高等数学 4-2换元积分法

高等数学 4-2换元积分法
高等数学 4-2换元积分法

高中数学解题基本方法 换元法

高中数学解题基本方法--换元法 高中数学解题基本方法--换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4+2-2≥0,先变形为设2=t(t 0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=+

的值域时,易发现x∈[0,1],设x=sinα,α∈[0,],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x+y=r(r 0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t 0和α∈[0,]。 Ⅰ、再现性题组: 1.y=sinx??cosx+sinx+cosx的最大值是_________。 2.设 f x+1 =log 4-x (a 1),则 f x 的值域是_______________。 3.已知数列 a 中,a=-1,a??a=a-a,则数列通项a=___________。 4.设实数x、y满足x+2xy-1=0,则x+y的取值范围是___________。 5.方程=3的解是_______________。 6.不等式log 2-1 ??log 2-2 〈2的解集是_______________。 【简解】1小题:设sinx+cosx=t∈[-,],则y=+t-,对称轴t=-1,当t=,y=+; 2小题:设x+1=t t≥1 ,则f t =log[- t-1 +4],所以值域为-∞,log4];

高中数学解题方法-换元法

高中数学解题方法 2013年高考数学二轮复习 换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:代数换元、三角换元、均值换元等。例如解不等式:0224≥-+x x ,先变形为设)0(2>=t t x ,而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现[]1,0∈x ,设 α2sin =x ?? ????∈22,0α,问题变成了熟悉的求三角函数值域。如变量y x ,适合条件 )0(222>=+r r y x 时,则可作三角代换θθsin ,cos r y r x ==化为三角问题。 均值换元,如遇到S y x =+形式时,设t S y t S x -=+=2 ,2等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 题型一:代数换元 例1:(1)方程1313 ++-x x =3的解是_______________ (2)x x x f --=2)(的值域是___________.

§4.2换元积分法(第二类换元法)

§ 4.2 换元积分法(第二类) I 授课题目(章节): § 4.2 换元积分法(第二类换元积分法) n 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 川教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 IV 讲授内容: 第一类换元积分法的思想是:在求积分g(x)dx时.如果函数g(x)可以化为f[::(x)]:「(x)的形式.那么 g(x)dx = f[ (x)] (x)dx 二f[ (x)]d ;:(x)^(x\ f (u)du = F(u) C =F[ (x)] C 所以第一换元积分法体现了“凑”的思想?把被积函数凑出形如 f [- (x)F (x)函数来.对于某些 函数第一换元积分法无能为力,例如..a^x2dx.对于这样的无理函数的积分我们就得用今天要 学习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换x二(t)将无理函数f (x)的积分.f (x)dx化为有理式(t)卜(t)的积分.(t)F (t)dt。即卩 f (x)dx= . f「(t)「(t)dt 若上面的等式右端的被积函数f「(t)「(t)有原函数G(t),则.(t)]:(t)dt = G (t) ? C, 然后再把「(t)中的t还原成4(x),所以需要一开始的变量代换x = ' (t)有反函数。 定理2设x =?(t)是单调、可导的函数,且;(t) = 0,又设f「:(t)];(t)有原函数叮」(t),则.f (x)dx「(t)],(t)dt =「(t) C_1(x)] C 分析要证明.f(x)dx =叫'4(x)] C ,只要证明叮4(x)]的导数为f (x),

换元积分法(第二类换元法)

§4.2 换元积分法(第二类) Ⅰ 授课题目(章节): §4.2 换元积分法 (第二类换元积分法) Ⅱ 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 Ⅲ 教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 Ⅳ 讲授内容: 第一类换元积分法的思想是:在求积分()g x dx ? 时, 如果函数g (x )可以化为[()]()f x x ??'的形式, 那么 () ()[()]()[()]() ()u x g x dx f x x dx f x d x f u du ?????='==???? ()F u C =+[()]F x C ?=+ 所以第一换元积分法体现了“凑”的思想.把被积函数凑出形如[()]()f x x ??'函数来.对于某些函数第一换元积分法无能为力,例如? -dx x a 22.对于这样的无理函数的积分我们就得用今天要 学习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换)(t x ψ=将无理函数()f x 的积分()f x dx ?化为 有理式[()]()f t t ψψ'的积分 [()]()f t t dt ψψ'?。即 ()[()]()f x dx f t t dt ψψ'=?? 若上面的等式右端的被积函数[()] ()f t t ψψ'有原函数()t Φ,则[()]()()f t t dt t C ψψ'=Φ+?, 然后再把()t Φ中的t 还原成1 ()x ψ-,所以需要一开始的变量代换)(t x ψ=有反函数。 定理2 设)(t x ψ=是单调、可导的函数,且0)(≠ψ't ,又设)()]([t t f ψ'ψ有原函数()t Φ,则 ??+ψΦ=+Φ=ψ'ψ=-C x C t dt t t f dx x f )]([)()()]([)(1 分析 要证明 1()[()]f x dx x C ψ-=Φ+? ,只要证明1[()]x ψ-Φ的导数为()f x , 1[()]d d dt x dx dt dx ψ-ΦΦ=? , ?dt dx =

高中数学3(换元法)

第 7 讲 换元法(高中版) (第课时) 换元法? ??? ??? ???? ??? ???? ?? ??????? ????三角代换均值代换 整体代换策略化超越式为代数式化无理式为有理式化分式为整式降次复杂问题简单化非标准问题标准化 用途 重点:1.;2.;3.。 难点:1.;2.;3.;。 我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子。换元的关键是构造元和设元。 换元的实质是转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式。换元后要注意新变量的取值范围,它既不能缩小也不能扩大。 换元法在因式分解、化简求值、恒等式证明、条件等式证明、方程、不等式、函数、数列、三角、解析几何等问题中有广泛的应用。 换元的常用策略有:整体代换(有理式代换,根式代换,指数式代换,对数式代换、复变量代换)、三角代换、均值代换等。 整体代换:在条件或者结论中,某个代数式反复出现,那么我们可以用一个字母来代替它, 当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角代换:如果把代数式换成三角式更容易求解时,可以利用代数式中与三角知识的联系进

行换元。例如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2 α ,α∈[0, π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。又如变量x 、y 适合条件x 2 +y 2 =r 2 (r>0)时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值代换:对两个类似的式子,可令其算术平均值为t 进行换元;如果遇到形如 S y x =+ 或 S y x =+2 2 这样的对称结构,可设 x =S 2+t ,y =S 2-t 或 t S x +=22 ,t S y +=2 2等等。 1.换元法在方程中的应用 我们知道,解分式方程时一般用“去分母”的方法,把分式方程化成整式方程来解;解无理方程一般用“两边乘方”的方法,将无理方程化成有理方程来解。然而利用这些常规的变形方法解题,有时会产生高次方程,解起来相当繁琐,甚至有时难于解得结果。对于某些方程,我们可以用新的变量来替换原有的变量,把原方程化成一个易解的方程。 例.(高二)如果关于x 的方程 0sin cos 22 2 4 =++θθx x 有相异的四实根,求θ的范围。 分析:此题已知条件的形式比较陌生,我们先看看能不能把它转化为我们所熟悉的形式。 令 t x =2 ,则原方程化为: 0sin cos 22 2=++θθt t ⑴ 使原方程有相异的四实根等价于使方程⑴有两不等正根。 由此得 ?? ? ? ?>>->-=?)4(0sin )3(0cos ) 2(0sin 4cos 4222θθθθ 即 ?? ? ??≠<>0sin 0cos 02cos θθθ 解之得 4 52432ππθππ+<<+ k k 且 )()12(J k k ∈+≠πθ 2.换元法在不等式中的应用 例.(高二)设对所于有实数x ,不等式x 2 log 241()a a ++2x log 221a a ++log 2()a a +142 2 >0 恒成立,求a 的取值范围。 分析:不等式中,log 241()a a +、 log 221a a +、log 2()a a +142 2 三项有何联系?对它们进 行变形后再实施换元法。 解: 设 log 2 21 a a +=t ,则 log 241()a a +=log 2812()a a +=3+log 2a a +12=3-log 221 a a +=3-t , log 2()a a +142 2 =2log 2 a a +12=-2t , 代入后原不等式简化为 (3-t )x 2 +2tx -2t>0 ,它对一切实数x 恒成立,

高中数学思想方法之八——换元法

高中数学思想方法之八——换元法 例题1. 实数x、y满足4x2-5xy+4y2=5 ,设S=x2+y2,求 1 S m ax + 1 S m in 的值。 例题2.不等式x>ax+3 2 的解集是(4,b),求a,b。 例题3. 设a>0,求f(x)=2a(sinx+cosx)-sinx·cosx-2a2的最大值和最小值。 例题4. 设对所于有实数x,不等式x2log 241 () a a + +2x log 2 2 1 a a+ +log 2 () a a +1 4 2 2 >0恒成立,求a的取值 范围。 例题5. 已知sinθ x = cosθ y ,且 cos2 2 θ x + sin2 2 θ y = 10 322 () x y + ,求 x y 的值。 例题6. 实数x、y满足() x-1 9 2 + () y+1 16 2 =1,若x+y-k>0恒成立,求k的范围。 例题7.求同时满足下列条件的所有复数z: (1) 10 1z6 z <+≤ (2)z的实部和虚部均为整数。

例题 8.△ABC 中,求证:cosAcosBcosC ≤1/8。 例题9.实数a 、b 、c 满足a+b+c=0,求证:ab+bc+ca ≤0. 例题10.已知方程x 2-3x+1=0的两根为x1x2,且x1b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)g(b)-g(-a);④f(a)-f(-b)

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

高中数学 换元法(附答案)

二、换元法(课时10) 一、知识提要 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法. 换元的方法有:局部换元、三角换元、均值换元等. 二、例题讲解 例1.(1)已知:x x f l g )12(=+,求)(x f . (2)设实数x 、y 满足0122=-+xy x ,则y x +的取值范围是_________. (3)方程2)22(log )12(log 122=+?++x x 的解集是______________. 解:(1))1)(1lg(2lg )(>--=x x x f ; (2)设k y x =+,则1044,0122 2≥?≥-=?=+-k k kx x 或1-≤k ; (3)令)12(log 2+x =t ,可得原方程的解集为}0{. 例2.(1)函数223 ) 1(x x x y +-=的值域是_____________. (2)已知:数列}{n a 的11=a ,前n 项和为n S ,241+=+n n a S .求}{n a 的通项公式. 解:(1)令θta n =x ,)2,2(π πθ-∈,则θθθθθθsi n )ta n 1(cos )ta n 1(ta n ta n 23223-=+-=y θθθθθθθθ4sin 412cos cos sin )sin (cos sin cos 22= ?=-=, ∴]4 1,41[-∈y . (2)由241+=+n n a S ,知)2(241≥+=-n a S n n ,

∴)2)((411≥-=--+n a a S S n n n n ,即)2)((411≥-=-+n a a a n n n ∴)2)(2(2211≥-=--+n a a a a n n n n ,令n n n a a b 21-=+,则)2(21≥=-n b b n n ∵11=a ,52=a ,∴31=b ,123-?=n n b ,即n n n a a 22311+?=-+. 两边除以12+n 得:432211=-++n n n n a a ,令n n n a c 2=,则有431=-+n n c c , ∴)13(41-=n c n ,代入n n n a c 2 =得: 22)13(-?-=n n n a . 例3.实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求m a x 1 s +m in 1s 的值.(93年全国高中数学联赛题) 方法1:设?????==α αsin cos s y s x 代入①式得: 4S -5S ·sin αcos α=5 解得 S =α 2sin 5810- ; ∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤103 ∴ m ax 1 s +m in 1s =310+1310=1610=85 方法2:由S =x 2+y 2,设x 2=2s +t ,y 2=2 s -t ,t ∈[-S 2,S 2], 则224t s xy -±=代入①式得:4S ±522 4 t s -=5, 移项平方整理得 100t 2+39S 2-160S +100=0 . ∴ 39S 2-160S +100≤0 解得:1013≤S ≤103 ∴ m ax 1 s +m in 1s =310+1310=1610=85

最新定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法 教学目的:掌握定积分换元积分法与分部积分法 难点:定积分换元条件的掌握 重点:换元积分法与分部积分法 由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的.1.定积分换元法 定理假设 (1) 函数?Skip Record If...?在区间?Skip Record If...?上连续; (2) 函数?Skip Record If...?在区间?Skip Record If...?上有连续且不变号的导数; (3) 当?Skip Record If...?在?Skip Record If...?变化时,?Skip Record If...?的值在?Skip Record If...?上变化,且?Skip Record If...?, 则有 ?Skip Record If...?.(1) 本定理证明从略.在应用时必须注意变换?Skip Record If...?应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分.例1计算?Skip Record If...?. 仅供学习与交流,如有侵权请联系网站删除谢谢4

仅供学习与交流,如有侵权请联系网站删除 谢谢4 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?.于是 ?Skip Record If...? ?Skip Record If...?. 例2 计算?Skip Record If...??Skip Record If...?. 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,? ?Skip Record If...??Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?. 显然,这个定积分的值就是圆?(图5-8). 例3 计算?Skip Record If...?. 解法一 令?Skip Record If...?,则?Skip Record If...?. 当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?,于是 ?Skip Record If...?. 解法二 也可以不明显地写出新变量?Skip Record If...?,这样定积分的上、下限也不要改变. 即 ?Skip Record If...? ?Skip Record If...?.

换元法在不定积分和定积分中的联系与区别

换元法在不定积分和定积分中的联系与区别 1.第一换元法在不定积分和定积分中的联系与区别 1.1不定积分中第一换元法的定理形式 定理1若,且的原函数容易求出,记 , 则 . 证明若,令,于是有 因而 得证。 1.2定积分中第一换元法的定理形式 定理2若连续,在上一阶连续可导,且,在构成的区间上连续,其中,则 . 证明令,由于在构成的区间上连续,记,则 得证。 1.3 第一换元法在不定积分和定积分中的联系与区别 区别:第一换元法在定积分中对未知量给出了定义范围,要求换元函数在该定义域内一阶连续可导即可,对积分要求变弱。

联系:不定积分的实质是求一个函数的原函数组成的集合,部分定积分的计算可以利用不定积分的第一换元法求出简单函数的任意一个原函数,再用原函数在定义域的上下限的函数值取差值。 例1求. 解因为 即有一个原函数,所以 例2 计算积分. 解由于 于是 2.第二换元法在不定积分和定积分中的联系与区别 2.1不定积分中第二换元法的定理形式 定理3设连续,及都连续,的反函数存在且连续,并且 ,(1)则 (2)

证明将(2)式右端求导同时注意到(1)式,得 , 这便证明了(2)式。 2.2定积分中第二换元法的定理形式 定理 4 设在连续,作代换,其中在构成的区间上有连续导数,且,则 证明设是的一个原函数,则是的一个原函数。于是 , 定理得证。 2.3 第二换元法在不定积分和定积分中的联系与区别 区别:由不定积分中第二换元法的证明过程可知,不定积分中第二换元法要求变换的反函数存在且连续,并且。而在定积分的第二换元法则不这样要求,它通过换元法写出关于新变量的被积函数与新变量的积分上下限后可以直接求职,不像不定积分的计算最终需要对变量进行还原。 例3用第二换元法求解 解令,则

§4.2换元积分法(第二类换元法)

§ 换元积分法(第二类) Ⅰ 授课题目(章节): § 换元积分法 (第二类换元积分法) Ⅱ 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 Ⅲ 教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 Ⅳ 讲授内容: 第一类换元积分法的思想是:在求积分()g x dx ? 时 如果函数g (x )可以化为[()]()f x x ??'的 形式 那么 () ()[()]()[()]() ()u x g x dx f x x dx f x d x f u du ?????='==???? ()F u C =+[()]F x C ?=+ 所以第一换元积分法体现了“凑”的思想.把被积函数凑出形如[()]()f x x ??'函数来.对于某些函数第一换元积分法无能为力,例如? -dx x a 22.对于这样的无理函数的积分我们就得用今天要 学习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换)(t x ψ=将无理函数()f x 的积分 ()f x dx ?化为 有理式[()] ()f t t ψψ'的积分[()]()f t t dt ψψ'?。即 ()[()]()f x dx f t t dt ψψ'=?? 若上面的等式右端的被积函数[()] ()f t t ψψ'有原函数()t Φ,则[()]()()f t t dt t C ψψ'=Φ+?, 然后再把()t Φ中的t 还原成1 ()x ψ-,所以需要一开始的变量代换)(t x ψ=有反函数。 定理2 设)(t x ψ=是单调、可导的函数,且0)(≠ψ't ,又设)()]([t t f ψ'ψ有原函数()t Φ,则 ??+ψΦ=+Φ=ψ'ψ=-C x C t dt t t f dx x f )]([)()()]([)(1

高中数学解题基本方法换元法

高中数学解题基本方法——换元法 化归与转化的思想在解题中的应用 1.解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。 2.化归与转化思想的实质是揭示联系,实现转化。除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。从这个意义上讲,解决数学问题就是从未知向已知转化的过程。化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。 3.转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。 4.化归与转化应遵循的基本原则: (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。 换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。均值换元,如遇到x+y=S形式时,设x = S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 1、方程3 3 1 3 1 = + +- x x 的解是_______________。 2、不等式2 )2 2( log )1 2( log1 2 2 < - -+x x的解集是_______________。

不定积分换元法例题

【不定积分的第一类换元法】 已知 ()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????= =? ?? 【凑微分】 ()()f u du F u C = =+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ? 的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????= =??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==? ??()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。 __________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+?

§4.2 换元积分法(第二类换元法)

§4.2 换元积分法(第二类) Ⅰ 授课题目(章节): §4.2 换元积分法 (第二类换元积分法) Ⅱ 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 Ⅲ 教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 Ⅳ 讲授内容: 第一类换元积分法的思想是:在求积分()g x dx ?时, 如果函数g (x )可以化为[()]()f x x ??'的形式, 那么 () ()[()]()[()]() ()u x g x dx f x x dx f x d x f u du ?????='==???? ()F u C =+[()]F x C ?=+ 所以第一换元积分法体现了“凑”的思想.把被积函数凑出形如 [()]()f x x ??'函数来.对于某些函数第一换元积分法无能为力,例如?-dx x a 22. 对于这样的无理函数的积分我们就得用今天要学习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换)(t x ψ=将无理函数()f x 的积分()f x dx ?化为有理式[()]()f t t ψψ'的积分[()]()f t t dt ψψ'?。即 ()[()]()f x dx f t t dt ψψ'=?? 若上面的等式右端的被积函数[()]()f t t ψψ'有原函数()t Φ,则

[()]()()f t t dt t C ψψ'=Φ+? ,然后再把()t Φ中的t 还原成1()x ψ-, 所以需要一开始的变量代换)(t x ψ=有反函数。 定理2 设)(t x ψ=是单调、可导的函数,且0)(≠ψ't ,又设)()]([t t f ψ'ψ有原 函数()t Φ,则??+ψΦ=+Φ=ψ'ψ=-C x C t dt t t f dx x f )]([)()()]([)(1 分析 要证明1()[()]f x dx x C ψ-=Φ+?,只要证明1[()]x ψ-Φ的导数为()f x , 1[()]d d dt x dx dt dx ψ-ΦΦ=? , ?dt dx = 证明 )(t x ψ= 单调、可导,∴()x t ψ=存在反函数)(1x t -=ψ,且 ) (11t dt dx dx dt ψ'== 11[()][()]()()() d d dt x f t t f x dx dt dx t ψψψψ-Φ'Φ=?==' )]([1x -ψΦ∴是)(x f 是一个原函数?+ψΦ=-C x dx x f )]([)(1. 第二换元法,常用于如下基本类型 类型1:被积函数中含有22x a -(0>a ),可令t a x sin =(并约定 (,)22 t ππ ∈- )则t a x a cos 22=-,tdx a dx cos =,可将原积分化作三角有理函数的积分. 例1 求 ?-dx x a 22 )0(>a 解 令t a x sin = ,(,)22 t ππ ∈-,则t a x a cos 22=- tdt a dx cos = cos cos a ta tdt ∴=?22 2 11(cos 2)sin 22224 a a a t dt t t C =+=++? 222 sin cos arcsin 222a a a x t t t C C a =++=+. 借助下面的辅助三角形把sin t ,cos t 用x 表示.

高中数学换元法解题案例及练习题

高中数学换元法解题案例及练习题 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x +1-x的值域时,易发现x∈[0,1],设x=sin2α,α∈[0,π ],问题变成 2 了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发

现值域的联系,又有去根号的需要。如变量x 、y 适合条件x 2+y 2=r 2(r>0)时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值换元,如遇到x +y =S 形式时,设 x = S 2 +t ,y = S 2 -t 等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y =sinx ·cosx +sinx+cosx 的最大值是_________。 2.设f(x 2+1)=log a (4-x 4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1=-1,a n +1·a n =a n +1-a n ,则数列通项a n =___________。 4.设实数x 、y 满足x 2+2xy -1=0,则x +y 的取值范围是___________。 5.方程 1313++-x x =3的解是_______________。 6.不等式log 2(2x -1) ·log 2(2x +1-2)〈2的解集是_______________。 【简解】1小题:设sinx+cosx =t ∈[-2,2],则 y = t 2 2 +t -12 ,对 称轴t =-1,当t = 2,y max =1 2 +2; 2小题:设x 2+1=t (t ≥1),则f(t)=log a [-(t-1)2+4],所以值域为(-∞,log a 4];

第二换元积分法(代入法)

173 换元积分法用的是积分规则 []=-'??========????()] 1 ()d ()()d ()()x u t f x x f u t u t t G t G u x [代入 其中函数()x u t =有反函数1()t u x -=.它与凑微分积分法用的是同一个积分规则,只是“积分的方向”不同(因此,有人把凑微分积分法称为第一换元积分法 ,而把这里的积分法称为第二换元积分法)。换元积分法在求某些带有根式的无理函数的原函数时特别有效。例如 (Ⅰ) 变成有理函数的积分) 若被积函数中含有根式 )0(≠a ,就令 n b ax t += [实际上是代入函数)(1b t a x n -= ,0≥t ] 则t a nt x n d d 1 -= . 例13 x ? [t t x t t x x t d 2d ),0(,2 =≥==](1)12 d 2 d 11t t t t t t +-==++?? 121d 1t t ? ?=- ?+?? ? []2ln(1 )t t =- +[2ln(1t ?+ ? ( 换回到原来的自变量) 例14 2[2 (2)2d (2)t t t x t t t t --+?42 2 22 d 2 t t t t t -=+-?, 其中被积函数是有理函数假分式,要用多项式除法(见注1)或拼凑法(见注2),把它变成一个多项式与一个真分式的和,即 4 2 222 t t t t -=+-2 2 32(1)2 t t t t t --+- + - 因此, 22 32 (1)d d 2 t x t t t t t t -= -+- +-?? ?3 2 27 (21)33d 3 2 2 2 t t t t t t t +- = - +- +-? [分子上的(21)t +是分母的导数] 3 2 2 2 3 d(2)7 1 d 3222 2(1)(2)t t t t t t t t t t +-=- +- ++--+? ? 3 2 2371 1ln 2d 3 2 2 6 12 t t t t t t t t ??= - +- +-+ - ?-+?? ?

相关文档
最新文档