基于阵列声波测井波形二维谱分布的纵_横波时差处理方法

基于阵列声波测井波形二维谱分布的纵_横波时差处理方法
基于阵列声波测井波形二维谱分布的纵_横波时差处理方法

第28卷 第5期2004年10月

测 井 技 术

WELL LOGGING TECHNOLOGY

Vol.28 No.5

Oct.2004

文章编号:1004 1338(2004)05 0373 05

基于阵列声波测井波形二维谱分布的纵、横波时差处理方法

朱留方1,3,沈建国2

(1.中国科学院地质与地球物理所,北京100029; 2.天津大学药学院检测中心,天津300072;

3.胜利石油管理局测井公司,山东东营257096)

摘要:用M atr ix方法可以从阵列声波测井波形中得到其二维谱分布。利用这些分布曲线可以得到地层的纵、横波以及Stoneley波时差,研究孔隙结构和孔隙流体特征。参考ST C处理思路,主要讨论用二维谱分布求地层的纵、横波和Stone ley波时差的方法:群速度法和相速度法。给出类似于ST C方法的图件,但其灰度不是相关系数,宽度表示时差的频散。

在得到地层纵、横波时差的同时,对测量波形或地层纵、横波时差的频散特征有一定的显示,为认识孔隙及孔隙流体特征提供信息。用该方法处理单极子阵列声波测井波形,得到地层的纵波、横波以及Stoneley波的时差及其频散指示,处理偶极子声波测井波形,得到横波时差及频散分布。对比单极子和偶极子处理结果,两者得到的横波时差较接近。

关键词:阵列声波测井;纵横波;时差;谱分布;波形处理;M atrix方法;频散曲线

中图分类号:P631 814;O343 1 文献标识码:A

The Method Processing the Slowness of P and S wave from W aveforms of Array Sonic Logging

ZHU L iu fang1,3,SHEN Jian guo2

(1.Geology and Geophysics Inst.of Science Academy of China,Beijing100029,C hi na;2.Pharm.S chool,Tianji n University,

Tianjin300072,China;3.W ell Logging Co.,Shengli Petroluem Administration,Dongying,Shan dong257096,China)

Abstract:From array sonic logging data,the2D spectrum can been obtained by Matrix pencil method.

U sing the spectrum,the slownesses of P w ave,S w ave and Stoneley w ave are calculated by tw o new meth ods that are called phase velocity and g roup velocity in this paper.T he calculated result is the same as STC, but the characterization of dispersion for P w ave and S wave are displaced by the w idth of distribution in the processing results.By processing the data of dipole and monopole sonic logging,the slow nesses of S wave a

g ree with each other.

Key words:array sonic logging;P w ave and S w ave;slowness;spectrum distribution;waveform process ing;M atrix m ethod;dispersion curve

0 引 言

很多科技工作者依据几何声学理论,用传统的地层声速为常数的均匀弹性介质模型,以地层的纵波、横波速度为中间结果,没有考虑到声波在井内传播时其速度随频率变化,孔隙或物理衰减比较大的地层的声波传播速度也随频率变化(频散)[1~5]。

近代声波测井波动声学理论告诉我们[6~11],井内传播的声波其速度随频率改变,具有频散特征,声波幅度受频率影响比较大,随频率改变。这些结论为声波测井仪器的发展和阵列声波测井波形处理技术的研究提供了基础。基于二维谱分布基础上的阵列声波测井波形处理技术[6]就是以声波测井波动声学理论为基础发展起来的。本文给出2种处理方法,在给出地层的纵、横波时差的同时还给出了其频散信息。

1 原始测量波形及其二维谱分布

用Matrix方法处理阵列声波测井波形可以得到其二维谱分布[12],图1是一组实际测井波形及其二维谱分布处理结果。图1(a)的上边是实际测量到的8个源距的声波波形,下边是用这8个波形处理出来的二维谱分布,其横坐标是频率,纵坐标是波数,那些离散的点连成的直线代表波形中存在的声波,该声波的时差(声速的倒数)对应于直线的斜率。用经过原点的直线拟合后知道,该二维谱分布中主要有3条直线,其斜率分别对应于上边波形图中3种声波的时差:纵波P的时差最

(a)第1个深度位置测量的声波波形

及其二维谱分布估计结果

(b)第100个深度位置测量的声波波形及其二维谱分布估计结果

图1 实际测井波形及其二维谱分布处理结果

小、横波S 中等、Stoneley(ST)波最大。深度不同,从声

波测井波形中处理出来二维谱分布不一样[见图1(b)],用这种方法计算出来的3个声波时差也不一样。

2 基于二维谱分布的纵、横波时差处理技术 群速度法

声波测井波动声学理论给出结论,声波测井波形中

的每一种声波均不同程度地具有频散特征,其中,ST

波的频散最小,与横波连在一起的伪锐利波频散最严重。

在二维谱分布图中,传播速度是常数的声波在图中的分布是一条直线,其斜率是该声波的时差;速度随频率改变的声波其分布是一条曲线。声波测井波动声学理论给出的频散特征是,随着频率的降低,纵、横波附近的模式波的相速度增加,并最终与地层的纵、横波速度相等。从图1可以看到,在横波S 和纵波P 的附近,随着频率的降低,模式波分布点均在直线的下面,其相速度是增加的。

为了从上述二维谱分布图中得到地层的纵、横和ST 波时差,参考STC 的处理思路,取过0点的直线方程连续改变直线的斜率,对上述二维谱分布进行扫描,即斜率(对应于声波时差)从0开始,以很小的步长增加,可以得到一系列斜率不同的直线,利用点到直线的距离

公式计算每一个分布点到直线的距离。当直线的斜率与地层的纵、横波时差或ST 波时差接近时,其直线附近的分布点比较多(见图1),其它斜率的直线附近的点将比较少。给定距离,统计该距离内直线附近的点数,则不同斜率的直线对应的点数不同。以斜率为自变量,点数为函数,则构成一曲线,本文称其为群速度时差曲线。在地层的纵、横波以及ST 波时差附近,该曲线有极大值。图2是与图1对应的2组波形的群速度时差曲线,从图2中可以看到,3个峰是相当明显的。其中纵、横波的峰值比较尖,时差的分辨率比较高,由这些峰

(a)第1个深度点的处理时差曲线

(b)第100个深度点的处理时差曲线图2 与图1对应的2组波形的群速度时差曲线

374 测 井 技 术 2004年

图3 2

个深度点的处理结果

值计算的时差比较准;ST 波的峰值比较粗,时差的分辨率比较低,由其计算的时差精度比较低。

二维谱分布中声速的频散特征在该图中也有一定的显示。声波测井波形中频散越小的声波,其峰值越尖[见图2(a)中的S 波和图2(b)中的P 波];频散越严重,对应的峰值减小,曲线形状变粗,最大峰值两边的形状描述了声速的频散特征。

图3是另外2个深度点的处理结果。图4是

将各

图4 单极子阵列声波测井波形群速度时差处理结果

个深度的处理时差曲线绘在一起,用灰度表示其幅度后的结果。从图3、4中可以看到其纵、横波以及ST 波时差随深度变化,取其幅度的最大值即可得到工程上需要

的纵、横波以及ST 波时差曲线。

同样,将该方法用于处理偶极声波测井资料得到图5。图5(a)是原始测井波形,该波形比较单纯,由1个模式波组成,用Matrix 方法处理后得到图5(b),其模式波在低频时基本不频散,随着频率的增加,开始频散,相速度随频率降低。用上述方法处理后得到图5(c),时差曲线上有1个主要的、幅度比较大的峰,该时差对应于测量波形中模式波的时差,在该时差的2侧,分别存在2个峰,左边时差小于模式波时差的峰主要反映最高频率处的高速模式波[图5(b)处的A],右边时差大于模式波时差的峰主要反映高频处的频散特征。

将不同深度的

图5 偶极声波测井资料

375 第28卷 第5期 朱留方,等:基于阵列声波测井波形二维谱分布的纵、横波时差处理方法

图6 实际测量波形及其处理结果时差曲线用灰度表示,得到图5(d),这段测井波形中只

有1个模式波,该模式波时差随深度的不同而改变。

ST波时差精度低是由于测量波形的低频成分造成的。从图1的2个模式波分布图可以看出,频率低于4 kHz的模式波相当单纯,只有1个时差在700 s/m附近的ST波。而且在图1(a)的模式波分布图中,该模式波一直延伸到频率接近于0的位置。这些低频附近的分布点距离时差接近700 s/m的直线比较近,当时差在700 s/m附近一定范围内时差改变时,这些点均被统计在内,所以,处理时差曲线变粗,时差的分辨率降低,这是ST波特有的,因为,声波测井波动声学理论提供了结论:低频时,井内只有ST波,其它所有的模式波均被截止掉。

改变ST波时差的分辨率可以从3方面入手。一是将给定的点到直线的距离减小;二是用频率加权,频率越低权重越小;三是直接从二维谱分布中得到相速度分布。3 相速度法

二维谱分布是由一系列点组成的,如果将这些点所对应的波数除以频率则得到与相速度对应的时差分布,图6是一组实际测量波形及其处理结果。图6(a)是原始测井波形,每个波形的频谱见图6(b),二维谱分布处理结果见图6(c),与相速度对应的时差随频率的分布(即频散曲线)见图6(d),图6(e)、6(f)分别是用二维谱分布与时差分布计算的群速度和相速度时差曲线,用相速度法计算的ST波时差的分辨率得以提高。图7是2种处理方法的比较,从图中可以看到,相速度法的处理结果比较好,纵波比较清楚,ST波时差精度比较高。

将相速度方法用于偶极声波测井波形处理,同样也得到了比较好的处理结果。图8是一段测井资料的处理结果。为了便于对比,同时也绘出了单极子声波测井波形的处理结果,从图8中可以看到,用该方法处理出

376测 井 技 术 2004年

图8 单极子(左图)偶极子(右图)声波

测井波形相速度法处理结果

图7 2种处理方法的比较

来的2种横波时差是比较接近的。

4 讨论与结论

本文提供的处理方法所给出的处理结果与STC相似,但是,与STC方法不同,图4、图5(d)的处理结果中还包含了声速的频散特征。即灰度图不但给出了声速、还用灰度的宽度给出了声速频散特征的描述。图6(d)给出了(声速)时差随频率的变化规律。

在本处理方法中,点到直线的距离是一个最主要的参数,该参数不同,得到的处理结果 群速度、相速度时差曲线会有比较大的差别。一般情况下,该参数越小、处理时差曲线的分辨率越高、从该曲线得到的声波时差的精度越高,但是,处理时差曲线数值越小、灰度差别越小,对声速频散的显示有影响。所以,在保证时差处理精度与频散指示这对矛盾中应该折中。

参考文献:

[1] Brown R L and Seifert D.Velocity Dispersion:A Tool for

Characterizing Reservoir Rocks[J].Geop hysics,1997,62,

477-486.

[2] Carcione J M.A M odel for Seismic Velocity and Attenuation in

Petroleum Source Rocks[J].Geop h ysics,2000,65,1080-

1092.

[3] Chris L Hackert,et al..Characterization of Dispersion,Atten

uation,and Anisotropy at the Buena Vista Hills Field,Califor

nia[J].Geop h ysics,2001,66(1),90-96.

[4] Cole K S,and Cole R H.Dispersion and Absorption in Di

electrics:I.Alternating Current Characteristics[J].J.Chem.

Ph ys..1941,9,341-351.

[5] Parra J O.T he Transversely Isotropic Poroelastic Wave Equa

tion Including the Biot and the Squirt Mechanisms:T heory and

Applicati on[J].Geop hysics,1997,62,309-381.

[6] D Chu,et al..Disturbance Decoupling for Linear T ime invari

ant Systems:a M atrix Pencil Approach[J].I EEE Transac

tions on A utomatic Contr ol,2001,46,802-808.

[7] Hsu C J and Sinha B K.Mandrel Effects on the Dipole Flexural

Mode in a Borehole[J].J.A coust Soc.A m.1998,104(4),

2025-2039.

[8] Rama Rao V N and Vandiver J K.Acoustic of F l uid filled Bore

holes with Pipe:Guided Propagation and Radiation[J].J.A

coust.Soc.A m.1999,105(6),3057-3066.

[9] 沈建国.应用声学基础 分层介质中的声波及其二维谱

讲义[M].清华大学物理系(研究生课教材),2002. [10]沈建国,等.用两个不同源距的声波测井全波波形计算纵

波和横波波速[J].石油物探2002,41(1),115-120. [11]沈建国,等.SKC B大数控声波全波测井仪的数值研究

[J].石油地球物理勘探2002,37(2),149-153.

[12]张海澜,等.测井仪器对井孔声场影响的数值研究[J].声

学学报,2000,25(5),435-439.

(收稿日期:2004 07 29 本文编辑 李总南)

377

第28卷 第5期 朱留方,等:基于阵列声波测井波形二维谱分布的纵、横波时差处理方法

第28卷 第5期 作 者 简 介 A1

声波时差计算剥蚀量

声波时差计算剥蚀量 其基本原理是:在正常压实的情况下,泥页岩的孔隙度随埋深的增大呈指数衰减,而在均匀分布的小孔隙的固结地层中,孔隙度与声波传播时间之间又存在着正比例的线性关系,因此声波时差与深度在半对数坐标系中为线性相关,并满足下列关系式: Δt=Δt0e-CH 式中,Δt:泥岩在深度H处的传播时间(μs/m); Δt0:外推至地表的传播时间(μs/m); C:正常压实趋势斜率(m-1); H:埋深(m) 具体步骤如下:首先分别对间断面上下的泥页岩声波时差~埋深曲

线进行对数回归,得到两个回归方程,取埋藏深度为0,并依据间断面之上的埋深-声波时差关系回归方程,求算出地表的声波时差值Δt0;而后将Δt0值代入间断面之下的埋深-声波时差回归方程,得到剥蚀前的地表相对于现今地表的深度(或高度),其与间断面深度的差值即为剥蚀厚度(图4-7) 发表于: 2009-03-31 20:53 只看该作者| 小中大 Δt0的理论值为620~650 μs/m,某一地区的Δt0值可根据该地区多口井正常压实曲线外推至地表平均求得。 在地层有剥蚀的地区,当不整合面以上沉积物的厚度小于剥蚀厚度时,

剥蚀前泥岩的压实情况得以保存。这时,将不整合面以下泥岩的压实趋势线外延至Δt =Δt0处即为古地表,古地表与不整合面之间的距离即为剥蚀厚度(见上图)。 简单点:就是把深度H与声波时差Δt拟合出一公式,应为H = A* Ln(Δt ) +B。其中A、B有拟合公式可以得到,当Δt =Δt0=620~6 50 或者研究区外推出来的已知值。这时H即为所求。 这个方法有一定的适用条件:可有效地用于剥蚀量较大而埋藏较浅的不整合面的剥蚀厚度估算,不整合面以上沉积物的厚度必须小于剥蚀厚度。然而,在地层埋藏达到一定深度时,由标准指数关系所计算得出的声波测量值与实测值有偏差。说明这种方法对剥蚀量不大或被剥蚀层段成岩程度不高的地区适用性较差。 沉积物在沉积、埋藏过程中,孔隙度随埋深的增大呈指数减小,又因为在具有均匀分布的小孔隙的固结地层中,孔隙度与传播时间之间存在着正比例线性关系, 因而泥页岩在正常压实情况下的声波时差-深度关系式 Δt=Δt0e-CH 式中,Δt:泥页岩在深度H处的传播时间(μs/m), Δt0:外推至地表的传播时间(μs/m) C:正常压实趋势斜率(m-1)

Geolog-全波列声波测井中文手册-

Geolog软件技术手册Full Sonic Wave Processing -SWB 帕拉代姆公司北京代表处 2006年12月

1、综述................................................................................................................................................................................ - 1 - 1.1 预备知识..................................................................................................................................................................... - 1 - 1.2数据 ............................................................................................................................................................................... - 1 - 2、阵列声波全波形........................................................................................................................................................... - 2 - 2.1数据准备 ...................................................................................................................................................................... - 3 - 2.1.1查看/创建一个声波列阵工具模版.......................................................................................................... - 3 - 2.1.2 练习指导2-创建其他波形属性.............................................................................................................. - 5 - 2.1.3波形分解.......................................................................................................................................................... - 6 - 2.1.4深度转换.......................................................................................................................................................... - 7 - 2.2 处理 .............................................................................................................................................................................. - 8 - 2.2.1数据分析......................................................................................................................................................... - 8 - 2.2.2去噪................................................................................................................................................................ - 11 - 2.2.3 设计滤波器................................................................................................................................................. - 17 - 2.2.4 振幅恢复 ..................................................................................................................................................... - 19 - 2.3阵列声波处理.......................................................................................................................................................... - 20 - 2.3.1处理模块简介 ............................................................................................................................................. - 20 - 2.3.2偶极波形处理 ............................................................................................................................................. - 21 - 2.3.3 单极波形处理 ............................................................................................................................................ - 23 - 2.3.4 拾取标志波至 ............................................................................................................................................ - 26 - 2.4后期处理 (32) 2.4.1综述 (32) 2.4.2频散校正 (33) 2.4.3 传播时间叠加 (36) 2.4.4 相关性显示 (38) 2.4.5 阵列声波重处理 (39) 3、机械性质 (44) 3.1综述 (44) 3.2 计算动力学弹性性质 (44) 附录I-快速运行 (46) 附录II-频散校正讨论 (47)

声波测井仪器的原理及应用

声波测井仪器的原理及应用 单位:胜利测井四分公司 姓名:王玉庆 日期:2011年7月

摘要 声波测井是石油勘探中专业性很强的一个领域。它是一门多学科的应用技术,已经成为油田勘探、储量评估、油气开采等方面不可缺少的工具。声波速度测井简称声速测井是利用声波在岩石中传播的速度来研究钻井剖面的一类物探方法,其方法是测量滑行波通过地层传播的时差 t(声速的倒数,单位us/ft)。目前主要用以估算孔隙度、判断气层和研究岩性等方面,是主要测井方法之一。 数字声波测井仪,其中包括66667声波数字化通用短节和6680声波探头2部分。能完成声波时差测井和水泥胶结测井,能与SL6000型地面系统和进口的5700型地面系统相配接。 正交多极子阵列声波测井(XMACII)将新一代的偶极技术与最新发展的单极技术结合在一起,提供了当今测量地层纵波、横波和斯通利波的最好方法。当偶极子声源振动时,使井壁产生扰动,形成轻微的跷曲,在地层中直接激发出横波和纵波,根据正交多极子阵列声波资料得出的纵横、波速度比可识别与含气有关的幅度异常。 关键词:数字化;声波时差;声波变密度;阵列声波;声波全波列;

目录 第1章前言 (1) 第2章岩石的声学特性 (2) 第3章数字声波测井原理及应用 (3) 3.1 数字声波测井原理 (3) 3.2仪器的工作模式 (5) 3.3时差计算 (5) 3.4 数字声波测井仪器的性能 (6) 3.5 SL6680测井仪器的不足 (7) 3.6数字声波仪器小结 (7) 第4章正交多极子阵列声波测井 (8) 4.1 XMACII多极子阵列声波测井原理 (8) 4.2 XMACII多极子阵列声波仪器组成 (9) 4.3 XMACII多极子阵列声波的使用及注意事项 (10) 4.4 应用效果及结论 (14) 第5章声波测井流程及注意事项 (15) 5.1 声波测井流程 (15) 5.2 注意事项 (16) 参考文献 (17)

第八章声波测井

第八章声波测井 声波测井的物理基础 1.名词解释: (1)滑行波: (2)周波跳跃: (3)stoneley 波: (4)伪瑞利波: (5)声耦合率: (6)相速度: (7)声阻抗: (8)群速度: (9)频散: (10)衰减: (儿)截止频率: (12)声压: (13)模式波: (14)泊松比: (15)第一临界角: (16)第二临界角: 2.说明弹性系数K 和切变弹性系数μ的意义。他们与杨氏模量E 及泊松比σ有怎样 的关系? 3.介质质点弹性机械振动的过程是 的外力作用下, 与 的互相交替作用的过程,而声波传播,则是这种过程作用于 使之 的过程。 4.声波是介质质点的 振动在介质中的传播过程。声纵波是 变波,横波是 变波,它们均与此物理量(介质的) 有关。 5.某灰岩的V p =5500m/s ,密度ρb =2。73g /cm 3,横波速度V s 按V p =1.73V 。给出。试 求杨氏模量E ,泊松比σ,体弹性模量K ,切变弹性模量μ及拉梅常数λ。 6.声纵波的质点振动方向与能量传播方向 ,它可在 态介质中传播;声横波的质点振动方向与能量传播方向 ,它能在 态介质中传达播,但不能在 态介质中传播。 7.声纵波的速度为p V =;声横波的速度为s V =故V P /V S = 。根据岩石的泊松比为0.155—0.4,于是V p /V s ;= 。这表明在岩石中,V p V S ,所以在声波测井记录上, 波总先于 波出现。 8.在 相介质中,由于μ=0,即 切应力,故 。 9.瑞利(Rayleigh)波发生在钻井的 界面上,其速度v R 很接近V S ,约为 ,此波随离开界面距离的加大而迅速 ;斯通利(Stoneley )波产生在 中,并在泥浆中传播,它以低 和低 形式传传播,其速度 于泥浆的声速。 10.到达接收器的各声波中,全反射波因路径处在 中,波速 ,直达波行程 ,但波速 ,滑行波行程 但波速 。故以 波最早到达接收器。

超声波时差法测量

题目:超声波传输时差法的测量 姓名: . 学号: . 班级: . 同组成员: . 指导教师: . 日期: .

关键词:超声波流量计,时差法,换能器,脉冲 第一部分:摘要 1.中文摘要: 超声波用于气体和流体的流速有许多优点。和传统的机械式流量仪表,电磁式流量仪表相比它的计量精度高,对管径的适应性强,非接触流体,使用方便,易于数字化管理等。 近年来,由于电子计术的发展,电子元器件的成本大幅度下降,思潮申博流量仪表的制造成本大大降低,超声波流量计也开始普及起来。 根据其原理,研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了一定的探讨和研究:根据流体力学及物理学的有关知识,对超声波流量计进行了相关了解。针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响。在多种测量原理及方法下,这里我们则采用的是多脉冲测量法的原理和应用。 当然,我们还要结合课题的实际情况,对时差法超声波流量计的硬件电路进行详细的分析和设计,讨论器件的选择、参数计算等技术问题,设计出了换能器发射和接收超声波的等效电路,当其换能器发射超声波时,相当于换能器给相应的计数环节给以上升沿脉冲使其开始计数,同理,当换能器接收超声波时也产生一个上升沿脉冲,来作用于相对应的计数器使其停止计数。 针对超声波流量计的工作环境,由于条件的限制,我们只能在普通环境下进行我们的课题设计。对造成超声波流量测量误差的各种因素我们也只能进行常规

的分析以及改进。 2.英文摘要: The FV ultrasonic flowmeter is designed to measure the fluid velocity of liquid within a closed conduit. The transducers are a non-contacting, clamp-on type, which will provide benefits of non-foulingoperation and easy installation. The FV transit-time flowmeter utilizes two transducers that function as both ultrasonic transmitters and receivers. The transducers are clamped on the outside of a closed pipe at a specific distance fromeach other. The transducers can be mounted in V-method where the sound transverses the pipe twice,or W-method where the sound transverses the pipe four times, or in Z-method where the transducersare mounted on opposite sides of the pipe and the sound crosses the pipe once. This selection of themounting method depends on pipe and liquid characteristics. The flow meter operates by

超声衍射时差(TOFD)技术原理简介(含图表)

超声衍射时差(TOFD)技术原理简介(含图表) 1.超声衍射时差(TOFD)技术介绍 “TOFD”即Timeofflightdiffraction,译成中文是“超声波衍射时差法检测”,TOFD检测技术原理是利用超声波遇到诸如裂纹等的缺陷时,将在缺陷尖端发生迭加到正常反射波上的衍射波,探头探测到衍射波,从而判定缺陷的大小和深度。极大地提高了缺陷检出率。TOFD检验技术具有缺陷检出能力强、缺陷定位精度高、节省设备的制造时间等特点,在检测资料上保证安全,并且可以用数字型式永久保存,恰好弥补了常规超声波检测技术的不足。 此技术首先是应用于核工业设备检验,如今在电力、石化、管道、压力容器、钢结构等方面多有应用。 上个世纪七十年代早期,英国原子能管理局(UnitedKingdomAtomicEnergyAuthority,即UKAEA)的国家无损检测研究中心的Harwell实验室提出了了超声波衍射在UT中应用的原理。UKAEA为了开发比常规超声波检测更精确的缺陷定量技术,最早由史可·毛瑞斯(SILKMG)博士开发出了超声衍射时差技术 - 1 -

(TimeofFlightDiffraction,简称TOFD)。后来欧美国家的有关机构进行了大量的试验,到80年代早期证实,对于核反应堆的压力容器和主要部件,TOFD技术作为超声检测是可行的,其可靠性和精度要高于常规超声检测(即脉冲回波)技术;相比常规的脉冲回波技术,当时的TOFD 技术有几个最明显的不同,一是很高的定量精度,绝对误差<±1mm,而裂纹监测的误差<±0.3mm;二是对缺陷的方向和角度不敏感,不向脉冲回波技术那样对某些方向的缺陷有“盲区”;三是对缺陷的定量不是基于信号的波幅,而是基于缺陷尖端衍射信号的声程和时间。 后来开发了便携的设备系统(即国际无损检测中心的ZIPSCAN),TOFD技术被国际工业界广泛公认。90年代,该项技术开始应用与石油化工管线的检测。此后,BSI、ASTM、ASME以及EN等相继承认了TOFD检测技术,颁布并不断修订了有关标准。而发展到今天,世界上有很多无损检测设备制造商开发了很多数字化的无损检测系统可以满足上述标准进行TOFD检测。当然,顶尖的制造商的设备系统可能还具备或者同时兼容常规超声、超声相控阵(PA)、常规涡流(ECT)和涡流阵列(ECTARRY)检 - 2 -

[超声波衍射时差法(TOFD)检测中参数设定的研究]超声波衍射时差法

[超声波衍射时差法(TOFD)检测中参数设定的研究]超声波 衍射时差法 摘?要在TOFD检测过程中,相关参数的设置非常为重要,关系到采集图谱质量的好坏。下面,就结合现场情况,把TOFD检测实践中的一些见解归纳分析一下,主要以ISONIC系列仪器进行研究。 关键词 TOFD检测;ISONIC;参数设定;研究 TN914 A 1673-9671-(xx)071-0198-01 1 TOFD检测中的参数设置的重要性 TOFD检测扫描前主要注意的参数有:探头真实频率,脉冲宽度,重复频率,阻抗,感抗,滤波频率,信号平均值,时间窗口,增益等参数。 脉冲宽度是非常重要的,它有助于优化接受信号的形状。改变脉冲宽度可以导致不同周期部分减弱或加强。如果想使两个超声脉冲组成单一频率的信号,则应将脉冲宽度设置为所用探头频率周期的一半(例:5 MHz时使用100 ns);为了使信号持续最低周期数,应将脉冲宽度设置为所用探头频率的一个周期(例:5 MHz时使用200 ns)。

其中探头频率必须是探头实际频率,而不是探头的标称频率。在实际工作中必须通过试验来获得最优脉冲宽度。 如果使用手动采集数据,则需要注意脉冲重复频率PRF与探头移动速度必须相匹配,由于手动扫查时计算机不能判断和控制探头移动,只能由操作者正确选择PRF来保证能正常采集A扫数据。若采用编码器或者电机驱动,则PRF相对不重要,因计算机可以计算出探头位置,在规定的A扫采样率间隔采集数据。若PRF设置不当时将采集到空白A扫。 阻抗Tuning项匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 感抗damping项的单位是欧。知道了交流电的频率f(Hz)和线圈的电感L(H),就可以把感抗计算出来。在实际调节射频波波幅时,需要不断地改变感抗值来选择最优波幅,使图谱效果达到最佳。 在选择高低通滤波器频率时,推荐滤波器带通宽度的最小范围是0.5到2倍的探头中心频率。选择信号平均值至最低要求,以获得一个合理的信噪比,设置时间窗口覆盖A扫的有用部分,以便数字化。

交叉偶极子阵列声波测井技术介绍(XMAC

正交偶极子阵列声波测井(XMAC-II) (一)、正交偶极子阵列声波测井(XMAC-II)原理 ECLIPS—5700测井系统中的交互式多极子阵列声波仪(XMAC-II)是将一个单极阵列和一个偶极阵列交叉组合在一起,两个阵列配置是完全独立的,各自具有不同的传感器。单极阵列包括两个单极声源和8个接收器。声源发射器发射的声波是全方位的,既是柱状对称的,中心频率为8kHz。偶极阵列是由两个交叉摆放(相差900)的偶极声源及8个交叉式偶极接收器组成。接收器间距为0.5英尺。 每个深度点记录12个单极源波形,其中8个为阵列全波波形(TFWV10),4个为记录普通声波时差的全波波形(TNWV10)。每个深度点记录32个偶极源波形,即每个接收器记录XX、XY、YX、YY 4个偶极源波形,X、Y表示不同方位的发射器或接收器的方向,例如XY表示X方向发射器发射,Y方向接收器接收;YY则表示Y方向发射器发射Y方向接收器接收。8个接收器共记录32个偶极源波形(TXXWV10、TXYWV10、TYXWV10、TYYWV10)。 (二)、正交偶极子阵列声波资料的处理 偶极子阵列声波测井资料是用eXpress的W A VE模块处理,主要包括地层纵波、横波和斯通利波的提取及其时差计算、岩石物理参数计算、岩石机械特性分析等。 1、地层纵波、横波和斯通利波的提取及慢度分析 采用慢度—时间相关STC(Slowness-Time Coherence)技术从MAC全波列中提取地层的纵波、横波及斯通利波,并计算其慢度。STC采用一种类似地震中使用的相似算法,检测阵列接收器中相关的波至,并估算它们的慢度。 在利用STC技术处理之前要对波形进行滤波,以便消除所有直流偏移和信号频带以外的噪声。另外,为了得到真实的地层横波,在处理中要包括一个计算前的校正步骤,以便校正挠曲波频散引起的偏差。校正量取决于声源的声波响应特征、STC滤波器特征、井眼大小和横波慢度。对硬地层来说这种校正量很小,但对大井眼软地层来说这种校正量可能达到10%。 2、岩石力学参数的计算 根据提取的纵横波时差、常规密度曲线及其它资料计算的孔隙度并利用岩石特性分析模块计算纵横波速度比、泊松比、体积模量、切变模量和杨氏模量等岩石物理参数。 3、岩石机械特性分析 利用上面计算的岩石力学参数、常规分析计算的泥质体积、泥浆性能等参数计算各项应力、破裂压力梯度、闭合压力梯度等参数。 (三)、地层岩石力学参数的基本概念及计算方法 1、泊松比(σ) 又称横向压缩系数,就是横向相对压缩与纵向相对伸长之比。 计算公式:

用时差法测量超声声速

用超声波流量计测量超声声速 姓名:田田班级:网络(2)班学号:090602231 摘要:在大学物理实验里,我们学习了用共振干涉法和相位比较法测量超声声速,但在工程中运用的是更为精确的时差法测量超声声速。在此,我们可以使用超声波流量计进行测量。超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。根据对信号检测的原理超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。 关键字:时差法,超声声速,超声波流量计 Use ultrasound flowmeter measurement ultrasonic velocity Name:TianTian class: network (2) class student id: 090602231 Abstract:in university physics experiment, we studied the use is also called the resonant interfering method and phase comparison ultrasonic velocity measurement, but in engineering is the use of more precise time difference method for measuring the ultrasonic velocity. Here, we can use the ultrasonic flowmeter measurements. Ultrasonic flowmeter is through testing the fluid flow of ultrasonic beam (or ultrasonic pulse) role to measure flow meter. According to the principle of signal detection ultrasound flowmeter can be divided into velocity differential method (direct time difference method, the method of time difference, the method of phase difference and frequency offset method), beam migration method, doppler method, cross-correlation method, space filter method and noise method, etc. Ultrasonic flowmeter and electromagnetic flowmeter is same, because instrument circulation channel not set any block up pieces, belong to the unimpeded flowmeter is suitable for solving the flow measurement

利用声波时差资料研究异常压力

利用声波时差资料研究异常压力 目前,在国内外石油钻探、尤其是钻探深部地层时,用测井资料估算地层压力得到了广泛使用。众多研究表明,声波测井较密度测井、电阻率测井等受井眼、地层条件等环境影响较小,而且各油田声波测井资料齐全易收集。选用时差资料计算地层压力具有代表性和普遍性,可比性也强。尤其是泥岩相对于砂岩受岩性变化影响小,抗压能力弱,能真实地反映所处部位的地层压力大小。 (1)建立正常压实趋势线方程 在单对数坐标系中,正常泥岩压实段的声波时差随深度的增加呈线性减小,表现为一条直线;当出现异常压力时,声波时差会偏离正常趋势线,表现为异常值。 通过读取~~地区……口井的泥岩声波时差,我们选取典型井的正常压实段的声波资料,通过线性回归建立了研究区泥岩声波时差与埋深的关系方程: H=-2460.6ln (△t )+16524 (1), 相关系数:R 2=0.8611 式中:H ――地层埋深,m ; △t ――泥岩声波时差,us/m 。 求解公式(1)的反函数得: ln (△t )=6.715435-0.00041H (2), 即为该地区正常压实趋势线方程。 (2)孔隙流体压力的计算 在正常压实带,孔隙流体压力就是静水压力,其表达式为:w p H γ=* (3) 式中:p ——地层流体压力,Kg/cm 2;γw ——地层水密度,Kg/cm 2.m ; H ——地层埋深,m 。 在欠压实带中,根据等效深度法原理,可用Magara (1978)介绍的公式计算地层流体压力:()w bw p H H He γγ=*+- (4) 式中:γbw ――上覆岩层的平均密度,Kg/cm 2.m ; He ——孔隙度与H 处相当的正常压实直线上对应点的深度,m 。 正常压实带的深度-时差关系式如公式(2)所示,重新整理得:

超声波时差法原理介绍

时差法超声波流量计的原理和设计 王润田 1 引言 超声波用于气体和流体的流速测量有许多优点。和传统的机械式流量仪表、电磁式流量仪表相比它的计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等等。近年来,由于电子技术的发展,电子元气件的成本大幅度下降,使得超声波流量仪表的制造成本大大降低,超声波流量计也开始普及起来。经常有读者回询问有关超声波流量测量方面的问题。作为普及,我们将陆续撰写一些专题文章,来介绍一些相关知识,以便推广和普及超声波流量技术的普及和提高。本文主要介绍目前最为常用的测量方法:时差法超声波流量计的原理和设计。 2 时差法超声波流量计的原理 时差法超声波流量计(Transit Time Ultrasonic Flowmeter)其工作原理如图1所示。他是利用一对超声波换能器相向交替(或同时)收发超声波,通过观测超声波在介质中的顺溜和逆流传播时间差来间接测量流体的流速,在通过流速来计算流量的一种间接测量方法。 图1 时差法超声波流量测量原理示意图 图1中有两个超声波换能器:顺流换能器和逆流换能器,两只换能器分别安装在流体管线的两侧并相距一定距离,管线的内直径为D,超声波行走的路径长度为L,超声波顺流速度为tu,逆流速度为td,超声波的传播方向与流体的流动方向加角为θ。由于流体流动的原因,是超声波顺流传播L长度的距离所用的时间比逆流传播所用的时间短,其时间差可用下式表示:

式中X是两个换能器在管线方向上的间距。 为了简化,我们假设,流体的流速和超声波在介质中的速度相比是个小量。即:

图2 超声波流量计的电原理框图 4 结语 时差法超声波流量计的换能器安装方式可以有多种。常见的有外加式和管段式,也有介入式,比如家用煤气表一般可采用介入式。无论何种安装方式其原理大同小异。比如介入式就是取上面公式中的θ=0。 超声波波用于流体的测量还有其他几种基于不同原理的测量方法:多卜勒频移法、相位差法和相关法等等,各有优缺点,可根据不同的使用条件和计量精度等因素加以选取。 随着电子技术的迅速发展、超声波技术的普及以及产品成本的降低和可靠性的提高,我们相信,超声波流量仪表将成为流体计量中最为普遍采用的手段。 参考文献:

时差法超声波流量计

时差法超声波流量计

1 引言 超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。随着超声波流量计的技术的不断成熟和用户对它的逐渐认可,超声波流量计市场正以前所未有的发展速度向前发展。 2 超声波流量计分类 根据对信号检测的原理,超声波流量计可分为多普勒法、波束偏移法、噪声发、相关法等。 2.1 多普勒法 多普勒法是应用声学中多普勒原理,检测反射声波与发射声波之间的频率偏移量即可以测定流体的流动速度,进而测出流体流量。其工作原理如图1所示。 图1 多普勒法工作原理图 Fig.1 Theory of Doppler approach 管壁两侧分别装有发射和接收两个超声波换能器,发射器向含有固体颗粒的流体中发射频率为0f 的连续超声波。根据多普勒效应,在中间相交区的频率为1f ,接收器收到的经固体颗粒反射后的超声波频率为 2f ,当粒子流速均为u 时,其关系为: )sin 21()sin 1()sin 1(02012C u f C u f C u f f β ββ-≈-=- = (1) β sin 2)(020f C f f u -= (2) 多普勒法只能用来测量含有固体颗粒的流体,比如血液、污水、蒸汽等。 2.2 波束偏移法 波束偏移法是根据测量由于流体流动而引起的超声波束偏移角来确定流体流速的。其测量原理如图2所示。

图2 波束偏移法原理图 Fig.2 Theory of beam-excursion approach 流速越大,偏移角越大,而两接收器收到的信号强度差值也越大,因此测出两接收器的信号强度差值可确定流体的流速。波束偏移法用于测量准确度要求不高的高速流体流量测量。 3 时差法原理 3.1 时差法 时差法超声波流量计就是利用声波在流体中顺流、逆流传播相同距离时存在时间差,而传播时间的差异与被测流体的流动速度有关系,因此测出时间的差异就可以得出流体的流速。基本原理如图3所示。 图3 时差法工作原理图 Fig.3 Theory of transit-time method 超声波换能器A 、B 是一对可轮流发射或接收超声波脉冲的换能器。设超声波信号在被测流体中的速度为C ,顺流从A 到B 时间为1t ,逆流从B 到A 时间为2t ,外界传输延迟总时间为0t 。则由几何关系可知 01sin cos /t v C d t ++= θ θ (3) 02sin cos /t v C d t +-= θ θ (4) 由于2 C >> θ2 2 sin v ,则

阵列声波测井仪

在声波测井中,常常会因为地层的衰减,使得声波测井仪无法接收声波的首波信号。为了增强接收的声波信号,通常采用两种方法:一是通过增大换能器尺寸来降低声波的频率从而减小地层衰减;二是增大换能器的发射功率来增大声波信号的功率,但是由于换能器所能承受的最大激发电压和温度的限制,致使发射声信号功率有限。所以,可以通过相控阵技术使阵列发射探头发出的声信号同相位叠加,改善指向性达到增强首波信号的目的。阵列声波测井仪有两种组成方式:一是单接收器和一维阵列声源的组合;二是单声源和一维阵列接收器的组合。换能器为薄圆管形压电换能器。本文采用了声波测井中的传输网络理论与指向性权系数的概念,推导出了换能器的几何形状与尺寸对线阵声源的导向系数的关系。通过改变阵列接收器接收到的声波信号的时间偏移量和线阵声源的激发延迟时间,可以令接收的首波幅度(阵列声源)与叠加波的首波幅度(阵列接收器)达到最大。通过本文提出的方法可以令声波测井中接收到的声波测井信号的首波幅度大大增加。 关键词:阵列声波测井、相控阵、指向性、换能器、激发延迟时间

In acoustic logging, often because of the decline of formation makes sonic tool cannot receive the first wave of sound wave signal. In order to enhance the received acoustic signal, usually adopts two methods: one is through increased to reduce the frequency of the acoustic transducer dimension reducing formation attenuation; Second is to increase the transmission power of the transducer to increase the acoustic signal of power, but because of the transducer can bear the limit of maximum excitation voltage and temperature, the sound emission signal power co., LTD. So can make through phased array technology emission probe array acoustic signals with the phase superposition, achieve the enhancement purpose to the first wave signal to improve the directivity. Array acoustic logging tool is composed of two ways: one is the combination of single receiver and a one-dimensional array source; The second is simple sound source and the combination of a one-dimensional array receiver. Transducer is a thin circular tube in the shape of a piezoelectric transducer. This paper adopts the transmission network theory and directivity of acoustic logging weight coefficient, the concept of the geometric shape and size of the transducer is deduced on the relationship between the linear array direction Guide coefficient of sound source. By changing the array receiver to receive the time offset and linear array acoustic signal source excitation delay time, can receive the first wave of sound source (array) and superposition of wave amplitude of the first wave amplitude (array receiver) maximum. By the proposed approach can make sonic logging in the received the first wave of acoustic logging signal amplitude increase greatly. Keywords: array sonic logging、phased array、directivity、transduc、 Stimulate the delay time

阵列声波测井信号调理与首波提取技术研究_张嘉伟

阵列声波测井信号调理与首波提取技术研究 张嘉伟,师奕兵,王志刚,刘西恩 (11电子科技大学自动化工程学院,四川成都610054;21中海油田服务股份有限公司技术中心,北京101149) 摘 要:本文分析阵列声波测井中声波全波列信号的特点,采用前置通道信号调理技术对声波信号进行预处理以便于首波提取,并阐述一种首波到时的提取技术及实现算法。前置通道信号调理电路的设计采用了自动增益控制技术,可实现增益的自动调节。首波提取采用了短窗-长窗能量比算法,能够精确地检测到首波。关键词:阵列声波;信号调理;首波;横波;全波列 中图分类号:P63411 文献标识码:A 文章编号:167224984(2006)0420004202 R esearch of signal process and detecting head w ave of acoustic array ZH ANGJia 2wei ,SHI Y i 2bing ,W ANG Zhi 2gang ,LI U X i 2en (11School of Automation Engineering ,Ueiversity of E lectronics Science and T echnology ,Chengdu 610054,China ; 21T echnical Center 2China Oilfield Services C o 1Ltd ,Beijing 101149,China ) Abstract :This paper analyzed the characteristic of the acoustic full waveform of acoustic array 1Head wave could be easily picked up through signal processing 1A method of detecting and correcting head wave of acoustic array was als o introduced 1The gain of receiver input channel could be controlled automatically 1The head wave of acoustic array could be accurately detected by the method of energy ratio of short 2window and long 2window 1 K ey w ords :Acoustic array ;S ignal process ;Head wave ;Shear wave ;Acoustic full waveform 收稿日期:2006202217;收到修改稿日期:2006204225基金项目:中海油企业发展基金资助(H04010701W070552) 1 引 言 多极子阵列声波测井系统是一套声波全系列的测井仪器,它可以完成包括常规声波仪器要求的各种测量服务。该系统主要用于直接提取软硬地层中纵横波参数及斯通利波参数,以适应各种地层的测井解释要求。本文主要对该系统中声波全波列首波到时进行分析,重点介绍了前置通道信号调理电路设计与首波到时提取算法。 2 阵列声波测井前置通道信号调理技术 211 声波信号产生与接收模型 阵列声波测井主要采用图1方式产生声波全波列信号。接收换能器两组各八个:八个相邻半英尺的单极子接收换能器(R1、R2、R3、R4、R5、R6、R7、R8)和八个相邻半英尺的偶极子接收换能器(R21、R22、R23、R24、R25、R26、R27、R28),每个接收换能器有两根信号引出导线。为简单记,图1中只画出了一组,可以把它看成两组。发射换能器有4个,从上到下T 01(单极),T 23(偶极),T 24(斯通利波),T 02(单极)。通过Fire 信号对发射换能器进行触发迫使 其产生声波信号,经过地层传输到接收换能器,再由接收换能器将接收到的声波信号转换成电信号以待前置通道信号调理电路处理。图1中接收阵列信号就是所要接收的声波全波列信号,它主要由三部分组成:纵波(Vp )、横波(Vs )和斯通利波(Vst )。由于纵波速度较快所以首先到达,斯通利波速度最慢因而最后达到。在短源距测井中三个波有部分可能混叠在一起, 而长源距测井中三个波在时间轴上会明显区分。 212 前置通道信号调理电路设计 阵列声波全波列测井中前置通道信号调理电路 第32卷第4期 2006年7月中国测试技术 CHI NA ME AS URE ME NT TECH NO LOGY V ol 132 N o 14July ,2006

相关文档
最新文档