后标注了“(博)”字样。

(4)有些院校除了指定周三多《管理学原理与方法》教材作为考研考博参考书目外,还指定其他管理学教材作为参考书目,不能有所偏颇。 (5)有些院校指定周三多《管理学原理与方法》其他版次教材,如华东师范大学指定的是周三多《管理学)》(第4版),本课程也同样适用。 (6)部分院校近年不指定参考教材,但指定的年份是以周三多《管理学原理与方法》作为参考教材。 说明: (1)上表仅仅是指定周三多《管理学原理与方法》教材为考研考博参考书目的部分院校,报考其他院校的学员也可以学习该课程。 (2)部分院校将该书列为相关专业考研复试参考书目,在本表中在相关专业后标注了“(复试)”字样。 (3)部分院校将该书列为相关专业考博参考书目,本表中在相关学院(专业)后标注了“(博)”字样。 (4)有些院校除了指定周三多《管理学原理与方法》教材作为考研考博参考书目外,还指定其他管理学教材作为参考书目,不能有所偏颇。 (5)有些院校指定周三多《管理学原理与方法》其他版次教材,如华东师范大学指定的是周三多《管理学)》(第4版),本课程也同样适用。 (6)部分院校近年不指定参考教材,但指定的年份是以周三多《管理学原理与方法》作为参考教材。 2.将本教材作为授课所用教材的学员 部分高校将该教材作为本科生、研究生授课所用教材。对于这部分学员来说,可以将本题库作为配套辅导资料、考试冲刺宝典,以加深对课堂所学内容的理解、掌握。 ◇题库特色 我们毫不夸张地说,本题库是世界上拥有周三多《管理学——原理与方法》教材配套习题(到2012年1月已经突破12000道试题,每月还在不断增加)的题量最多、解答最详细的题库。 题型设置主要包括选择题、判断题、计算题、名词解释、简答题、论述题、案例分析等七大考研考博常考题型。本题库特色突出,集中体现在以下六个方面: 1.历年考研真题测试,名师权威解析 历年考研真题测试均采用指定周三多《管理学——原理与方法》教材为考研考博参考书目的名校历年考研真题,,全部真题由该校经济学名师在参考指定教材的基础上,结合权威资料和最新热点整理编辑出详细标准答案。同时,依托丰富便利的北京高校资源,圣才教育聘请了名校经济专业领域的众多专家和学者组成顾问团队,题库中每一道题目都由顾问团队严格审核,确保题目质量。 2.教材课后习题,配有出版级答案 圣才教育近10年专注国内外经典教材,编辑出版考试辅导图书突破1000种,研发的在线题库均是出版级的高质量试题。教材课后习题的每道试题一般来自专业人员编辑整理,对该教材23章的每一道课后习题均提供详细的参考答案,很多课后习题答案均来自圣才教育出版级的高质量试题,如周三多《管理学——原理与方法》(第5版)笔记和考研真题详解等书。同时考虑到

经典层序地层学的原理与方法

第二章 经典层序地层学的原理与方法 经典层序地层学为分析沉积地层和岩石关系提供了有力的方法手段, 其原理和实践已被 大多数地质学家所接受。理论上,层序地层学特别重视海平面升降周期对地层层序形成的重 要影响;实践上,它通过年代地层格架的建立, 对地层分布模式作出解释和同时代成因地层 体系域的划分,为含油气盆地地层分析和盆地规模的储层预测提供坚实的理论和油气勘探的 有效手段,有力的推动了地质学, 特别是石油地质学的发展, 它的推广与应用标志着隐蔽油 气藏勘探研究进入了一个全新的精细描述、精细预测阶段。 第一节 经典层序地层学中的两种层序边界 Vail 等在硅质碎屑岩层系中已经识别出两类不同的层序,即I 类层序和n 类层序,这 两类层序 在碳酸盐岩研究中得到了广泛应用。 以下详细论述这两类层序边界的含义、 特征和 识别标志。 I 型层序边界及其特征和识别标志 当海平面迅速下降且速率大于碳酸盐台地或滩边缘盆地沉降速率、 海平面位置低于台地 或滩边缘时,就形成了碳酸盐岩的I 型层序界面。I 型层序界面以台地或滩的暴露和侵蚀、 斜坡前缘 侵蚀、区域性淡水透镜体向海方向的运动以及上覆地层上超、 海岸上超向下迁移为 特征(图1-2-1)。 图1-2-1碳酸盐岩I 型层序边界特征 (据Sarg , 1988) 1 ?碳酸盐台地或滩边缘暴露侵蚀的岩溶特征 碳酸盐台地广泛的陆上暴露和合适的气候条件为形成I 型层序界面提供了地质条件, 潮IT 卜 I 低 III 緡陆唱 浊厂 I'lhi 砂卅展或 迅遵皿W 丐 ill fid 魄■■赴無层序 H 1

序界面以下的沉积物具有明显的暴露、溶蚀等特征,碳酸盐台地或陆棚沉积背景上的陆上暴露,可通过古岩溶特征来识别,因此,风化壳岩溶是识别碳酸盐台地碳酸盐岩I型层序的重 要特征。 ①古岩溶面常是不规则的,纵向起伏几十至几百米。岩溶地貌常表现为岩溶斜坡和岩溶凹地。如我国鄂尔多斯盆地奥陶系顶部、新疆奥陶系顶部、川东石炭系黄龙组顶部等发育的古岩溶。 ②地表岩溶主要特征为出现紫红色泥岩、灰绿色铝土质泥岩以及覆盖的角砾灰岩、角砾 白云岩的古土壤。风化壳顶部的岩溶角砾岩往往成分单一,分选和磨圆差。碎屑灰岩和碎屑如鲕粒、生物碎屑常被溶解形成铸模孔等。 ③古岩溶存在明显的分带性,自上而下可分为垂直渗流岩溶带、水平潜流岩溶带和深部 缓流岩溶带。 ④岩溶表面和岩溶带中出现各种岩溶刻痕和溶洞,如细溶沟、阶状溶坑、起伏几十米至几百米的夷平面、落水洞、溶洞以及均一的中小型蜂窝状溶孔洞等。 ⑤溶孔内存在特征充填物,可充填不规则层状且分选差的角砾岩、泥岩或白云质泥的示 底沉积,隙间或溶洞内充填氧化铁粘土和石英粉砂以及淡水淋虑形成的淡水方解石和白云 岩。 ⑥具有钙质壳、溶解后扩大的并可被粘土充填的解理、分布广泛的选择性溶解空隙。 ⑦岩溶地层具有明显的电测响应,如明显的低电阻率、相对较高的声波时差、较高的中 子孔隙度、较明显的扩径、杂乱的地层倾角模式和典型的成像测井响应。 ⑧古岩溶面响应于起伏较明显的不规则地震反射,古岩溶带常对应于明显的低速异常带。此外,古岩溶面上下地层的产状、古生物组合、微量元素及地化特征也有明显的差别。 2.斜坡前缘的侵蚀作用 在I型层序界面形成时,常发生明显的斜坡前缘的侵蚀,导致台地和滩缘斜坡上部大量 沉积物被侵蚀掉,结果造成大量碳酸盐砾屑的向下滑塌堆积作用和碳酸盐砂的碎屑流、浊流沉积作用和碳酸盐砂砾的密度流沉积作用(图1-2-1)。斜坡前缘侵蚀作用可以是局部性或区域性的,向上可延伸到陆棚区形成发育良好的海底峡谷,滩前沉积物可被侵蚀掉几十至几百米。 在碳酸盐缓坡和碳酸盐台地边缘出现的水道充填砾屑灰岩,以及向陆方向由河流回春作用引起的由海相到陆相、碳酸盐岩到碎屑岩的相变沉积物以及向上变浅的沉积序列也是I型层序边界的标志。 3.淡水透镜体向海的方向运动 I型层序界面形成时发生的另一种作用,就是淡水透镜体向海或向盆地方向的区域性迁 移(图1-2-1)。淡水透镜体渗入碳酸盐岩剖面的程度与海平面下降速率、下降幅度和海平面保持在低于台地或滩边缘的时间长短有关。在大规模I型层序边界形成时期,当海平面下降75?100米或更多并保持相当长的时间时,在陆棚上就会长期地产生淡水透镜体,它的影响会充分地深入到地下,并可能深入到下伏层序。若降雨量大,剖面浅部就会发生明显的淋滤、溶解作用,潜流带出现大量的淡水胶结物,如不稳定的文石、高镁方解石可能被溶解,形成低镁方解石沉淀(Sarg ,1998)。Vail 的海平面升降曲线表明,在全球海平面下降中,少见大规模的I型海平面下降。一般的海平面下降幅度不超过70?100m也就是说,在小规模 I型层序边界形成时期,淡水透镜体未被充分建立起来,只滞留在陆架地层的浅部,没有造成广泛的溶解和地下潜水胶结物的沉淀。在I型层序边界形成时期,在适宜的构造、气候和 时间条件下可能发育风化壳。同时,伴随I型界面形成期间,可发生不同规模的混合水白云 化和强烈蒸发作用而引起的白云化。 二、U型层序界面及其特征、识别标志

相关文档
最新文档