大型飞机复合材料主结构的设计与发展

大型飞机复合材料主结构的设计与发展
大型飞机复合材料主结构的设计与发展

大型飞机复合材料主结构的设计与发展

中航工业第一飞机设计研究院王德堂冯军

近几年,国外对低成本、高性能复合材料结构在大型飞机上的工程应用进行了广泛深入研究,取得了大量有工程应用价值的研究成果,具体体现在新设计飞机主要承力部件大量应用先进复合材料结构,如A380复合材料中央机翼、A400M复材翼面与机身、波音787复合材料机翼等。

复材结构在A380上的应用

A380飞机已经交付数家用户,其优良性能和舒适性被广为称道。复材用于该机的部件有中央翼盒结构,尾翼结构,襟翼、副翼结构,扰流板结构,机身上壁板、机身地板梁(跨度6m)、机身后体球框(6.2m×5.5m,树脂膜溶塑成型工艺RFI)、整流罩结构等。

A400M的复合材料机翼结构

A380的复材用量约占结构重量25%,其最大设计特点就是首次将复材用于中央翼盒,并达到减重1.5t的效果。另外它的碳纤维复材水平尾翼整体油箱的结构半展长达到19m,超过了A320 的机翼半展长,号称是世界上正在飞行的最大复材整体油箱。机身上使用的Glare层板达到470m2,与传统铝合金相比,减重25%以上,疲劳寿命提高10~15倍。垂尾前缘更是使用长达14m的Glare层板结构,大型整体结构的使用可见一斑。

复材结构在波音787上的应用波音787飞机已经首飞成功,正在鉴定试飞中,交付用户指日可待。该机的主要结构均为复材结构,其复材用量占全机重量50%,最有里程牌意义的是使用了复材机翼、机身结构,并在结构维护上做出了实质性进展,其目标是做到比传统结构的波音767降低使用维护成本30%。同时,TiGr层板(碳纤维增强的钛板)、耐高温复合材料结构也在机翼前缘、发动机吊舱上获得应用。

复材结构在大型飞机上用量迅速上升分析

(1)表明复材的基础研究取得了实质进展,安全性已经不再阻碍其扩大应用。

AC20-107A、B(FAA 复合材料结构设计安全性要求) 要求的内容都得到了贯彻与验证,包括

积木式试验验证,尤其是在结构综合设计技术研究,材料应用规范(如波音BMS 8-276)、制造工艺、试验验证等方面(如美国的ACT计划和欧洲的TANGO计划)。正是从这些预研中探索并实践了设计、制造、试验验证流程,汲取了经验,才有了在飞机上工程化应用的底气。其主线是大型整体结构的应用,将结构的强度、刚度和损伤容限结合在一起通盘考虑。这样设计的结构,减少了结构连接,提高了使用寿命,也便于成型装配,更易于保养维护。

A350的复合材料机翼蒙皮

(2)表明结构设计手段与验证技术的进步。

如A380中央翼盒结构层板厚度达到50mm 以上,对接区更是有100mm以上的整体结构,这都是一般分析方法和制造工艺难以企及和验证的。未经详细分析试验比对,是不可能应用的。还有比如A380的平尾整体复合材料油箱,也是需要大量试验验证其密封和防雷击设计。波音787的发动机吊舱结构长期工作在高温、高噪音的振动环境,细节分析与验证也必不可少,尤其是要弄清楚材料的设计许用值与构件设计许用值、连接区损伤与应变控制关系等。

作为新设计飞机结构,在权衡结构整体性能并关注局部和细节,按部件受力形式选择材料和成型方式,关注制造、使用维护乃至全寿命成本始终是设计追求的目标。例如将结构分为按强度设计的部件、按刚度设计的部件和按功能设计三大类型,其关注核心依然是强度设计件。所有的结构问题大都出于细节设计,因而对细节设计的方法与验证更是复合材料结构设计的焦点,如长桁末端、开口周边、对接搭接区、集中载荷传递区等。

如果还走不出大量使用±45°铺层、在薄壁构件上强调均衡对称、不差别使用部件设计控制应变的思路,也就是说设计部件的主次方向刚度差异不大,没有凸显复材构件的基本特性,也就说明细节设计上还不能驾轻就熟。不大量使用自动铺带(丝)设备、不在主要部件上使用液体成型工艺和非热压罐成型工艺,就不可能实现复材部件的低成本制造。

实际上,相对层板结构而言,蜂窝结构的可设计性更大,发展潜力也更大。尤其是对涵盖功能的结构,如隐身、闪烁蒙皮、保形阵列天线、导电、隔音、降噪等,蜂窝结构都显示了独特的特性,有广阔发展前景。

最简单的复材结构设计的判据是,与同样的传统结构减重20%以上相比,全寿命综合使用(维护)成本相当。之所以将减重指标定在了20%以上,是考虑了复合材料结构不同于传统结构的制造生产过程,需要重新进行设备、工装投资,还有复材结构的不可再生循环(热塑性复合材料除外)、对环境的非友好等因素都是进行远期收益作风险决策的主要参考

因素。但复材结构在抗疲劳、耐腐蚀、阻止裂纹扩展、隔音降噪、吸波透波等方面的功能是不可替代的,未来发展趋势是传统结构与复材结合而成的混合结构。

(3)表明材料性能的提高和规范的完善。

一代材料支持一代飞机的理念,在近代飞机结构中得到再次验证。没有

T800S/2900-2,没有IM6系列材料,就没有高效率的复合材料结构。也正是有了BMS 8-276诸如此类的企业材料选用规范,才有了波音787大量使用复材结构之结果。其中成系列地详尽规范了材料的规格与性能要求,涵盖了热塑性复材和热固性复合材料(包括各种纤维、树脂、预浸织物、胶膜、加速剂、脱模剂及其辅助材料等)。有了规格齐全的材料及其配套性能参数资源,产品设计才能多样化,按功能设计做到物尽其用。Toray(东丽)、Toho( 东邦) 等公司高品质碳纤维(第三代纤维)及其与之配套的新型树脂体系是其延绵不断发展进步动力之源。

国内材料体系单一,规范不全,材料数据覆盖面窄,与国外材料代沟加大的趋势不容小觑。即便是针对复合材料结构的连接件,国内目前都基本是全部选用有限的进口品种。

波音787的翼复合结构

(4)表明大型整体结构制造成本的降低及其质量的稳定。

低成本材料和制造工艺的使用,特别是自动铺带技术、非热压罐成型技术的应用等提高了制造效率,降低了生产成本,稳定了产品质量。

对大型壁板类构件,选用模块格栅成型方法是稳定批量质量的有效方法之一,但这里涉及到复杂模块设计制造技术,还有低膨胀模块材质的选用,其核心是用分配的模具膨胀量及其重量对周边结构施加压力,从而达到稳定固化过程温度梯度对构件的影响(该方法在空客德国复合材料制造厂Stade大量使用,包括A400m机翼壁板之制造),达到缓解大尺寸结构次生应力,稳定产品质量的效果。

结束语

复合材料本身就是在与高性能轻质铝合金的竞争中前进的,经常是此消彼长,难分伯仲,特别是7000系列高纯度铝合金,对其竞争之势不可小视,如7150高强铝合金拉伸强度达到560MPa以上,常规性能比目前采用的高强铝合金高10%以上,而且具有优良的综合

使用性能,在飞机上使用可带来明显的结构效益。多家研究表明,7075铝合金用于制造机翼上壁板的优势,是当下高性能复合材料不能取代的,这就是说,单单对于机翼上壁板,再好的设计师,以目前的复材体系是不能够设计出在重量上低于7000系列铝合金材料的机翼上壁板。

纵观波音与空客复材飞机结构,相比之下,A380使用复材结构更为慎重,以继承发展为主,将全复材中央翼盒用在了高湿区与避免冲击的飞机部位(上有机身包围,下有机身整流罩保护);而波音787使用复材结构则是以全面创新性为主,其核心是基于高强度、中模量碳纤维与高韧性树脂材料的结构。设计理念较为大胆前瞻,但近代飞机发展研究的型号很多,最后经过用户的使用筛选留下来,形成大批量机队的才是成功的机型。

目前,飞机主结构使用复材结构的问题主要表现在以下方面:

(1)复材主结构设计、分析、验证还需要实践,其基本参照目标判据是比传统结构节省重量20%左右,全寿命使用成本相当。而欧洲现在正在执行的面对民用飞机的SWK研究计划的目标是;减重30%,降低成本40%,由此也可窥见复材结构发展端倪。

(2)材料性能有待提高,材料品种需要扩大,特别是T800级别的纤维和增韧树脂。(3)制造质量需要稳定,研究机构的试制质量不等于企业化产品质量。

(4)使用维护要简单可行。

(5)民机与军机结构的差异(设计规范、使用环境)。细节设计、连接设计、功能设计(气密、油密、导电、隔噪等)、蜂窝夹心结构刚度等代、损伤裂纹抑制设计等都是结构设计者需要不断进修实践的。

可以预见,这些问题不得到根本性解决,市场化应用复合材料主结构的实践就走不出试制的襁褓。探索的道路还很长,还要做面向工程使用的研究与验证,在工程发展的起始阶段,为权衡结构的先进性与安全性和经济性,将重点放在传统结构上也不失为一种战略选择。

文章来源:航空制造网发布时间:2011-7-21

飞机总体设计大作业教学提纲

飞机总体设计大作业

飞机总体设计大作业 作业名称 J-22 战斗机的设计 项目组员靳国涛马献伟张凯郑正路所在班级 01010406班

目录 第一章任务设计书................................................3 第二章 J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2.3.1 零升阻力的估算.......................................12 2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章 J-22飞机部件设计...........................................20

大型飞机复合材料机身结构设计

大型飞机复合材料机身结构设计 李晓乐 (北京航空航天大学航空科学与工程学院,北京 100083) 摘要:本文研究了复合材料在大型飞机机身上的应用。利用相关机身结构数据,进行了结构形式的分析和选 择。参照有关规定,针对所设计的飞机机身在气密载荷作用下的情况进行了强度分析,并用这些分析结果来指 导复合材料的结构设计。复合材料选择为层合结构。并依据层合复合材料的特性,进行了层合板的铺层角度设 计和铺层顺序设计。对所设计的大型飞机复合材料机身结构进行了刚度分析,给出了主要构件的应力、应变结 果,证明了这种层合复合材料设计是合理可行的,为复合材料在我国大飞机项目上的应用提供了参考。 关键词:复合材料;大型飞机;机身结构;刚度 The Structural Design of Composites of Large Airplane Fuselage LI Xiaole (School of Aeronautical Science and Engineering, Beihang University, Beijing 100083, China) Abstract: This paper discusses the application of composite material in the large airplane fuselage. The concrete form of fuselage was analyzed and determined, which based on the data of some existing fuselage structure. Compared with some standard, the strength of the fuselage was analyzed under the pressure load. The result can conduct the structures design. The laminate of composites was chosen. The degree and the order of composite were also determined. The stiffness of the designed composite fuselage was computed, which also showed the result of strain and stress. Analysis manifested that the composites is designed appropriately, and the result can be consulted in the large-aircraft program. Keywords: Composites, Large Airplane, Fuselage Structure, Stiffness 机身是飞机的重要部件之一,它把机翼、尾翼、起落架等部件连接在一起,形成一架完整的飞机。对大型民用飞机来说,机身还能安置空勤组人员、旅客、装载燃油、设备和货物。现代飞机的机身是一种加强的壳体,这种壳体的设计通常称为“半硬壳式设计”。为了防止蒙皮在受压和受剪时失稳,就需要安装隔框、桁条等加强构件[1~2]。 随着时代的发展,复合材料在飞机设计中的用量越来越大,除了以前的非承力构件,现在主承力构件上也开始采用大量的复合材料设计。但到现在为止,虽然复合材料的用量有了相应的增加,可飞机机身仍然是有金属参加的[1]。 本文针对机身所承受的载荷,确定飞机机身的整体刚度、强度。然后以刚度、强度为基准,设计复合材料的结构形式,并对这种形式的机身进行初步的性能计算,旨在为复合材料在我国大飞机项目上的应用提供一些参考。 1 机身结构设计 作者介绍:李晓乐(1985-), 男, 硕士研究生. ft4331789@https://www.360docs.net/doc/788708296.html,

(完整版)12级复合材料结构设计参考资料

复合材料结构设计参考资料复合材料与工程 考试形式 笔试闭卷 考试时间和地点 时间:2015年6月25日14:00--15:40 地点:材料学院A107 题型与分数分布 一.名词解释 二.填空题 三.简答题 四.计算题

一、绪论 1.复合材料:由两种或两种以上具有不同的化学或物理性质的组分材料组成的一种与组分材料性质不同的新材料,且各组分材料之间具有明显的界面。 一相为连续相,称为基体;起连接增强体、传递载荷、分散载荷的作用。 一相为分散相,称为增强体(增强相)或功能体。是以独立的形态分布在整个连续相中的,两相之间存在着相界面。(分散相可以是增强纤维,也可以是颗粒状或弥散的填料) 主要起承受载荷的作用,赋予复合材料以一定的物理、化学功能。 2.复合材料分类: A按基体材料分:树脂基的复合材料、金属基复合材料、无机非金属复合材料 B按分散相形态分:连续纤维增强、纤维织物增强、片状材料增强、短纤维增强、颗粒增强C按增强体材料种类分类:玻璃纤维、碳纤维、有机纤维、金属纤维、陶瓷纤维。 D按用途分类:结构复合材料:利用复合材料的各种良好力学性能用于制造结构的材料。 功能复合材料:指具有除力学性能以外其他物理性能的复合材料 3.复合材料的结构层次: 三次结构:纤维缠绕压力容器,即平常所说的制品结构(a) 二次结构:从容器壁上切取的壳元即是由若干具有不同纤 维方向的单层材料按一定顺序叠合而成的层合 板(b) 一次结构:层合板的一个个铺层,是层合板的基本单元(c) 二、单层板的宏观力学分析 1.单层板的正轴刚度 正向:也就是说应力方向与坐标方向一致方向为正向,相反为负向。 正面:截面外法线方向与坐标轴方向一致的面,否则为负面。 σ1和σ2——表示正应力分量:拉伸为正,压缩为负,也就是使整 个单层板产生拉伸时的应力为正应力,而使单层板产生压缩时的应 力为负应力。 τ12——表示剪应力分量:其中正面正向为正;负面负向也为正。 A.力学实验 a.纵向单轴试验: 纵向泊松比v1是单层板由于纵向单轴应力σ1而引起的横向线应变ε2(1)与纵向线应变ε1(1)的比值。(ε2(1)表示的是这个应变是由纵向应力σ1引起的) b.横向单轴试验

复合材料在飞机上的应用

新视点 NEW VIEWPOINT 64航空制造技术2006年第3期 目前,复合材料在飞机上的应用已非常广泛,但在20世纪90年代初复合材料市场曾一度陷入低靡,究其原因是由于复合材料设计制造的复杂性造成了成本壁垒,人们开始认识到只有重视性能和成本的平衡,才能使复合材料展现辉煌。随着复合材料先进技术的成熟,使其性能最优和低成本成为可能,大大推动了复合材料在飞机上的广泛应用。本文在介绍国外复合材料在飞机上广泛应用的基础 上,对作为技术保障的数字化设计技术和先进制造技术进行了分析研究。从国外情况看,各种先进的飞机都与复合材料的应用密不可分,复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一。下面介绍复合材料在飞机上应用的发展趋势。 (1) 复合材料在飞机上的用量日益增多。 复合材料在飞机上 的应用评述 北京航空航天大学机械工程及自动化学院 张丽华 范玉青 复合材料用量通常用其所占飞机机体结构重量的百分比表示,纵观复合材料在民机上的发展情况发现,无论是波音公司还是空中客车公司,随着时间推移,复合材料的用量都呈增长趋势。最具代表意义的是空客公司的A380客机和波音公司最新推出的787客机。在A380上仅碳纤维复合材料的用量就达32t左右,占结构总重的15%,再加上其他种类的复合材料,估计其总用量可达25%左右。787 上初步估计复合材料用量可达50%,远远超过了A380。另外,复合材料 在军机和直升机上的用量也有同样的 增长趋势。(2) 应用部位由次承力结构向主承力结构过渡。 飞机上最初采用复合材料的部位有舱门、整流罩、安定面等次承力结 构,目前已广泛应用于机翼、机身等部位,向主承力结构过渡。从1982年开始用复合材料制造飞行操纵面(如A310-200飞机的升降舵和方向舵),空客公司在主承力结构上使用复合材 料已有20多年的经验。在A380上采用的碳纤维复合材料大型构件主要有中央翼盒、翼肋、机身上蒙皮壁板、机身后段、机身尾段、地板梁、后承压框、垂尾等,大量的主承力结构都采用了复合材料。787复合材料的应用则更让世人瞩目,其机身和机翼部位采用碳纤维增强层合板结构代替铝合金;发动机短舱、水平尾翼和垂直尾翼、舵面、翼尖等部位采用碳纤维增强夹芯板结构;机身与机翼衔接处的整流蒙皮采用玻璃纤维增强复合材料。与A380相比其用量更大,主承载部位的应用更加广泛,这将是世界上采用复合材料最多的大型商用喷气客机。 (3) 复合材料在复杂曲面构件上的应用越来越多。 飞机上复杂曲面零件很多,复合材料的应用也越来越多,比如A380机身19段、19.1段和球面后压力隔框等均为采用复合材料的具有复杂曲 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障 复合材料在飞机上的应用

飞机总体设计大作业

飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速:0.7Ma 最大飞行高度:10000m 航程:2300km 待机时间:45分钟 爬升率:0~10000m<25分钟 起飞距离:1600m 接地速度<220km/h 一、相近飞机资料收集: 二、飞机构型设计 正常式布局:技术成熟,所积累资料丰富 T型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数0.7,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波

阻 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a=576.4kts=296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) –升阻比L/D =14 3.根据Breguet 航程方程: ? ?? ? ? ??? ??= D L M C a R a n g e W W f i n a l i n i t i a l )l n ( 代入数据: Range = 1242nm ; a = 581 Knots (巡航高度35000ft) C = 0.5lb/hr/l b (涵道比为5) L/D = 14 M = 0.7 计算得: 115 .1=f i n a l i n i t i a l W W

超音速客机概念设计项目组工作报告

超音速客机的概念设计——团队工作报告 专业名称航空学院—飞行器设计与工程 团队成员龚雪淳潘环龚德志李亮 指导教师张科施杨华保李斌宋科范宇 完成时间 2008年6月15日

摘要 本项目是进行一款新型的超音速客机的概念设计,项目团队成员由来自西北工业大学航空学院2004级飞行器设计与工程专业的四名本科生及四名指导教师和一名研究生组成。 该项目完成了一款载客量200人,巡航马赫数2.0,航程10000~12000公里的超音速客机概念设计。项目团队成员分别是龚雪淳(团队组长)、潘环、龚德志、李亮,项目指导教师分别是杨华保、张科施、李斌、宋科、范宇。 21世纪,人类对航空器的研究将更加关注,航空技术将成为世界各个国家经济发展的一个最重要的标志!5年前,“协和”客机最后一次让乘客感受突破音障的激动瞬间,由于事故频发,这种高科技产物被迫退出历史舞台。然而,人类追逐超音速旅行的梦想并没有像流星一样,一闪即逝。现在,包括美国、英国、法国、日本、中国、俄罗斯等在内的多个具有航空研发能力的国家都在积极投入大量经费,来研制自己的超音速客机方案,以求在未来的航空领域中占有一席之地,一场没有硝烟的战争已经打响。 通过该项目的团队合作研究,提高了我们的创新能力和分析问题、解决问题的能力,培养了我们严谨认真的工作态度和团队协作的精神,让我们懂得了团队的重要性,懂得了如何与人沟通,协作。同时,项目的实施也让我们提前适应了将来的工作模式和工作氛围,认识上更进一层。

目录 摘要 (1) 第一章项目简介 (3) 1.1 项目选题背景 (3) 1.2 项目团队成员及指导老师情况 (5) 1.3 项目创新点与特色 (6) 1.4 项目成员工作协调情况介绍 (7) 第二章项目研究成果 (8) 2.1 总体研究成果 (8) 2.2 气动研究成果 (12) 2.3 结构研究成果 (14) 2.4 人机环境与关键技术研究 (18) 2.5 项目成果评价 (20) 总结与体会 (21) 附录Ⅰ项目团队例会记录单 (25) 附录Ⅱ设计参数更改记录单 (34)

飞机复合材料设计

目录 复合材料 (2) 1. 复合材料特点 (2) 1.1 复合材料的应用 (2) 1.2 设计规范的演变 (2) 1.3 复合材料适航验证试验程序 (3) 1.4 碳纤维树脂基复合材料优点 (3) 1.5 碳纤维树脂基复合材料缺点: (4) 2. 材料种类 (4) 2.1 树脂基体 (4) 2.1.1 热塑性复合材料 (4) 2.1.2 热固性复合材料 (5) 2.1.3 树脂材料性能对比 (5) 2.2 增强纤维 (6) 2.2.1 碳纤维 (6) 2.2.2 玻璃纤维 (7) 2.2.3 芳纶纤维 (7) 2.2.4 材料性能对比 (7) 2.3 预浸料 (7) 2.4 芯材 (8) 2.4.1 蜂窝芯 (8) 2.4.2 泡沫芯 (8) 2.5 胶粘剂 (9) 3. 复合材料试验验证步骤 (9) 4. 复合材料结构设计 (9) 4.1 复合材料设计基本要求 (9) 4.2 设计选材 (9) 4.2.1 设计选材需求 (9) 4.2.2 夹层结构的选材 (10) 4.3 层压板设计 (10) 4.3.1 铺层方向和比例 (10) 4.3.2 铺层设计 (10) 4.3.3 丢层要求 (10) 4.3.4 拼接 (11) 4.3.5 开口设计要求 (11) 4.4 夹层结构设计 (11) 4.4.1 制造方法 (11) 4.4.2 面板设计准则 (11) 4.4.3 芯材 (12) 4.5 细节设计 (12) 4.6 复合材料设计优化 (12) 4.7 复合材料连接 (13) 4.7.1 胶接结构 (13) 4.8 垂尾复合材料结构设计 (14)

4.9 复合材料检测 (14) 5. 复合材料制造 (14) 5.1 复合材料的成型方法和特点 (14) 5.2 成型工艺过程 (15) 5.2.1 热压罐工艺 (16) 5.2.2 RTM工艺 (16) 5.2.3 机加工艺 (16) 5.3 制造缺陷 (16) 复合材料 1.复合材料特点 复合材料主要由基体和增强材料组成。非金属基体包括树脂、陶瓷等,增强材料包括碳纤维、芳纶、玻璃纤维等。应用最多的是树脂基碳纤维复合材料,其次是芳纶纤维。玻璃纤维因其强度、刚度较差,难以用在受力结构上,但因为价格便宜,民机上有较多应用。 复合材料的韧性和对环境的耐受能力主要取决于树脂。 韧性:表示材料在塑性变形和破裂过程中吸收能量的能力,韧性越好,则发生脆性断裂的可能性越小。 1.1复合材料的应用 复合材料首次应用于空客A310-300(1985年)的垂尾上,后来应用到了扰流板、方向舵、起落架舱门、整流罩等部位。A340(2001年)首次将复合材料用在机身上,后气密压力框;A380(2005年)将中央翼盒用复合材料,将后压力框后部机身用复合材料,上层客舱底板、龙骨梁。A400M(2009年)第一架使用全碳纤维增强树脂基复合材料的机翼飞机。波音787(2009年)第一家引入全复材机体结构,整个机身结构用了碳纤维增强树脂复合材料。空客后来的A350XWB也是全复材机身。 1.2设计规范的演变 FAA针对复合材料结构合格审定中的新问题,于1978年颁布咨询通告AC-20-107A“复合材料飞机结构”,制定了一个可接受但不是唯一的验证方法,适用于FAR23、25、27和29涉及的所有航空器的复合材料结构,成为制定满足

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

复合材料结构

复合材料结构设计的特点 (1) 复合材料既是一种材料又是一种结构 (2) 复合材料具有可设计性 (3) 复合材料结构设计包含材料设计 复合材料区别于传统材料的根本特点之一可设计性好(设计人员可根据所需制品对力学及其它性能的要求,对结构设计的同时对材料本身进行设计) 具体体现在两个方面1力学设计——给制品一定的强度和刚度、2功能设计——给制品除力学性能外的其他性能 复合材料力学性能的特点 (1) 各向异性性能材料弹性主方向:模量较大的一个主方向称为纵向,用字母L表示,与其垂直的另一主方向称为横向,用字母T表示。通常的各向同性材料中,表达材料弹 )和ν(泊松比)或剪切弹性模量G。 对于复合材料中的每个单层,纵向弹性模量E L、横向弹性模量E T、纵向泊松比νL (或横向泊松比νT)、面内剪切弹性模量G LT。 耦合现象:拉剪耦合与剪拉耦合、弯扭耦合与扭弯耦合 (2) 非均质性 耦合变形:层合结构复合材料在一种外力作用下,除了引起本身的基本变形外,还可能引起其他基本变形。 (3)层间强度低 在结构设计时,应尽量减小层间应力,或采取某些构造措施,以避免层间分层破坏。 研究复合材料的刚度和强度时,基本假设: (1) 假设层合板是连续的。由于连续性假设,使数学分析中的一些连续性概念、极限概念以及微积分等数学工具都能应用于力学分析中。 (2)假设单向层合板是均匀的,多向层合板是分段均匀的。 (3) 假设限于单向层合板是正交各向异性的:即认为单向层合板具有两个相互垂直的弹性对称面。 (4) 假设限于层合板是线弹性的:即认为层合板在外力作用下产生的变形与外力成正比关系,且当外力移去后,层合板能够完全恢复其原来形状。 (5) 假设层合板的变形是很小的。 上述五个基本假设,只有多向层合板的分段均匀性假设和单向层合板的正交各向异性假设,与材料力学中的均匀性假设和各向同性假设有区别。 平面应力状态与平面应变状态 平面应力状态:单元体有一对平面上的应力等于0。(σz=0,τzx=0,τzy =0) 平面应变状态(平面位移):εz=0(即ω=0),τzx=0(γ31=0),τzy =0(γ32=0 ), σz一般不等于0。 复合材料连接方式 复合材料连接方式主要分为两大类:胶接连接与机械连接。胶接连接:受力不大的薄壁结构,尤其是复合材料结构;机械连接:连接构件较厚、受力大的结构。

新一代大型客机复合材料结构一体化设计的若干特点

2017年2月第20卷第4期 中国管理信息化 China Management Informationization Feb.,2017 Vol.20,No.4 新一代大型客机主要指使用效率(Efficiency)、经济(Economics)、超凡的乘坐舒适和便利(Extraordinary comfort and convenience)以及环保(Environmental)等综合性能比当前航线使用的客机有很大提高的大型商用运输机。 新一代大型客机的概念指导了波音787飞机和空客A350飞机的研发。新一代大型客机机体结构的突出特点是广泛采用复合材料,复合材料不仅减轻了飞机结构的质量、提高了飞机结构的使用寿命、降低了飞机的维护费用,还可以增加舱内压力和空气湿度,提高民用飞机的经济性、舒适性、环保性。先进复合材料在飞机结构上的应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能和由军机应用扩展到民机的发展道路。 基于近20多年经验的积累和认知的共识,按照适航规章要求,结合民机工程实际,聚合物基纤维增强复合材料在飞机结构中实现了规模化的应用。要实现复合材料结构规模化的应用,结构设计必须要着重考虑复合材料结构在使用寿命期内、安全使用前提下,同时取得较好的经济效益。结构设计在满足型号设计要求的同时,必须要考虑结构规模化应用对制造、使用、维修提出的新需求,在设计主导下,形成“设计—制造—使用—维修”一体化的结构设计,实现飞机复合材料结构的安全性与经济性。 1 新一代大型客机复合材料结构规模化应用的决策 新一代大型客机机体结构需用新材料的决策是依据未来20~30年内大型客机在总体布局上与目前航线飞机不会有很大差别,但在综合性能、安全性、经济性和环保要求等方面,将有很大的提高发展趋势和航线宽体客机的需求增长制定。 新一代大型客机复合材料结构规模化应用的决策主要考虑: ①实现飞机结构明显减重,机翼、机身主结构均采用复合材料制造;②中模量高强碳纤维/增韧环氧(180℃固化)复合材料已经过工程应用的验证,可满足大型客机主结构对材料的要求;③复合材料制造工艺技术革新和新工艺技术发展,可使复合材料大型结构件制造成本明显下降;④先进设计技术和设计—制造一体化、并行工程技术的应用,使结构设计结果更科学合理,可实现异地设计和制造,为复合材料结构制造国际化创造了条件;⑤半个世纪复合材料应用经验的积累和复合材料结构设计理念与验证技术的更新,使新一代飞机研制周期大大缩短、研发费用减少。 因此,波音公司率先将21世纪初开始研制的现代宽体客机波音787复合材料的用量占到机体结构重量的50%,大大提高了结构效率,与同级别客机相比可节省燃油20%。 空中客车公司于2005年5月宣布空客A350项目启动(A350后称A350XWB,extra Wide-Body,型号系列为A350-900)。空中客车公司面对竞争对手的压力和用户的要求,在A350项目推出的三年间,曾对A350的设计方案进行多次重要修改,选材方案的修改多达6次,包括机身由计划初期采用铝和铝锂合金,改为机体由复合材料制造。 2 复合材料关键结构设计的新问题 飞机机体复合材料结构规模化应用的核心问题是突破飞机机体关键结构复合材料的应用技术。 飞机机体关键结构是指其完整性对保持飞机总体安全是至关重要的承受飞行、地面和增压载荷的结构或元件(其破坏会降低飞机结构完整性)。如:机翼、中央翼盒、机身等主结构,对运输类飞机还包括主要结构元件。 复合材料在飞机机体关键结构的应用,首先要考虑飞机总体安全对结构完整性的要求。同时,还应考虑复合材料用量大幅增加带来的固有特性潜在的危害威胁,如对结构制造缺陷、闪电防护及使用、维修提出的一系列要求。复合材料关键结构设计的新问题、新考虑,大致可归纳为以下几方面。 (1)基于对飞行安全性的认知,机体结构疲劳和损伤容限设计是重点,按《运输类飞机适航标准》对复合材料飞机结构的要求,飞机在整个使用寿命期内将避免由于疲劳、环境影响、制造缺陷或意外损伤引起的灾难性破坏。特别关注考虑的是外来物冲击、目视可见损伤及其扩展特性,两垮元件损伤、结构胶结以及“地—空—地”或“飞—续—飞”重复加载引起的材料性能退化和“高—低—高”温度交变引起的附加应力。 (2)质量、产量、成本综合平衡的大型整体结构制造技术。主结构零构件大型化、整体化设计,如翼面加筋壁板、翼梁、机身筒壳壁板、地板梁、中央翼盒壁板等,对制造技术提出了应通过充分的试制和试验,并进行合格鉴定,以保证其可重复生产性和设计的可靠性,结构制造生产能力应满足飞机按期交付的需求。采用成熟的制造技术,如数字化、自动化(包括检测自动化)、减少或消除人为因素影响的制造方法,可实现降低结构的制造成本,设计、制造一体化是必由的技术途径。 (3)复合材料结构闪电防护设计的地位很重要。复合材料(以碳/环氧复合材料为代表)导电性比标准铝合金大约低1 000倍的固有特性,决定了如果不提供恰当的导电闪电防护,闪电雷击可能造成结构破坏或大面积损伤,并可能在金属液压管路、燃油系统管路和电缆诱导上产生高闪电电流和电压。闪电防护可细分为结构完整性、燃油系统、电气和电子系统三个方面进行考虑,复合材料结构闪电防护给飞机带来了重量和成本的增加。 (4)结构耐撞损性的设计要求。飞机的耐撞损性由机身的冲击响应特性控制。对耐撞损性,规章一直随着实际飞机运行使用得到的经验而改变。机群经验还没有证实需要整机级耐撞损性的标 新一代大型客机复合材料结构一体化设计的若干特点 何长川,梁 伟,杨乃宾 (北京航空航天大学 航空科学与工程学院,北京 100083) [摘 要]大量采用复合材料结构是新一代大型客机机体结构设计的突出特点。飞机机体复合材料结构规模化应用的核心问题是突破飞机机体关键结构复合材料应用技术。复合材料结构一体化综合设计是在确保使用寿命期内、飞机安全飞行使用的前提下,实现复合材料结构规模化应用并取得良好经济的、多设计要素变量的综合设计。本文对波音787和空客A350复合材料机身的设计与制造进行了对比,分析了各自的优缺点。 [关键词]大型客机;复合材料结构;机体结构;规模化应用;一体化设计 doi:10.3969/j.issn.1673 - 0194.2017.04.091 [中图分类号]V25 [文献标识码]A [文章编号]1673-0194(2017)04-0139-03 [收稿日期]2017-01-02 / 139 CHINA MANAGEMENT INFORMATIONIZATION

飞机总体设计大作业

— 飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速: 最大飞行高度:10000m " 航程: 2300km 待机时间:45分钟 爬升率: 0~10000m<25分钟 起飞距离: 1600m \ 接地速度 <220km/h 一、相近飞机资料收集: 二、飞机构型设计 ^

正常式布局:技术成熟,所积累资料丰富 T 型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波阻 【 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 < 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a==296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) ¥ –升阻比L/D =14 3.根据Breguet 航程方程: ??? ????? ??=D L M C a Range W W final initial )ln( 代入数据: Range = 1242nm ;

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

《复合材料结构设计基础》课程介绍

《复合材料结构设计基础》课程介绍 一、课程简介 《复合材料结构设计基础》是复合材料与工程专业的承前启后的专业方向课,它包含材料力学基础、弹性力学基础、材料设计、结构设计等,因而是具有立体性质的一个科学领域。其主要任务是使学生掌握复合材料结构设计的基础理论、基本知识和基本技能。通过本科程学习,要求学生掌握复合材料经典层合板理论、刚度和强度的计算方法、复合材料结构元件的分析和典型产品结构设计的基本步骤和方法等内容,为后续专业课的学习以及从事复合材料领域的生产和科研奠定坚实的理论基础;学习科学思维方法和研究问题的方法,达到开阔思路、激发探索和创新精神、增强理论分析能力与实践能力的目的。 课程的主要教学内容包括: 第一章绪论 学习了解什么是复合材料特别是什么是纤维增强树脂基复合材料;了解复合材料的发展历史及现状;了解复合材料的结构设计的特点。 第二章单层的刚度与强度 掌握平面应力状态下单轴的正轴应力-应变关系等。掌握单层的偏轴应力-应变关系;掌握单层弹性模量、柔量及工程弹性常数的计算。掌握单层的弹性指标和单层的失效准则。 第三章层合板的刚度与强度 掌握层合板的表示法、掌握对称层合板面内内力与面内应力的关系。掌握几种典型对称层合板的面内刚度系数的计算。了解对称层合板弯曲矩与曲率的关系、掌握对称层合板弯曲工程弹性常数及弯曲刚度系数的计算。了解一般层合板的面内力与面内应变的关系、了解一般层合板工程弹性常数、刚度系数的计算。掌握如何依据单层的强度来预测层合板的最先一层失效强度。 第四章复合材料结构分析 了解在复材构件进行结构分析时所采用的弹性力学的基本方法。了解复材层合梁、薄壁梁等构件的分析方法及设计计算的基本公式。 第五章复合材料连接 了解复材连接方式、掌握胶接连接接头的内力与应力分析计算方法、了解胶

飞机总体设计大作业

飞机总体设计大作业 作业名称 J-22 战斗机的设计 项目组员靳国涛马献伟张凯郑正路所在班级 01010406班

目录 第一章任务设计书................................................3 第二章J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2. 3.1 零升阻力的估算.......................................12

2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章J-22飞机部件设计...........................................20 3.1 机翼设计..................................................21 3.1.1机翼安装形式的选择.....................................22 3.1.2机翼具体参数的计算.....................................24 3.2 机身设计..................................................28

复合材料在飞机航空中的应用与发展

复合材料在飞机航空中的应用与发展姓名:李经纬学号:0823020124 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。 复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显著的减重效益,复合材料尤其是碳纤维复合材料其密度仅为1.6g/cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如 F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程 纵观国外军机结构用复合材料所走过的道路,大致可分为三个阶段: 第一阶段复合材料主要用于受力较小或非承力件,如舱门、口盖、整流罩以及襟副翼、方向舵等,大约于上世纪70年代初完成。 第二阶段复合材料主要用于垂尾、平尾等尾翼一级的次承力部件,以F-14硼/环氧复合材料平尾于1971年研制成功作为标志,基本于上世纪80年代初完成。此后F-15、F-16、F-18、幻影2000和幻影4000等均采用了复合材料尾翼,此时复合材料用量大约只占全机结构重量的5%。 第三阶段复合材料开始应用于机翼、机身等主要的承力结构,受力很大,规模也很大。主要以1976年美国原麦道公司研制成功FA-18复合材料机翼作为里程碑,此时复合材料用量已提高到了13%,军机结构的复合材料化进程进一步得到推进。此后世界各国所研制的军机

飞机复合材料结构设计

7.5 复合材料结构设计 一、复合材料结构设计一般原则 本节主要介绍层压结构和由层压面板构成的夹层结构的设计原则.复合材料结构设计的一般原则从总的方面说与金属结构相似,但其具体内容则有所同,有所不同。相同之处,如传力路线最短等受力构件布置的一些基本原则,又如细节设计中要避免受载偏心,尽量避免开口,开口时注意其形状等一些内容,但由于复合材料与金属材料性质、性能上的不同,在设计原则 的具体内容上必然有很多不同之处。以下我们主要就不同的方面作简要介绍。 1.提高结构效率 针对复合材料的特点,除上述与金属相同的原则外,还应从以下几方面着手: (1)铺层设计中要扬长避短,充分利用复合材料沿纤维方向的优良性能,避免使用其弱的横向性能和剪切性能。 (2)与单纯的层合板不同,对于层压结构耍注意选择合理的结构形式和层板构形,对某些敏感区的局部铺层设计:如在连接区、局部冲击区、集中力作用点、开口附近等处的铺层一般应进行局部调整,在结构尺寸和结构外形突变区注意铺层过渡问题。要注意复合材料层压性带来的某些区域易产生分层,从而可能引发的结构承载能力下降或失效的问题,尽可能采取相应措施(详见本节的三)。 (3)提高结构整体性。复合材料比金属更易制造出形状复杂的构件,并具有可采用共固化工艺制造大型整体件的优点。设计中在不增加工装复杂程度的情况下应尽量减少零件数量,设计成整体件,如大块机翼整体壁板。这样可不用紧固件或减少紧固件的数量,减轻结构重量,提高结构效率,并可减少钻孔、装配的工作量和由孔引起的应力集中以及制造成本。 2.要保证结构中各元件之间的载荷传递 复合材料构件与金属构件不同,除具有一定的形状外,还可以具有不同的层板构形。要使各构件之间(如蒙皮和桁条、冀肋、翼粱之间)和各构件的各个部分之间(如梁的绿条和腹板之间)的承载路径尽量连续。连接的形式与方法应与需传递的载荷性质(拉压、剪切)和方向相适应,尽量避免偏心和切口效应。同一构件须拼接时,其纤维取向也应连续。 3.结构要求良好的工艺性 设计必须保证能制作出保证质量和低成本的结构,尽量避免成形和装配时可能出现的各种缺陷。包括以下各点: (1)避免铺层设计不合理带来的工艺性问题。如铺层、装配不对称或同一铺向角的铺层数集中过多使构件在固化过程中引起弯—拉—扭耦合而产生翘曲变形、树脂裂纹,

相关文档
最新文档