几种常见的递推数列通项的求法教案·导学案

几种常见的递推数列通项的求法教案·导学案
几种常见的递推数列通项的求法教案·导学案

几种常见的递推数列通项的求法·教案

授课班级:高2014级6班 授 课 人:周建波

授课时间:2012年3月19日

教学目标:通过实例,理解递推公式和通项公式的关系,掌握“累加法”、“累积

法”在数列通项求解过程中的具体应用

教学重点:累加法和累积法以及可化为等差或等比数列的数列通项的求法 教学难点:“取倒数”和“配方法”在构造新数列上的应用

学情分析:高2014级6班在高一年级中属于班平成绩较好,上课认真,紧跟老

师授课思维,但活跃性不算高,以引导学习为主

教学过程:

● 情景引入

1、知识背景:高考改革的的变化趋势是强调基础,提高能力。相对于旧版教材,当前的新课标教材以意大利著名数学家斐波那契在兔子繁殖问题中提出的“斐波那契数列12(3)n n n a a a n --=+≥”,专门定义了数列的递推公式的概念,并由此产生出了怎样应用递推关系求解数列通项公式.

2、提出问题:在数列中,通项公式好比函数中的解析式,堪称数列的“灵魂”,我们今天的研究方向,就是紧紧围绕数列的递推关系,研究几种常见的递推数列通项公式的求法.

● 累加法和可化为等差数列的通项公式的求法

1、 温故知新:等差数列的通项公式1(1)n a a n d =+-应用“累加法”求出.

2、 探索新知:

3、 实战演练:

4、 总结与提高:

5、 举一反三:

6、总结与提高:

7、 实战演练:

{}11=221(2).

n n n n a a a a n n a -=+-≥练习一:在数列中,已知,,试求{}111230,.n n n n n n a a a a a a a ++=+?-=问题二:在数列中,,且求{}1(.n

n n n n qa a a p q pa q

a +=+在数列中,若,,为非零常等差数数)则先等式后化为,求出通项公倒列“”式两边取{}111=2(2).

1n n n n n a

a a a n a a --=≥+练习二:在数列中,已知,,试求{}11()(,(2).

n n n n n n a a a f n p a a q p n a n pn q q ---=++=-=≥在数列中,若为常数)即,则用求通“”项公式累加法{}111,1.n n n n a a a a n a +==++问题一:在数列中,,求

● 累乘法和可化为等比数列的通项公式的求法

1、温故知新: 等比数列的通项公式11n n a a q -=?应用“累乘法”求出.

2、探索新知:

3、 举一反三:

4、总结与提高:

5、 实战演练:

● 小结与归纳

本堂课通过等差数列和等比数列通项公式的求法,利用累加法和累乘法,研究了几种常见的递推数列的通项公式的求法。至于问题四的其他变式,将在以后的学习中进一步学习.

● 本堂作业

完成下列对应练习题

{}111,41.n n n n a a a a n a +==+-练习一:在数列中,,求 {}113,22270.n n n n a a a a n a +=-+-=练习二:在数列中,,求

{}111,32.n n n n a a a a a +==+问题四:在数列中,,求(2010重庆){}111(,()1n n n n n n n a a Aa B A B a k a k A a k k A

a B k A +++=?-=+++=+???→=+配方法在数列中,若为非零常数)设利用“配方法”,化为等比数列,求通项.{}11=158,.n n n n a a a a a +-=+练习三:在数列中,已知,试求{}111,.

1n n n n

n a a a a a n +==+问题三:在数列中,,求{}1112420,.n n n n n n a a a a a a a ++=+?-=练习三:在数列中,,且求{}1133,.

2+4n

n n n n

a a a a a a +==练习四:在数列中,,且求{}112,(2).1n n n n n a a a a n a n -==≥+练习五:在数列中,,求{}11=2247(2),.n n n n a a a a n a -=+≥练习六:在数列中,已知,且求

几种常见的递推数列通项的求法·导学案

授课时间:2012年3月19日

教学目标:通过实例,理解递推公式和通项公式的关系,掌握“累加法”、“累积

法”在数列通项求解过程中的具体应用

教学重点:累加法和累积法以及可化为等差或等比数列的数列通项的求法 教学难点:“取倒数”和“配方法”在构造新数列上的应用

● 情景引入

1知识背景:高考改革的的变化趋势是强调基础,提高能力。相对于旧版教材,当前的新课标教材以意大利著名数学家斐波那契在兔子繁殖问题中提出的“斐波那契数列11(3)n n n a a a n --=+≥”,专门定义了数列的递推公式的概念,并由此产生出了怎样应用递推关系求解数列通项公式。

2提出问题:在数列中,通项公式好比函数中的解析式,堪称数列的“灵魂”,我们今天的研究方向,就是紧紧围绕数列的递推关系,研究几种常见的递推数列通项公式的求法。

● 累加法和可化为等差数列的通项公式的求法

1温故知新:等差数列的通项公式1(1)n a a n d =+-应用“累加法”求出。

(n-1)等式相加

2探索新知:

3实战演练:

4总结与提高:

{}11=221(2).

n n n n a a a a n n a -=+-≥练习一:在数列中,已知,,试求{}11()(,(2).

n n n n n n a a a f n p a a q p n a n pn q q ---=++=-=≥在数列中,若为常数)即,则用求通“”项公式累加法{}111,1.n n n n a a a a n a +==++问题一:在数列中,,求1n n a a d --=,(2,n d ≥为常数)

2132431n n a a d

a a d a a d a a d --=-=-=-= 1(1)(2)n a a n d n ∴-=-≥

5举一反三:

6总结与提高:

7实战演练:

累乘法和可化为等比数列的通项公式的求法

1温故知新: 等比数列的通项公式11n n a a q -=?应用“累乘法”求出。 2探索新知:

3举一反三:

4总结与提高:

5实战演练:

{}111230,.n n n n n n a a a a a a a ++=+?-=问题二:在数列中,,且试求{}1(.n

n n n n a a a p q pa q

a +=+在数列中,若,,为非零常数等差数列“两)则先等式后化为,求出通项公倒式边取”{}111=2(2).

1n n n n n a

a a a n a a --=≥+练习二:在数列中,已知,,试求{}111,32.n n n n a a a a a +==+问题四:在数列中,,求(2010重庆){}111(,()1n n n n n n n a a Aa B A B a k a k A a k k A a B k

A +++=?-=+++=+???→=+配方法

在数列中,若为非零常数)设利用“配方法”,化为等比数列,求通项.

{}11=158,.n n n n a a a a a +-=+练习三:在数列中,已知,求{}111,.

1n n n n

n a a a a a n +==+问题三:在数列中,,求

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

§1.1数列概念导学案

数列概念 一.学习目标: 1、熟练掌握数列的概念,准确理解通项公式与函数的关系,提高归纳猜想能 力。 2、自主学习、合作探究,总结求数列通项公式的规律方法。 3、激情投入,惜时高效,培养良好的数学思维品质,体验数字变化之美。 重难点:数列的概念以及数列的通项公式 二.问题导学: 阅读课本P3-6思考并回答下列问题: 1.数列的概念: ①你能根据自己的理解写出数列的定义吗? ②数列的一般形式12,,...,...n a a a ,简记{}n a ,那么n a 与{}n a 有什么不同? 2.数列的通项公式: 给定一个数列:1、3、5、7……你能写出数列的第5项,第7项吗?第n 项呢? ○1你能试着写出数列通项公式的定义吗? ○2通项公式可看作是一个函数吗?它的定义域是什么?图像有什么特点? 3.数列的分类: 按项数分可以分为哪几类? 【小试牛刀】 1.下列说法不正确的是( ) A 、所有数列都能写出通项公式 B 、数列的通项公式不唯一 C 、数列中的项不能相等 D 、数列可以用一群孤立的点表示 2.已知数列{}n a 中,n a =2n-1,则3a 等于___________ 3.写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)2,3,4,5; 则n a = (2)1416 ,,3,;333 ;则n a = (3) 1111 ,,,;24816 则n a = (4)1,-3,5,-7; 则n a = 三.合作探究 例1、根据下面数列{}n a 的通项公式,写出它的前5项: (1) 21;21n n a n -=+ (2)cos 2 n n a π =; (3)2(1);n n a n =- 拓展:根据下面数列{}n a 的通项公式,写出它的第10项: (1) 2910n a n n =-+; (2)(1)1cos ;2 n n a π -=+ (3)请判断2是不是第(1)小题中的那个数列的项. 小结: 例2、写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)1,3,5,7; (2)0,2,0,2; (3)10,100,1000,10000; 变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法例1 在数列{n a }中,31=a ,) 1(1 1++=+n n a a n n ,求通项公式n a . 解:原递推式可化为:1111+- + =+n n a a n n 则,211112-+=a a 3 1 2123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故n a n 1 4-=. 二、作商求和法 例2 设数列{n a }是首项为1的正项数列,且0)1(12 2 1=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为: )]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n 1 . 三、换元法 例3 已知数列{n a },其中913,3421== a a ,且当n ≥3时,)(3 1 211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编). 解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31 .故 n n n n b b )31()31(91)31(2211==?=---.故n n n a a )31(1=--.由逐差法可得:n n a )3 1 (2123-=. 例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。解 由1221=+---n n n a a a 得:1)()(211=------n n n n a a a a ,令11---=n n n a a b ,则上式为 121=---n n b b ,因此}{n b 是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b 又2 ) 1(121-=+++-n n b b b n 所以)1(211-= -n n a n ,即)2(2 1 2+-=n n a n

数列通项公式的求法教案

课 题:数列通项公式的求法 课题类型:高三第一轮复习课 授课教师:孙海明 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法 求通项(3)累乘法求通项,并能灵活地运用。 2、能力目标:通过例题总结归纳数列通项公式基本求法,培养学生观察、辨析、运用的 综合思维能力,掌握由特殊到一般、无限化有限的化归转化的数学思想, 提高学生数学素质。 3、情感目标:通过本节的学习,进一步培养学生的“实践—认识—再实践”的辨证唯物 主义观点。 教学重点、难点: 重 点:数列通项公式的基本求法 难 点:复杂问题的化归转化 教学方法与教学手段: 教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力) 教学手段:多媒体辅助教学 教学过程: 一、创设情境,引出课题: 1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,灵活运用解题。请同学们思考解决数列问题的关键是什么?(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。 《板书标题:数列通项公式的求法》 [设计意图] 使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的 重视,提高学习的积极性。 二、启发诱导、总结方法 1、利用公式求通项 《先给出例题,分析总结方法》 师生互动: 请同学分析叙述解题过程,老师板书。 {}{}{}{}的通项公式求且数列是各项都为正数的等比 为等差数列设高考卷一例、n n n n b a b a b a b a b a ,,13,21,1,,)07(355311=+=+=={}{}1 2223545322)1(212,202 74,1341,21210,,-==-+===>-===++=+=++=+>n n n n n b n n a d q q q q q d b a q d b a q q b d a ,,则所以所以(舍)因为或解得依题得的公比为等比数列的公差为解:设等差数列

常见递推数列通项公式的求法

数列复习课(3)———常见递推数列通项公式的求法 主备人:刘莉苹 组长:李英 时间:2013-9-16 教学目标: 1.通过求出数列前几项,了解递推公式是给出数列的一种方法,并能根据特殊的递推公式求出数列的通项公式. 2.掌握把一些简单的数列变形转化为等差数列、等比数列的方法,体验解决数列问题的基本方法及理解运用的过程. 教学重点:处理递推关系的基本方法. 教学难点:通过变形转化成等差、等比数列的有关问题. 研讨互助 问题生成 引入新课: 由递推公式求数列的通项公式的类型: (1) (2) (3) (4)()n f pa a n n +=+1型数列(p 为常数) (5)n n n qa pa a +=++12(其中p ,q 均为常数)。 (6)递推公式为n S 与n a 的关系式()n n S f a = 即n a 与n s 的关系11(1)(2)n n n s n a s s n -=?=?-≥? (7)r n n pa a =+1)0,0(>>n a p (8)) ()()(1n h a n g a n f a n n n +=+ (9)周期型 思考:各类型通项公式的求法? 合作探究 问题解决 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 1() n n a a f n +=+1() n n a a f n +=?1(0,1) n n a pa q p p +=+≠≠

变式: 1. 已知数列{}n a 满足211=a ,112 n n a a +=+,求n a . 2.若数列{}n b 满足11b =,112n n n b b +??-= ???(1)n ≥,求数列{}n b 的通项公式. 3.已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 变式: 1. 已知31=a ,132n n a a += ,求n a 。 2.已知31=a ,n n a n n a 23131 +-=+ )1(≥n ,求n a 。

2019-2020学年高中数学 《数列通项公式求法》导学案 新人教A版必修5.doc

2019-2020学年高中数学 《数列通项公式求法》导学案 新人教A 版 必修5 【学习目标】 1.会在各种条件下,选用适当的方法求数列的通项公式。 2.掌握定义法、公式法、累加法、累乘法、构造数列法在求通项公式中的应用。 【重点难点】 重点:由递推公式求数列的通项公式 难点:累加法、累乘法、构造数列法 【学习过程】 知识点一:定义法(教材链接:等差数列和等比数列的定义) 直接用等差数列或等比数列的定义求通项的方法叫定义法,适应于已知数列类型的题目. 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数 列{}n a 的通项公式. 例2.已知数列{} n a 的各项均为正数,前n 项和为n S ,且有332-=n n a S , (1)求数列{}n a 的通项公式。 (2)设数列{}n b 的通项公式是1 33log log 1+?= n n n a a b ,前n 项和为n T ,求证:对于任意的正整数n ,总有n T <1. 知识点三:由递推式求数列通项 对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等

比数列问题,有时也用到一些特殊的转化方法与特殊数列。 类型1 递推公式为)(1n f a a n n +=+(教材链接:第37页等差数列通项公式的探究) 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 (1)递推公式为n n a n f a )(1=+(教材链接:第50页等比数列通项公式的探究) 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例4. 已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 类型3 递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法:通过对系数q 的分解,把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1。 例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 类型4 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。(教材链接:第69页第6题)

九类常见递推数列求通项公式方法

递推数列通项求解方法举隅 类型一:1n n a pa q +=+(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ……121(1n p a q p p -=++++…211)11n n q q p a p p p --??+=+ ?+ ? --??。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--?? ,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=??…… 1223(122n -=++++ (211) 332)12232112n n n --+??+=+?+=- ? --?? 。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则1 1342 2n n n a -++=?=,即123n n a +=-。 类型二:1()n n a a f n +=+ 思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+ ∑。

等差数列概念及通项公式经典教案

等差数列的概念及通项公式 【学习目标】 1. 准确理解等差数列、等差中项的概念,掌握等差数列通项公式的求解方法,能够熟练应用通项公式解 决等差数列的相关问题 2. 通项对等差数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生 对数学问题的观察、分析、概括和归纳的能力 3?激情参与、惜时高效,禾U 用数列知识解决具体问题,感受数列的应用价值 【重点】:等差数列的概念及等差数列通项公式的推导和应用 【难点】:对等差数列中“等差”特征的理解、把握和应用 【学法指导】 1.阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法 ; 2.完成教材助读设置的问题,然后结 合课本的基础知识和例题,完成预习自测; 3.将预习中不能解决的问题标出来,并写到后面“我的疑惑” 一、知识温故 1?数列有几种表示方法? 2?数列的项与项数有什么关系? 3函数与数列之间有什么关系? 教材助读 1?一般地,如果一个数列从第 ________ 项起,每一项与它的前一项的差等于 ____________ 常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的 ___________ ,公差通常用字母 ___________________________ 表示。 2.由三个数a 、A 、b 组成的 ___________ 数列可以看成最简单的等差数列。这时 A 叫做a 与b 的等差数列即 3. 如果数列{a n }是公差为d 的等差数列,则a 2 a 1 a 5 a 1 4.通项公式为a n =an+b (a,b 为常数)的数列都是等差数列吗?反之,成立吗? ,a 3 a 1 a 4 a 1 1. 等差数列a 2d , a ,a 2d ?' A . a n a (n 1)d B. C . a n a 2(n 2)d D. 2.已知数列{, a n } 的通项公式为 a n A . 2 B. 3 C. 2 3. 已知a 1 b - 1 ?的通项公式是( a (n 3)d a 2nd 2n ,则它的公差为( D. 3 ,则a 与b 的等差中项为 【预习自测】 a n a n

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

等比数列的概念及通项公式导学案

1 等比数列的概念及通项公式 基本概念 新知: 1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1 n n a a -= (q ≠0) 2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ;24311()a a q a q q a === ; … … ∴ 11n n a a q a -==? 等式成立的条件 3. 等比数列中任意两项n a 与m a 的关系是: 3、等比数列的性质:对于等比数列}{n a ,若.,n m q p a a a a n m q p =+=+则 4、等比数列的}{n a 的单调性————————与首项和公比都有关 11-=n n q a a 例题 例一:判断数列是否为等比数列,若是请指出公比 (1)1,-1,1,-1,1,…(2)0,1,2,4,8,…(3)13 181-4121-1,,, 例二、指出下列等比数列中的未知项 (1)2,a ,8 (2)-4,b ,c ,2 1 问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G b G ab G a G =?=?= 新知1:等比中项定义 如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a , b 同号). 试试:数4和6的等比中项是 . 例三、(1)在等比数列}{n a 中,是否有)2(112 ≥=+-n a a a n n n ? (2)如果数列}{n a 中,对于任意的正整数),2(,2112 ≥=≥+-n a a a n n n n n 都有) (那么}{n a 一定是等比数列 吗?

常见线性递推数列通项的求法

常见线性递推数列通项的求法 对于由递推式所确定的数列通项公式问题,往往将递推关系式变形转化为我们熟知的等差数列或等比数列,从而使问题简单明了。这类问题是高考数列命题的热点题型,下面介绍常见线性递推数列求通项的基本求法。 一、一阶递推数列 1、q pa a n n +=+1型 形如q pa a n n +=+1(q p 且1≠为不等于0的常数)的数列,可令)(1x a p x a n n +=++ 即x p pa a n n )1(1-+=+与q pa a n n +=+1比较得1-=p q x ,从而构造一个以1 1-+p q a 为首项以p 为公比的等比数列? ????? -+1p q a n 例1.在数列{a n }中,,13,111-?==+n n a a a 求n a . 解:在131-?=+n n a a 的两边同加待定数λ,得n n n a a a (3131?=+-?=++λλ+(λ-1)/3),令,3)1(-=λλ得).21(321.211-?=-∴-=+n n a a λ数列{}2 1-n a 是公比为3的等比数列, ∴a n 21-=).13(21,32 111+=∴?--n n n a 2、 ()n g a c a n n +?=+1型 (1)1=c 时:解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a . 例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项n a . 解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n Λ,把以上各式相加,得 【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用 2,3,4,,2,1Λ--n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。 (2)1≠c 时: 例3.在数列{}n a 中,,3,1211n a a a n n +==+求通项n a . 解:作新数列}{n b ,使),(2C Bn An a b n n ++-=即),(2C Bn An b a n n +++=(A ,B ,C 为待定 常数)。由213n a a n n +=+可得:C n B n A b n ++++++)1()1(21=,)(322n C Bn An b n ++++ 所以,B A C n A B n A b b n n --+-+++=+2)22()12(321,设2A+1=0,2B-2A=0,2C-A-B=0,可

数列求通项公式教学设计

数列求通项公式教学设计 教学目标: 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用 公式求通项(2)累加法求通项(3)累乘法求通项, (4)构造法求通项并能灵活地运用。 2、能力目标:通过例题总结归纳数列通项公式基本求法,培养 学生观察、辨析、运用的综合思维能力,掌握由特 殊到一般、无限化有限的化归转化的数学思想,提高 学生数学素质。 3、情感目标:通过本节的学习,进一步培养学生的“实践—认识 —再实践”的辨证唯物主义观点。 教学重点、难点: 重点:数列通项公式的基本求法 $ 难点:复杂问题的化归转化 教学方法与教学手段: 教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力) 教学手段:多媒体辅助教学 教学过程: 一、创设情境,引出课题: 1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,

灵活运用解题。请同学们思考解决数列问题的关键是什么(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。 《板书标题:数列通项公式的求法》 ( [设计意图] 使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的重视,提高学习的积极性。 二、启发诱导、总结方法 1、回顾上节课讲过的公式法,已知n S 求n a ,累加法及其简单应用 给出练习题目,引导学生自主做题,并让一位学生黑板演示 教师引导学生分析例题题干,总结特点:“明确数列是用何种求和方法” 《多媒体》给出同类的练习让学生巩固方法及解题过程。 、 2、累乘法求通项 回忆等比数列定义及通项公式的推导过程,引出“累乘法求通项”,利用类比的方法引导学生自己总结累乘法所适合的结构类型:已知数列相邻两项之比。给出例题让学生分析叙述解题过程。 例:已知数列}{n a ,满足 n n a a n n 11+=+,且21=a ,求该数列的通项公式 引导学生类比累加法,思考解题方法。并逐步给出答案,引导学生怎样分析解决问题。给出练习 练习1.已知数列}{n a 满足n n n a a 2.1=+,且11=a ,求该数列的通项公式 [

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

专题由递推关系求数列的通项公式(含答案)

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a =,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积

中职数学(人教版)拓展模块教案:数列的概念和通项公式

数列公式数学学科导学案 教师寄语:做对国家有用的人 课题:数列的概念和通项公式 班级 17级姓名陈兆侠组别二年级 一、学习目标: 1.知识与能力: (1)理解数列及其有关概念; (2)理解数列的通项公式,并会用通项公式写出数列的任意一项; (3)对于比较简单的数列,会根据其前几项写出它的一个通项公式. 2.过程与方法: 理解数列的定义,表示法,分类,初步学会求数列通项公式的方法。 3.情感态度价值观: 提高观察,分析能力,理解从特殊到一般,从一般到特殊思想。 二、学习重、难点: 重点:了解数列的概念及其表示方法,会写出简单数列的通项公式 难点:数列与函数关系的理解,用归纳法写数列的通项 三、学习过程【导、探、议、练】 导 知识点一:数列及其有关概念 思考1:数列1,2,3与数列3,2,1是同一个数列吗? 思考2:数列的记法和集合有些相似,那么数列与集合的区别是什么? 梳理: (1)按照________排列的________称为数列,数列中的每一个数叫做这个数列的_____.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的__________(通常也叫做______),排在第二位的数称为这个数列的……排在第n位的数称为这个数列的__________. (2) 数列的一般形式可以写成,简记为_________. 知识点二:通项公式 思考1:数列1,2,3,4,…的第100项是多少?你是如何猜的? 思考2 数列的通项公式an=f(n)与函数解析式y=f(x)有什么异同? 知识点三:数列的分类 思考:对数列进行分类,可以用什么样的分类标准? 梳理: (1)按项数分类,项数有限的数列叫做__________数列,项数无限的数列叫做__________数列. (2)按项的大小变化分类,从第2项起,每一项都大于它的前一项的数列叫做___________;从第2项起,每一项都小于它的前一项的数列叫做;各项相等的数列叫做;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做_____________. 探、议 (一)自主探究 类型一:由数列的前几项写出数列的一个通项公式

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

最新中职数学——数列概念和通项公式导学案

数学学科导学案 教师寄语:做对国家有用的人 课题:数列的概念和通项公式 班级17级姓名陈兆侠组别二年级一、学习目标: (3)对于比较简单的数列,会根据其前几项写出它的一个通项公式.2.过程与方法:理解数列的定义,表示法,分类,初步学会求数列通项公式的方法。 3.情感态度价值观:提高观察,分析能力,理解从特殊到一般,从一般到特殊思想。 二、学习重、难点: 重点:了解数列的概念及其表示方法,会写出简单数列的通项公式难点:数列与函数关系的理解,用归纳法写数列的通项三、学习过程【导、探、议、练】 导 知识点一:数列及其有关概念 思考1:数列1,2,3与数列3,2,1是同一个数列吗? 思考2:数列的记法和集合有些相似,那么数列与集合的区别是什么? 梳理:(1)按照________排列的________称为数列,数列中的每一个数叫做这个数列的_____.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的__________(通常也叫做______),排在第二位的数称为这个数列的……排在第n位的数称为这个数列的__________. (2) 数列的一般形式可以写成,简记为_________. 知识点二:通项公式 思考1:数列1,2,3,4,…的第100项是多少?你是如何猜的? 思考 2 数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异 1.知识与能力: (1)理解数列及其有关概念; (2)理解数列的通项公式,并会用通项公式写出数列的任意一项;

同? (2)按项的大小变化分类,从第2项起,每一项都大于它的前一项的数列叫做___________;从第2项起,每一项都小于它的前一项的数列叫做;各项相等的数列叫做;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做_____________. 探、议 (一)自主探究 类型一:由数列的前几项写出数列的一个通项公式 例1 写出下列数列的一个通项公式,使它的前4项分别是下列各数: (1)5,10,15,20,… (2)1 2 , 4 1 , 6 1 , 8 1 ,… (3)-1,1,-1,1,… 跟踪训练1 写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1) 1 1×2 , 1 2×3 , 1 3×4 , 1 4×5 ,… (2) 22-1 2 , 32-1 3 , 42-1 4 , 52-1 5 ,… (3) 2 1 , 4 3 , 6 5 , 8 7 ,… 类型二:数列的通项公式的应用 例2 已知数列{a n}的通项公式a n= N 2 1 , n∈N*. (1)写出它的第5项; (2)判断 64 1 是不是该数列中的项,是,是第几项? 例3 判断16和45是否为数列} {1 3+ n中的项,如果是,请指出是第几项? 跟踪训练2 已知数列{a n}的通项公式为a n= 1 n(n+2) (n∈N*),那么1 120 是这个数列的第______项. 知识点三:数列的分类 思考:对数列进行分类,可以用什么样的分类标准? 梳理:(1)按项数分类,项数有限的数列叫做__________数列,项数无限的数列叫做__________数列.

等差数列的概念、等差数列的通项公式 说课稿 教案

等差数列的概念、等差数列的通项公式 从容说课 本节课先在具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.可见本课内容的安排旨在培养学生的观察分析、归纳猜想、应用能力.结合本节课特点,宜采用指导自主学习方法,即学生主动观察——分析概括——师生互动,形成概念——启发引导,演绎结论——拓展开放,巩固提高.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究. 在教学过程中,遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化. 教学重点理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题. 教学难点(1)等差数列的性质,等差数列“等差”特点的理解、把握和应用; (2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 教具准备多媒体课件,投影仪 三维目标 一、知识与技能 1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列; 2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项. 二、过程与方法 1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力; 2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性. 三、情感态度与价值观 通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识. 教学过程 导入新课 师上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子) (1)0,5,10,15,20,25,…; (2)48,53,58,63,…; (3)18,15.5,13,10.5,8,5.5…; (4)10 072,10 144,10 216,10 288,10 366,…. 请你们来写出上述四个数列的第7项. 生第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510. 师我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说. 生这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7

相关文档
最新文档