LPC2000系列中断嵌套设计

LPC2000系列中断嵌套设计
LPC2000系列中断嵌套设计

LPC2000系列中断嵌套设计

1.中断服务程序的编译器支持

ARM编译器提供为编写FIQ和IRQ中断服务程序而设置的关键字,它们可以用于C函数前,所以可以C编写整个中断服务程序。下面就是一个在Keil ARM编译器环境下的典型例子:void IRQ_Handler __irq

{

// Clear the source of the interrupt

// Additional statements

// Update the VIC by writing to VIC Vector Address Register

}

通过使用__irq关键字,编译器将为上面的函数添加下面的代码

(1)在函数入口处,工作寄存器(包括ATPCS的敏感(易被破坏的)寄存器)被压栈;(2)在函数返回处,出栈上面保存的寄存器;

(3)使用SUBS PC,R14,#4从中断服务程序中返回。这条指令恢复了PC和CPSR。

注意:使用这个关键字的情况下,SPSR_irq没有被保存。这就是使用关键字的方法处理中断不能实现嵌套的一个原因。

2.使用关键字来处理中断嵌套时出现的问题

两个主要的原因都是跟LR_irq和SPSR_irq这两个寄存器有关。如果一个中断服务程序重新使能中断,调用一个子程序,在子程序中发生了中断,这时,子程序的返回地址(保存在LR_irq中)将被破坏。下面我们以一个例子来说明:

void IRQ_Handler __irq

{

//reenable intertupts

......

foo();

//地址A

}

当PC跳转到IRQ_Handler的时候(执行完0x18处的指令后),从ISR返回的地址已经写入LR_irq了。假定它已经压栈(SP_irq)了。现在,foo()函数被调用,LR_irq的值被foo调用处的下一条指令的地址所覆盖。再进一步假设,在foo函数中运行的时候,一个更高优先级的中断发生了。这时,LR_irq又被返回到foo函数被中断的地方的地址所覆盖,所以这就破坏了返回到IRQ_Handler的地址(即上面的函数中的" 地址A":译者注)。(当用BL指令调用子函数的时候,进人子函数的时候没有保存lr,从子函数退出使用的是mov pc lr这样的方法,如果用这种方法调用子函数,并且在子函数中发生了中断,那么子函数的返回地址就被中断的返回地址覆盖了)还有,使用编译器关键字的时候,SPSR_irq也不会被保存。一个可重入的中断服务程序必须保存IRQ模式的状态信息,切换处理器模式,在转入嵌套C 函数之前保存这个新处理器模式(从IRQ模式切换后的模式,即后面推荐使用的系统模式:译者注)的状态信息。ARM推荐编写可重入中断处理程序的时候选择转入系统模式。转入系统模式的原因在于,一旦在系统模式中,活动的链接寄存器就是LR_sys,这个寄存器将在调用新的子函数之前被压栈。如果真的有更高优先级的中断打断了这个子函数,那么LR_irq的值将被改变(新的中断的返回地址:译者注),但是子函数的返回地址在LR_sys 中安然无恙。

3.中断嵌套的步骤

用汇编语言编写顶层中断服务程序ISR的方法如下:

(1)保存ISR将会使用的寄存器和SPSR_irq;

(2)清中断;

(3)切换到系统模式并开中断(译者认为,开中断在第五步比较好);

(4)保存系统模式下链接寄存器LR_sys和被调用函数不保存的寄存器;

(5)调用C中断处理函数;

(6)当C中断处理函数返回时,恢复系统模式的寄存器并关中断;

(7)恢复工作寄存器和SPSR_irq;

(6)从IRQ中断处理程序中返回。

4.LPC2000系列中断嵌套处理

ARM的中断管理体系与51系列微控制器不一样。ARM的中断不会自动嵌套,要自己相应代码保护中断寄存器入口的现场,以及后面的回复现场等。ZLG提供的代码中提到了关于中断嵌套现场保护的代码,如下:

NoInt EQU 0x80

USR32Mode EQU 0x10

SVC32Mode EQU 0x13

SYS32Mode EQU 0x1f

IRQ32Mode EQU 0x12

FIQ32Mode EQU 0x11

CODE32

AREA IRQ,CODE,READONL Y

MACRO

$IRQ_Label HANDLER $IRQ_Exception_Function

EXPORT $IRQ_Label ; 输出的标号

IMPORT $IRQ_Exception_Function ; 引用的外部标号

$IRQ_Label

SUB LR, LR, #4 ; 计算返回地址

STMFD SP!, {R0-R3, R12, LR} ; 保存任务环境

MRS R3, SPSR ;保存状态

STMFD SP, {R3,LR}^ ; 保存SPSR和用户状态的SP,注意不能回写

; 如果回写的是用户的SP,所以后面要调整SP NOP

SUB SP, SP, #4*2

MSR CPSR_c, #(NoInt | SYS32Mode) ; 切换到系统模式

BL $IRQ_Exception_Function ; 调用c语言的中断处理程序

MSR CPSR_c, #(NoInt | IRQ32Mode) ; 切换回irq模式

LDMFD SP, {R3,LR}^ ; 恢复SPSR和用户状态的SP,注意不能回写

; 如果回写的是用户的SP,所以后面要调整SP MSR SPSR_cxsf, R3

ADD SP, SP, #4*2

LDMFD SP!, {R0-R3, R12, PC}^ ;

MEND

;/* 以下添加中断句柄,用户根据实际情况改变*/

我们仅需要在下面添加中断句柄即可。

对于中断嵌套的编写,应按以下方式实现:

1、保存当前中断使能寄存器VICIntEnable的值;

2、禁止当前中断;

3、清楚中断逻辑;

4、使能VIC,使之能响应其他中断;

5、中断处理服务程序;

6、恢复保存的中断使能寄存器的值。

中断嵌套中,并不分优先级的高低,高优先级的中断可嵌套低优先级的中断。特别要注意,要明确自己的中断编写,否则可能中断嵌套混乱出错。不建议多层中断嵌套。

例子如下:

/****************************************************************************** **************

* 文件名:VIC_Nesting.c

* 功能:本实验演示中断嵌套现象。程序开启了两个中断:定时器0和外部中断0。定时器0使LED8~LED1闪烁,而外部中断0取反蜂鸣器控制口。分配定时器0中断优先级高于外部中断0的优先级。设置KEY1连接外部中断0。按住KEY1键后全速运行程序,看LED8~LED1能否闪烁,若闪烁,则说明中断嵌套成功。需要在文件IRQ.S末尾添加句柄:* Timer0_Handler HANDLER IRQ_Timer0

* Eint0_Handler HANDLER IRQ_Eint0

* 说明:用跳线帽短接KEY1,BEEP,74HC595_2相关跳线。

* 在产生IRQ中断,进入服务程序之前,IRQ中断将自动禁止,而Fiq中断依然使能,故在IRQ中断下依然要响应Fiq中断。

*

******************************************************************************* **************/

#include "config.h"

#define BEEPCON ((uint32)0x01<<7) // P0.7引脚控制蜂鸣器,低电平蜂鸣#define BEEP_ON() IO0CLR=BEEPCON // P0.7引脚输出低电平,蜂鸣器蜂鸣#define BEEP_OFF() IO0SET=BEEPCON // P0.7引脚输出高电平,蜂鸣器不蜂鸣#define SPI_CS ((uint32)0x01<<20) // P1.20引脚模拟SPI的片选信号

#define SPI_DA TA ((uint32)0x01<<22) // P0.22引脚模拟SPI的数据信号

#define SPI_CLK ((uint32)0x01<<25) // P1.25引脚模拟SPI的时钟信号

#define H_SPI_CS() IO1SET=SPI_CS // SPI的片选信号置高

#define L_SPI_CS() IO1CLR=SPI_CS // SPI的片选信号置低

#define H_SPI_DA TA() IO0SET=SPI_DA TA // SPI的数据信号置高

#define L_SPI_DA TA() IO0CLR=SPI_DATA // SPI的数据信号置低

#define H_SPI_CLK() IO1SET=SPI_CLK // SPI的时钟信号置高

#define L_SPI_CLK() IO1CLR=SPI_CLK // SPI的时钟信号置低

void Timer0_Handler(void);

void Eint0_Handler(void);

uint8 data;

/****************************************************************************** **************

* 函数名称:SendDataTo74HC595()

* 功能:向74HC595发送一字节数据

* 入口参数:data 要发送的数据

* 出口参数:无

* 注意:发送数据时,高位先发送

******************************************************************************* **************/

void SendDataTo74HC595(uint8 data)

{

uint8 i;

L_SPI_CS(); // SPI_CS=0

for(i=0;i<8;i++) // 发送8位数据(1个字节){

L_SPI_CLK(); // SPI_CLK=0

/* 设置SPI_DA TA输出值*/

if((data & 0x80)!=0)

H_SPI_DA TA(); // SPI_DATA=1

else

L_SPI_DA TA(); // SPI_DATA=0

data<<=1; // 将要发送的1字节数据左移一位

H_SPI_CLK(); // SPI_CLK=1

}

H_SPI_CS(); // SPI_CS=1

}

/****************************************************************************** **************

* 函数名称:IRQ_Timer0()

* 功能:Timer0中断服务函数,LED8~LED1闪烁

* 入口参数:无

* 出口参数:无

******************************************************************************/ void IRQ_Timer0(void)

{

uint32 bak;

bak=VICIntEnable; // 备份当前VICIntEnable的值VICIntEnClr=(1<<4)|(1<<14); // 禁止当前优先级中断及低优先级中断VICVectAddr=0x00; // 清除中断逻辑,以便VIC可以响应

更高优先级IRQ中断

/* LED8~LED1闪烁*/

if(data==0x00)

data="0xff";

else

data="0x00";

SendDataTo74HC595(data);

T0IR=0x01; // 清除Timer0中断标志

VICIntEnable=bak;

}

/****************************************************************************** **************

* 函数名称:IRQ_Eint0()

* 功能:外部中断0中断服务函数,取反蜂鸣器控制口,允许中断嵌套

* 入口参数:无

* 出口参数:无

******************************************************************************* **************/

void IRQ_Eint0(void)

{

uint32 bak;

bak=VICIntEnable; // 备份当前VICIntEnable的值VICIntEnClr=1<<14; // 禁止当前中断

VICVectAddr=0x00; // 清除中断逻辑,以便VIC可以响应更高优先级IRQ中断IRQEnable(); // 使能IRQ中断

/* 取反蜂鸣器控制口*/

if((IO0PIN & BEEPCON)==0)

BEEP_OFF();

else

BEEP_ON();

/* 等待外部中断信号恢复为高电平,清除EINT0中断标志*/

while((EXTINT & 0x01)!=0)

{

EXTINT=0x01;

}

VICIntEnable=bak;

}

/****************************************************************************** **************

* 函数名称:main()

* 功能:初始化定时器0,设置定时器0中断和外部中断0

******************************************************************************* **************/

int main(void)

{

PINSEL0&=~((uint32)0x03<<14); // 将P0.7引脚选择为GPIO功能

IO0DIR|=BEEPCON; // 设置P0.7为输出

BEEP_OFF(); // 蜂鸣器禁止蜂鸣

PINSEL1&=~((uint32)0x03<<0); // 将P0.16引脚选择为EINT0功能PINSEL1|=0x00000001;

PINSEL1&=~((uint32)0x03<<12); // 设置P0.22引脚为GPIO

PINSEL2&=~((uint32)0x01<<3); // 设置P1.20和P1.25引脚为GPIO IO0DIR|=SPI_DATA; // 设置P0.22,P1.20,P1.25引脚为输出IO1DIR|=(SPI_CS | SPI_CLK);

/* Timer0初始化*/

T0TC=0; // 定时器设置为0

T0PR=0; // 时钟不分频

T0MCR=0x03; // 设置T0MR0匹配后复位T0TC,并产生中断标志T0MR0=Fpclk/10; // 0,1秒定时

T0TCR=0x01; // 启动定时器

IRQEnable(); // 使能IRQ中断

data=0x00;

/* 初始化Timer0、Eint0中断(使用向量IRQ)*/

VICIntSelect=0x00000000; // 设置所有中断分配为IRQ中断VICVectCntl0=0x20 | 4; // 分配Timer0中断到向量中断0 VICVectAddr0=(uint32)Timer0_Handler; // 设置中断服务程序地址VICVectCntl1=0x20 | 14; // 分配EINT0中断到向量中断1 VICVectAddr1=(uint32)Eint0_Handler; // 设置中断服务程序地址

T0IR=0x01; // 清除Timer0中断标志

EXTINT=0x01; // 清除EINT0中断标志

VICIntEnable=(1<<4)|(1<<14); // 使能Timer0、EINT0中断

while(1); // 等待中断

return 0;

}

8051单片机中断系统结构及中断控制原理

8051单片机中断系统结构及中断控制原理 当几个中断源同时向CPU请求中断时,按所发生的实时事件的轻重缓急排队,优先处理最紧急事件的中断请求,于是单片机规定每个中断源的优先级别。 当CPU正在处理一个中断请求,又发生另一个优先级比它高的中断请求,CPU暂时中止对前一中断处理,转而去处理优先级更高的中断请求,待处理完后,再继续执行原来的中断处理程序,这样的过程称为中断嵌套,这样的中断系统称为多级中断系统。 由于外界异步事件中断CPU正在执行的程序时随机的,CPU转向去执行中断服务程序时,除了硬件会自动把断电地址,即16位PC程序计数器的值压入堆栈之外,用户还得注意保护有关工作寄存器,累加器,标志位等信息,这个过程通常称为保护现场。以便在完成中断服务程序后,恢复原工作寄存器,累加器,标志位等的内容,这个过程称恢复现场;最后执行中断返回指令,自动弹出断电到PC,返回主程序,继续执行被中断的程序。 下面我们看看8051中断系统结构及中断控制: 8051单片机有五个中断请求源,四个用于中断控制的寄存器IE.IP.TCON和SCON,用于控制中断的类型,中断允许,中断起停和各种中断源的优先级别。 五个中断源有两个优先级,每个中断源可以编程为高优先级或低优先级中断,可以实现二级中断服务程序嵌套。8051的中断源包括:INT0,INT1引脚输入的外部中断源;三个内部的中断源,即定时器T0的溢出中断源,定时器T1的溢出中断源和串行口的发送/接收中断源。 从INT0,INT1引脚输入的两个外部中断源和它们的触发方式控制位锁存在特殊功能寄存器TCON的低四位,其格式如下: IE1,即TCON.3:外部中断INT1请求标志位。当CPU检测到在INT1引脚上出现的外部中断信号时,由硬件置位IE1=1,请求中断。CPU执行中断服务程序后,IE1位被硬件自动清0. IT1,即TCON.2:外部中断INT1请求类型,触发方式控制位,由软件来置1或清0,以

《8259中断控制器实验》的实验报告

实验六8259中断控制器实验 6.1 实验目的 (1) 学习中断控制器8259的工作原理。 (2) 掌握可编程控制器8259的应用编程方法。 6.2 实验设备 PC微机一台、TD-PIT+实验系统一套。 6.3 实验内容 1. 单中断应用实验 (1)编写中断处理程序,利用PC机给实验系统分配的中断线,使用单次脉冲单元的KK1+按键模拟中断源,每次PC机响应中断请求,在显示器上显示一个字符。 (2)编写中断处理程序,利用PC机给实验系统分配的中断线,使用单次脉冲单元的KK1+按键模拟中断源,每次PC机响应中断请求,在显示器上显示“Hello”,中断5次后退出。 2.扩展多中断源实验 利用实验平台上8259控制器对扩展系统总线上的中断线INTR进行扩展。编写程序对8259控制器的IR0和IR1中断请求进行处理。 6.4 实验原理 1. 8259控制器的介绍 中断控制器8259A是Intel公司专为控制优先级中断而设计开发的芯片。它将中断源优先级排队、辨别中断源以及提供中断矢量的电路集于一片中,因此无需附加任何电路,只需对8259A进行编程,就可以管理8级中断,并选择优先模式和中断请求方式,即中断结构可以由用户编程来设定。同时,在不需增加其他电路的情况下,通过多片8259A的级连,能构成多达64级的矢量中断系统。它的管理功能包括:1)记录各级中断源请求,2)判别优先级,确定是否响应和响应哪一级中断,3)响应中断时,向CPU传送中断类型号。8259A的内部结构和引脚如图6-1所示。 8259A的命令共有7个,一类是初始化命令字,另一类是操作命令。8259A的编程就是根据应用需要将初始化命令字ICW1-ICW4和操作命令字OCW1-OCW3分别写入初始化命令寄存器组和操作命令寄存器组。ICW1-ICW4各命令字格式如图6-2所示,

微机接口实验

北京科技大学计算机与通信工程学院 实验报告 实验名称:实验一8259 中断控制器应用实验 实验二8254 定时/计数器应用实验 实验三8255 并口控制器应用实验学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩: 实验地点:机电楼320 实验时间:2015 年12 月 4 日

一、实验目的与实验要求 1、实验目的 实验一 1.掌握PC 机中断处理系统的基本原理。 2.掌握可编程中断控制器8259 的应用编程方法。 实验二 1.掌握8254 的工作方式及应用编程。 2.掌握8254 典型应用电路的接法。 实验三 1.掌握8255 的工作方式及应用编程。 2.掌握8255 典型应用电路的接法。 2、实验要求 实验一 (1)实验1-1:PC 机内中断应用实验 ①按接线图连好接线,调用程序源代码8259-1.asm,观察实验现象,将屏幕显示结果以截图方式写在实验报告中。 ②自设计实验。改变接线方式,将单次脉冲连到USB 核心板上的IRQ10 插孔上,参考本实验代码,编程实现IRQ10 中断。(注意:考虑PC 机内中断级联的方式,参看前面的原理说明),将代码写在报告中。 (2)实验1-2:PC 机内中断嵌套实验 ①按接线图连好接线,调用程序源代码8259-2.asm,做如下操作,并将屏幕显示结果以截图的方式写在实验报告中,并分析产生该现象的原因: A.按下连接IRQ 的单次脉冲按键,屏幕上会显示10个3,在屏幕上10 次显示未结束之前,按下连接IRQ10 的单次脉冲按键,观察现象; B.按下连接IRQ10 的单次脉冲按键,屏幕上会显示10个10,在屏幕上10次显示未结束之前,按下连接IRQ3 的单次脉冲按键,观察现象。 ②程序中所有代码均没有注释,请在报告中补全注释,尽量详细。

中断

填空题 (1)51系列单片机5个中断源的中断入口地址分别是INT0:;INTl:;T0:;T1:;串行口:; (2)在CPU未执行同级或更高优先级中断服务程序的情况下,中断响应等待时间最少需要个机器周期,最长需要个机器周期。 (3)中断嵌套与子程序嵌套的区别在于:一是子程序嵌套是在程序中事先安排好的;而中断嵌套是:二是子程序嵌套无次序限制,而中断嵌套只允许。 (4)CPU未执行中断程序,中断响应时间最短需个机器周期,最长需个机器周期. 选择(1)CPU响应中断后,必须用软件清除中断请求标志的有( )。 A. INT0/INT1采用电平触发方式B.INT0/INT1采用边沿触发方式 C.定时/计数器T0/T1中断D.串行口中断TI/RI (2)下列中断优先顺序排列,不可能实现的有( )。 A.T1、T0、。INT0、INT1、串行口B.INT0、T1、T0、INT1、串行口C.INT0、INT1、串行口、T0、T1 D.INT1、串行口、INT0、T0、T1 提示:将中断请求排序分成两部分,如果每部分都满足同级优先次序,则设置能实现,否则设置不能实现。 判断对错 (1)不同中断源之间可以互相中断。( ) (2)不同优先级的中断源之间可以互相中断。( ) (3)INT0、INT1、T0、串行口、T1中断优先排列顺序不能实现。( ) (4)T0、Tl、INT0、INT1、串行口中断优先排列顺序能实现。( ) (5)串行口、TO、INT0、INT1、T1中断优先排列顺序不能实现。( ) (6)串行口、INT0、T0、INTl、T1中断优先排列顺序能实现。( ) (7)INT0、INT1、串行口、T0、T1中断优先排列顺序不能实现。( ) (8)INT0、T1、INT1、T0、串行口中断优先排列顺序能实现。( ) 简答 (1)编写中断程序时,通常需要在中断入口地址区间设置一条跳转指令,跳转到中断服务程序的实际入口处。为什么要这样做? (2)什么叫中断嵌套?中断嵌套有什么限制?中断嵌套与子程序嵌套有什么区别? (3)在51系列单片机5个中断源中,中断请求标志是如何清除的? (4)在5l系列单片机中,哪几个特殊功能寄存器与中断控制有关? (5)中断源中断优先级别设置能否实现,取决于什么因素?并说明理由。 (6)51系列单片机中断优先级和中断优先权有什么区别?如何设置中断优先级? (7)在5l系列单片机中,中断是如何嵌套的? (8)在5l系列单片机中,如果CU正在执行RETI或访问IE、IP指令,则中断不能立即响应,为什么? (9)在51系列单片机中,外中断的触发方式有哪几种?如果采用电平触发方式,需要注意什么?

实验二 中断控制电路实验

实验二中断控制电路实验 一、实验目的 1、学习单片机的中断控制原理。 2、编程中断控制器。 二、实验环境 硬件环境:奔3以上处理器,512MB以上内存空间 软件环境:windowsXP以上操作系统,emu8086编译环境,Proteus7、5sp3。 三.实验内容与完成情况 1、实验电路图 2.实验原理 8259中断控制器就是专为控制优先级中断设计的芯片。它将中断源优先级排队,辩别中断源以及提供中断矢量的电路集于一片中。因此无需附加任何电路,只需对8259进行编程,就可以管理8级中断,并选择优行模式与中断请求方式,即中断结构可以由用户编程来设定。同时,在不需要增加其它电路的情况下,通过多片8259的级联,能构成多达64级的矢量中断系统。 (1) 写初始化命令字 * 写初始化命令字ICW1(A0=0),以确定中断请求信号类型,清除中断屏蔽寄存器,中断优先级排队与确定系统用单片还就是多片。

* 写初始化命令字ICW2,以定义中断向量的高五位类型码。 * 写初始化命令字ICW3,以定义主片8259A中断请求线上IR0~IR7有无级联的8259A从片。 第i位=0,表明IRi引脚上无从片 第i位=1,表明IRi引脚上有从片 * 写初始化命令ICW4,用来定义8259A工作时用8085模式,还就是8088模式,以及中断服务寄存器复位方式等。

(2) 写控制命令字 * 写操作命令字0CW1,用来设置或清除对中断源的屏蔽。 第i位=0,对应的中断请求IRi开放 第i位=1,对应的中断请求IRi屏蔽 注: OCW1如不写,则在初始化命令写入后,OCW1为全开放状态。 * 操作命令字OCW2,设置优先级就是否进行循环、循环方式及中断结束方式。 注: 8259A复位时自动设置IR0优先权最高,IR7优先权最低。

单片机实验报告

PIC单片机原理与应用实验报告 学校: 学院: 班级: 姓名: 学号: 指导教师:

实验一I/O端口实验 一、实验目的 (1)掌握MPLAP IDE集成开发环境的基本操作。 (2)掌握单片机的I/O端口的设计方法。 (3)掌握在线调试器的使用方法。 (4)学会查阅相关数据手册。 二、实验仪器设备 (1)PC机一台; (2)MPLAP IDE开发软件一套; (3)PICkit3在线调试器一套; (4)APP009实验板一块; 三、实验要求 (1)设计发光LED灯闪烁程序,下载调试,验证功能。 (2)设计流水灯程序,或其他花样彩灯程序,下载调试,验证功能。 (3)设计按按键加1计数程序,下载调试,验证功能。 四、实验步骤 (1)连接在线调试器PICkit3、APP009实验板和计算机; (2)打开MPLAP IDE集成开发环境软件,点击Debugger>Select Tools>PICkit 3 选择调试工具; (3)点击Debugger>Settings,在Settings窗口中点击Power栏,选择由PICkit3向实验板供电; (4)完成实现发光LED灯闪烁实验; 程序代码: #include void delay(void); int main() { while(1) { TRISEbits.TRISE0 = 0; //RE0设置为输出(1输入,0输出); https://www.360docs.net/doc/709728963.html,TE0 =1; //RE0=1输出高电平+5V,亮灯 delay(); //延时 https://www.360docs.net/doc/709728963.html,TE0 =0; //RE0=0输出低电平0V,灭灯 delay(); //延时 } } void delay(void) { long int i; for (i=0;i<65000;i++); } 实验现象:将程序下载到实验板上,运行程序,LED闪烁,通过改变延时函数改变延时时间,进而可以改变LED闪烁的频率。

第5章中断系统课后习题答案

第5章中断系统 1)作业题 1.8051微控制器中,有几个中断源?几个中断优先级?中断优先级是如何控制的?在出 现同级中断申请时,CPU按什么顺序响应(按由高级到低级的顺序写出各个中断源)? 各个中断源的入口地址是多少? 答:8051微控制器中有五个中断源,两个中断优先级。通过IP进行优先级控制。IP为中断优先级寄存器,物理地址为B8H,其中的后五位PS PT1 PX1 PT0 PX0分别控制串行口、定时器/计数器1、外部中断1、定时器/计数器0、外部中断0的优先级。在出现同级中断申请时,CPU按如下顺序响应各个中断源的请求:INT0、T0、INT1、T1、串行口,各个中断源的入口地址分别是0003H、000BH、0013H、001BH、0023H。 2.8051微控制器中,各中断标志是如何产生的,又如何清0的? 答:每个中断源请求中断时会在SFR的某些寄存器中产生响应的标志位,表示该中断源请求了中断。INT0、INT1、T0和T1的中断标志存放在TCON(定时器/计数器控制寄存器)中,占4位;串行口的中断标志存放在SCON(串行口控制寄存器)中,占2位。 TF0:T0溢出标志,溢出时由硬件置1,并且请求中断,CPU响应后,由硬件自动将TF0清0;不用中断方式时,要用软件清0。 TF1:T1溢出标志,溢出时由硬件置1,并且请求中断,CPU响应后,由硬件自动将TF1清0;不用中断方式时,要用软件清0。 IE0:INT0中断标志,发生INT0中断时,硬件置IE0为1,并向CPU请求中断。 IE1:INT1中断标志,发生INT1中断时,硬件置IE1为1,并向CPU请求中断。SCON:串行口控制寄存器。 TI:串行口发送中断标志,发送完一帧数据时由硬件置位,并请求中断。 RI:串行口接受中断标志,接收到一帧数据时,由硬件置位,并且请求中断。 TI、RI标志,必须用软件清0。 3.简述8051微控制器中中断响应的过程。 答:单片机响应中断的条件:中断源有请求(响应的中断标志位置1),CPU允许所有中断(CPU中断允许位EA=1),中断允许寄存器IE中,相应中断源允许位置1;没有同级或者高级中断正在服务,现行指令已经执行完毕,若执行指令为RETI或者读/写IE或者IP指令时则该指令的下一条指令也执行完毕。 中断响应的过程: 1)CPU在每个机器周期的S5P2检测中断源。在下一个机器周期的S6按照优先次序查询各个中断标志。若查询到有中断标志为1时,按照优先级别进行处理,即响应中断;2)置相应的“优先级状态”触发器为1,即指出CPU当前正在处理的中断优先级,以阻断同级或者低级中断请求; 3)自动保护断点,即将现行PC内容(即断点地址)压入堆栈,并且根据中断源把相应的

微机接口实验报告-8259中断控制器应用实验

姓名 院专业班 年月日实验内容8259中断控制器实验指导老师 【实验目的】 (1)学习中断控制器8259的工作原理。 (2)掌握可编程控制器8259的应用编程方法。 【试验设备】 PC微机一台、TD-PIT+实验系统一套。 【实验内容】 (1) 编写中断处理程序,利用PC机给实验系统分配的中断线,使用单次脉冲单元的KK1+按键模拟中断源,每次PC机响应中断请求,在显示器上显示一个字符。 (2) 编写中断处理程序,利用PC机给实验系统分配的中断线,使用单次脉冲单元的KK1+按键模拟中断源,每次PC机响应中断请求,在显示器上显示“9”,中断显示6次后退出。 【实验原理】 1. 8259控制器的介绍 中断控制器8259A是Intel公司专为控制优先级中断而设计开发的芯片。它将中断源优先级排队、辨别中断源以及提供中断矢量的电路集于一片中,因此无需附加任何电路,只需对8259A进行编程,就可以管理8级中断,并选择优先模式和中断请求方式,即中断结构可以由用户编程来设定。同时,在不需增加其他电路的情况下,通过多片8259A的级连,能构成多达64级的矢量中断系统。它的管理功能包括:1)记录各级中断源请求,2)判别优先级,确定是否响应和响应哪一级中断,3)响应中断时,向CPU传送中断类型号。8259A的内部结构和引脚如图6-1所示。 8259A的命令共有7个,一类是初始化命令字,另一类是操作命令。8259A的编程就是根据应用需要将初始化命令字ICW1-ICW4和操作命令字OCW1- OCW3分别写入初始化命令寄存器组和操作命令寄存器组。ICW1-ICW4各命令字格式如图6-2所示,OCW1-OCW3各命令字格式如图6-3所示,其中OCW1用于设置中断屏蔽操作字,OCW2用于设置优先级循环方式和中断结束方式的操作命令字,OCW3用于设置和撤销特殊屏蔽方式、设置中断查询方式以及设置对8259内部寄存器的读出命令。 图6-1 8259内部结构和引脚图

单片机实验

石家庄铁道大学单片机实验题目实验一数据区赋值 (用指针、at、宏分别设计程序) 实现给片内RAM 30H和片外RAM 3000H开始的16字节区域分别赋值为0x01、0x02......0x0f。 At #include //at data unsigned char buffer1[16] _at_ 0x30; xdata unsigned char buffer2[16] _at_ 0x0030; void main() { unsigned int i,j; for(i=0;i<16;i++) { buffer1[i]=i; } for(j=0;j<16;j++) { buffer2[j]=j; } while(1); } 宏 #include//宏 void main() { unsigned int i,a,b; a=0x30; b=0x0030; for(i=0;i<16;i++) { DBYTE[a++]=i; XBYTE[b++]=i; } while(1); }

指针 #include //指针 void main(void) { unsigned char data*p1; unsigned char xdata*p2; unsigned int i; p1=0x30; p2=0x3000; for(i=0;i<16;i++) { *p1=i; p1++; *p2=i; p2++; } } 实验二数据区数据处理 对30H开始的内存区数据0x01~0x0f进行处理: 将30H开始的内容变成0x01、0x23、0x45......0xef存到40H开始的单元 将40H开始的内容变成0xef、0xcd.....0x23、0x01存到50H开始的单元 将50H开始的内容变成0x0f、0x0e、0x0d......0x01、0x00存到60H开始的单元#include #include #include data unsigned char buffer1[16] _at_ 0x30; data unsigned char buffer2[8] _at_ 0x40; data unsigned char buffer3[8] _at_ 0x50; data unsigned char buffer4[16] _at_ 0x60; void main() { unsigned int i,j,k,r; for(i=0;i<16;i++) {buffer1[i]=i;}//30H赋值 for(j=0;j<8;j++) {buffer2[j]=buffer1[2*j]<<4|buffer1[2*j+1];}//40H

S3C2410触摸屏驱动程序原理图

S3C2410触摸屏驱动程序原理图 本文介绍了基于三星S3C2410X微处理器,采用SPI接口与ADS7843触摸屏控制器芯片完成触摸屏模块的设计。具体包括在嵌入式Linux操作系统中的软件驱动开发,采用内核定时器的下半部机制进行了触摸屏硬件中断程序设计,采用16个时钟周期的坐标转换时序,实现触摸点数据采集的方法,给出了坐标采集的流程。设计完成的触摸屏驱动程序在博创公司教学实验设备UP-NETARM2410-S平台上运行效果良好。 引言 随着信息家电和通讯设备的普及,作为与用户交互的终端媒介,触摸屏在生活中得到广泛的应用。如何在系统中集成触摸屏模块以及在嵌入式操作系统中实现其驱动程序,都成为嵌入式系统设计者需要考虑的问题。本文主要介绍在三星S3C2410X微处理器的硬件平台上进行基于嵌入式Linux的触摸屏驱动程序设计。 硬件实现方案 SPI接口是Motorola推出的一种同步串行接口,采用全双工、四线通信系统,S3C2410X是三星推出的自带触摸屏接口的ARM920T内核芯片,ADS7843为Burr-Brown生产的一款性能优异的触摸屏控制器。本文采用SPI接口的触摸屏控制器ADS7843外接四线电阻式触摸屏,这种方式最显著的特点是响应速度更快、灵敏度更高,微处理器与触摸屏控制器间的通讯时间大大减少,提高了微处理器的效率。ADS7843与S3C2410的硬件连接如图1所示,鉴于ADS7843差分工作模式的优点,在硬件电路中将其配置为差分模式。 图1触摸屏输入系统示意图 嵌入式Linux系统下的驱动程序 设备驱动程序是Linux内核的重要组成部分,控制了操作系统和硬件设备之间的交互。Linux 的设备管理是和文件系统紧密结合的,各种设备都以文件的形式存放在/dev目录下,成为设备文件。应用程序可以打开、关闭、读写这些设备文件,对设备的操作就像操作普通的数据文

TIM2定时中断嵌套sytick定时器中断异常

现象: TIM2设置10Ms定时中断,运行delay(2),程序就停滞了 分析: Sytick滴答定时器中断优先级是占线式的(实践的出来的血的经验),因为中断优先级组配置为0时,虽然TIM2的响应式优先级为2,应该说sycik的优先级已经是0了,可以走delay中断的,但是还是不行。 把中断优先级类型配置为4,即全部是抢占式优先级式,TIM2也开始走了,delay也开始走了。 这个折腾很久的,systick在R008文档中说的太少,网友的博客说了很多,只是提到systick 的中断优先级可以改,但是么有说他是抢占式的。 static __INLINE uint32_t SysTick_Config(uint32_t ticks) { if (ticks > SysTick_LOAD_RELOAD_Msk) return (1); /* Reload value impossible */ SysTick->LOAD = (ticks & SysTick_LOAD_RELOAD_Msk) - 1; /* set reload register */ // NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority for Cortex-M0 System Interrupts */ NVIC_SetPriority (SysTick_IRQn, 0); SysTick->VAL = 0; /* Load the SysTick Counter Value */ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0); /* Function successful */ } NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1 ; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; NVIC_Init( &NVIC_InitStructure);

单片机实验二 定时器及中断控制实验

昆明理工大学信息工程与自动化学院学生实验报告 ( 2014 — 2015 学年第 2 学期) 课程名称:嵌入式技术开课实验室:信自楼402 2015年5月5日 年级、专业、班计科122 学号201210405204 姓名邹华宇成绩实验项目名称实验二定时器及中断控制实验指导教师江虹 教师评语该同学是否了解实验原理: A.了解□ B.基本了解□ C.不了解□ 该同学的实验能力: A.强□ B.中等□ C.差□ 该同学的实验是否达到要求: A.达到□ B.基本达到□ C.未达到□ 实验报告是否规范: A.规范□ B.基本规范□ C.不规范□ 实验过程是否详细记录: A.详细□ B.一般□ C.没有□ 教师签名: 年月日 一、实验目的 掌握定时器T0、T1的方式选择和编程方法,了解中断服务程序的设计方法,学会实时程序的调试技巧。 二、实验原理 89C51单片机有五个中断源(89C52有六个),分别是外部中断请求0、外部中断请求1、定时器/计数器0溢出中断请求、定时器/计数器0溢出中断请求及串行口中断请求。每个中断源都对应一个中断请求位,它们设置在特殊功能寄存器TCON和SCON中。当中断源请求中断时,相应标志分别由TCON和SCON的相应位来锁寄。五个中断源有二个中断优先级,每个中断源可以编程为高优先级或低优先级中断,可以实现二级中断服务程序嵌套。在同一优先级别中,靠内部的查询逻辑来确定响应顺序。不同的中断源有不同的中断矢量地址。 中断的控制用四个特殊功能寄存器IE、IP、TCON (用六位)和SCON(用二位),分别用于控制中断的类型、中断的开/关和各种中断源的优先级别。 中断程序由中断控制程序(主程序)和中断服务程序两部分组成: 1)中断控制程序用于实现对中断的控制; 2)中断服务程序用于完成中断源所要求的中断处理的各种操作。 C51的中断函数必须通过interrupt m进行修饰。在C51程序设计中,当函数定义时用了interrupt m修饰符,系统编译时把对应函数转化为中断函数,自动加上程序头段和尾

STM32中EXTI(外部中断)和NVIC(嵌套向量中断)的关系

STM32中EXTI(外部中断)和NVIC(嵌套向量中断)的关 系 NVIC 是Cortex-M3 核心的一部分,关于它的资料不在《STM32 的技术参 考手册》中,应查阅ARM 公司的《Cortex-M3 技术参考手册》Cortex-M3 的向 量中断统一由NVIC 管理EXTI 是ST 公司在其STM32 产品上扩展的外中断控 制。它负责管理映射到GPIO 引脚上的外中断和片内几个集成外设的中断 (PVD,RTC alarm,USB wakeup,ethernet wakeup),以及软件中断。其输出最终被映射到NVIC 的相应通道。因此,配置EXTI 中断的过程必然包含对 NVIC 的配置,例如下面配置EXTI0 的过程,就要首先配置EXTI 控制器(使 能相应的中断线,选择中断/事件模式,触发边沿极性),然后再配置NVIC 控 制器(EXTI0 映射在NVIC 上的通道号,中断优先级,中断屏蔽状态): GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource0); EXTI_InitStructure.EXTI_Line = EXTI_Line0;EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; // or RisingEXTI_InitStructure.EXTI_LineCmd = ENABLE;EXTI_Init(&EXTI_InitStructure); NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;// EXTI0_IRQn is defined in stm32f10x.hNVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure); EXTI0_IRQn 的值,其实就是EXTI0 中断向量在中断向量表中的位置 (STM32 技术参考手册中断向量表Position 栏中的数值)

计算机组成原理中断实验报告

北京建筑大学 2015/2016 学年第二学期 课程设计 课程名称计算机组成原理综合实验 设计题目微程序控制器设计与实现 系别电信学院计算机系 班级计141 学生姓名艾尼瓦尔·阿布力米提 学号 完成日期二〇一六年七月八日星期五 成绩 指导教师 (签名) 计算机组成综合实验任务书

指令执行流程图; ?5、利用上端软件,把所编写的微程序控制器内容写入实验台中控制器中。 ?6、利用单拍测试控制器与编程的要求是否一致。如果有错误重新修改后再写入控制器中。 7、编写一段测试程序,测试控制器运行是否正确。 实验目的 1.融合贯通计算机组成原理课程,加深对计算机系统各模块的工作原理及相互联系(寄存器堆、运算器、存储器、控制台、微程序控制器)。 2.理解并掌握微程序控制器的设计方法和实现原理,具备初步的独立设计能力;3.掌握较复杂微程序控制器的设计、调试等基本技能;提高综合运用所学理论知识独立分析和解决问题的能力。 实验电路 1. 微指令格式与微程序控制器电路 2.微程序控制器组成 仍然使用前面的CPU组成与机器指令执行实验的电路图,但本次实验加入中断系统。这是一个简单的中断系统模型,只支持单级中断、单个中断请求,有中断屏蔽功能,旨在说明最基本的原理。

中断屏蔽控制逻辑分别集成在2片GAL22V10(TIMER1 和TIMER2)中。其ABEL语言表达式如下: INTR1 := INTR; INTR1.CLK = CLK1; IE := CLR & INTS # CLR & IE & !INTC; IE.CLK= MF; INTQ = IE & INTR1; 其中,CLK1是TIMER1产生的时钟信号,它主要是作为W1—W4的时钟脉冲,这里作为INTR1的时钟信号,INTE的时钟信号是晶振产生的MF。INTS微指令位是INTS机器指令执行过程中从控制存储器读出的,INTC微指令位是INTC机器指令执行过程中从控制存储器读出的。INTE是中断允许标志,控制台有一个指示灯IE显示其状态,它为1时,允许中断,为0 时,禁止中断。当INTS = 1时,在下一个MF的上升沿IE变1,当INTC = 1时,在下一个MF的上升沿IE变0。CLR信号实际是控制台产生的复位信号CLR#。当CLR = 0时,在下一个CLK1的上升沿IE变0。当 CLR=1 且INTS = 0 且 INTC = 0时,IE保持不变。 INTR是外部中断源,接控制台按钮INTR。按一次INTR按钮,产生一个中断请求正脉冲INTR。INTR1是INTR经时钟CLK1同步后产生的,目的是保持INTR1与实验台的时序信号同步。INTR脉冲信号的上升沿代表有外部中断请求到达中断控制器。INTQ是中断屏蔽控制逻辑传递给CPU的中断信号,接到微程序控制器上。当收到INTR脉冲信号时,若中断允许位INTE=0,则中断被屏蔽,INTQ仍然为0;若INTE =1,则INTQ =1。

嵌入式实验3按键实验(中断方式)

河南机电高等专科学校《嵌入式系统开发》课程实验报告 系部:电子通信工程系 班级:电信1## 姓名: ###### 学号: 120######

实验三按键实验(中断方式) 一.实验简介 在实验一的基础上,使用按键控制流水灯。 二.实验目的 熟练使用库函数操作GPIO,掌握中断配置和中断服务程序编写方法,掌握通过全局变量在中断服务程序和主程序间通信的方法。 三.实验内容 实现初始化GPIO,并配置中断,在中断服务程序中通过修改全局变量,达到控制流水灯速度及方向。 下载代码到目标板,查看运行结果。 四.实验设备 硬件部分:PC计算机(宿主机)、STM32实验板。 软件部分:PC机WINDOWS系统、MDK KEIL软件、ISP软件。 五.实验步骤 1在实验一代码的基础上,编写中断初始化代码 2在主程序中声明全局变量,用于和中断服务程序通信,编写完成主程序 3编写中断服务程序 4编译代码,下载到实验板 5.单步调试 6记录实验过程,撰写实验报告 六.实验结果及测试 中断方式的按键式实验,是通过配置外部中断寄存器和中断嵌套(NVIC)控制器来实现按键按下控制LED灯亮灭。通过按键中断打断主函数,执行LED1取反一次。 主函数初始化中断配置和LED配置,点亮LED1后一直等待中断,每中断一次,LED1取反一次。

int main(void) { LED_GPIO_Config(); LED1_ON; CLI(); SEI(); EXTI_PA0_Config(); while(1) { } } 中断嵌套控制寄存器的配置为中断嵌套分组1;抢占优先级0;响应优先级0 代码如下: void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } 外部中断按键的配置源码如下:配置PA0位中断线,并使能AFIO时钟void EXTI_PA0_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; EXTI_InitTypeDef EXTI_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO,ENABLE); NVIC_Configuration(); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0); EXTI_InitStructure.EXTI_Line = EXTI_Line0; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); }

S3C2410中文手册第7章_时钟和功率管理

第七章时钟和功率管理 概述 时钟和功率管理模块由三部分组成:时钟控制,USB控制和功率控制。 S3C2410A的时钟控制逻辑能够产生系统所需要的时钟,包括CPU的FCLK,AHB总线接口的HCLK,和APB总线接口的PCLK。S3C2410A有两个PLL,一个用于FCLK,HCLK,PCLK,另一个用于USB模块(48MHZ)。时钟控制逻辑能够由软件控制不将PLL连接到各接口模块以降低处理器时钟频率,从而降低功耗。 S3C2410A有各种针对不同任务提供的最佳功率管理策略,功率管理模块能够使系统工作在如下4种模式:正常模式,低速模式,空闲模式和掉电模式。 正常模式:功率管理模块向CPU和所有外设提供时钟。这种模式下,当所有外设都开启时,系统功耗将达到最大。用户可以通过软件控制各种外设的开关。例如,如果不需要定时器,用户可以将定时器时钟断开以降低功耗。 低速模式:没有PLL的模式。与正常模式不同,低速模式直接使用外部时钟(XTIpll或者EXTCLK)作为FCLK,这种模式下,功耗仅由外部时钟决定。 空闲模式:功率管理模块仅关掉FCLK,而继续提供时钟给其他外设。空闲模式可以减少由于CPU核心产生的功耗。任何中断请求都可以将CPU从中断模式唤醒。 掉电模式:功率管理模块断开内部电源。因此CPU和除唤醒逻辑单元以外的外设都不会产生功耗。要执行掉电模式需要有两个独立的电源,其中一个给唤醒逻辑单元供电,另一个给包括CPU在内的其他模块供电。在掉电模式下,第二个电源将被关掉。掉电模式可以由外部中断EINT[15:0]或RTC唤醒。 功能描述 时钟结构 图7-1描述了时钟架构的方块图。主时钟源由一个外部晶振或者外部时钟产生。时钟发生器包括连接到一个外部晶振的振荡器和两个PLL(MPLL和UPLL)用于产生系统所需的高频时钟。 时钟源选择 表7-1描述了模式控制引脚(OM3和OM2)和选择时钟源之间的对应关系。OM[3:2]的状态由OM3和OM2引脚的状态在nRESET的上升沿锁存得到。 注意:1、尽管MPLL在系统复位的时候就开始产生,但是只有有效的设置号

中断嵌套

中断嵌套 是指中断系统正在执行一个中断服务时,有另一个优先级更高的中断提出中断请求,这时会暂时终止当前正在执行的级别较低的中断源的服务程序,去处理级别更高的中断源,待处理完毕,再返回到被中断了的中断服务程序继续执行,这个过程就是中断嵌套。其实就是更高一级的中断的“加塞儿”,处理器正在执行着中断,又接受了更急的另一件“急件”,转而处理更高一级的中断的行为! 中断优先级?? ?在说到中断之前,我先来定义一下优先级,明白了什么是优先级,后面的阐述就容易明白了。实际上很多人都是混淆了优先级的含义,所以才觉得糊里糊涂。优先级高的中断源可以中断优先级低的中断服务程序,这就形成了中断服务程序中套着中断服务程序的情况,即形成了所谓的中断嵌套。MCU暂停现行程序而转去响应中断请求的过程称为中断响应;为使系统能及时响应并处理发生的所有中断,系统根据引起中断事件的重要性和紧迫程序,硬件将中断源分为若干个级别,称作中断优先级;中断的优先级有两个:查询优先级和执行优先级。什么是查询优级呢?我们从datasheet或书上看到的默认(IP寄存器不做设置,上电复位后为00H)的优先级:外部中断0> 定时/计数器0 > 外部中断1 > 定时/计数器1 > 串行中断或int0,timer0,int1,timer1,serial port 或INT0、T0、INT1、T1、UART 或PX0>PT0>PX1>PT1>PS>...... 其实都是查询优级。首先查询优先级是不可以更改和设置的。这是一个中断优先权排队的问题。是指多个中断源同时产生中断信号时,中断仲裁器选择对哪个中断源优先处理的顺序。而这与是否发生中断服务程序的嵌套毫不相干。当CPU查询各个中断标志位的时候,会依照上述5个查询优先级顺序依次查询,当数个中断同时请求的时候,会优先查询到高优查询先级的中断标志位,但并不代表高查询优先级的中断可以打断已经并且正在执行的低查询优先级的中断服务。例如:当计数器0中断和外部中断1(按查询优先级,计数器0中断>外部中断1)同时到达时,会进入计时器0的中断服务函数;但是在外部中断1的中断服务函数正在服务的情况下,这时候任何中断都是打断不了它的,包括逻辑优先级比它高的外部中断0计数器0中断。而中断的执行优先级就是你对IP寄存器的设置了。在2个优先级的情况下,某位为1,则相应的中断源为高优先级;为0,则为低优先级。关于中断的优先级有三条原则:1、CPU同时接收到几个中断时,首先响应优先级最高的中断请求;2、正在进行的中断过程不能被新的同级或低行优优先级的中断请求所中断;3、正在进行的低行优优先级中断服务,能被高行优优先级中断请求中断;若:同一执行优先级中的中断申请不止一个时,则有一个中断优先权排队问题。同一执行优先级的中断优先权排队,由中断系统硬件确定的自然优先级形成,优先权自高到低的顺序即:外部中断0>定时/计数0>外部中断1>定时/计数1>串行接口例如:设置IP =0x10,即设置串口中断为最高优先级,则串口中

微机原理实验---中断控制实验

深圳大学实验报告 课程名称:微机计算机设计 实验项目名称:8259 中断控制实验 学院:信息工程学院 专业:电子信息工程 指导教师: 报告人:学号:2009100000班级:<1>班实验时间:2011. 05.19 实验报告提交时间:2011. 05. 26 教务处制

一、实验目的 1. 掌握8259 中断控制器的工作原理。 2. 学习8259 的应用编程方法。 3. 掌握8259 级联方式的使用方法。 二、实验要求 1、8259 单中断实验,由单次脉冲输出与主片8259 的IR7 相连可以实现每按动一次单次脉冲,产生一次外部中断,在显示屏上输出一个字符“7”。 2、8259 级联实验,由KK1+连接到主片8259 的IR7 上,KK2+连接到从片8259 的IR1 上,可实现当按一次KK1+时,显示屏上显示字符“M7”,按一次KK2+时,显示字符“S1”。 三、实验设备 PC 机一台,TD-PITE 实验装置或TD-PITC 实验装置一套。 四、实验原理 1、在Intel 386EX 芯片中集成有中断控制单元(ICU),该单元包含有两个级联中断控制器,一个为主控制器,一个为从控制器。该中断控制单元就功能而言与工业上标准的82C59A 是一致的,操作方法也相同。从片的INT 连接到主片的IR2 信号上构成两片8259 的级联。在TD-PITE 实验系统中,将主控制器的IR6、IR7 以及从控制器的IR1 开放出来供实验使用,主片8259 的IR4 供系统串口使用。8259 的内部连接及外部管脚引出如图: 2、在对8259 进行编程时,首先必须进行初始化。一般先使用CLI 指令将所有的可屏蔽中断禁止,然后写入初始化命令字。8259 有一个状态机控制对寄存器的访问,不正确的初始化顺序会造成异常初始化。在初始化主片8259 时,写入初

相关文档
最新文档