系梁对连续钢构桥的地震反应分析

系梁对连续钢构桥的地震反应分析
系梁对连续钢构桥的地震反应分析

工程科技系梁对连续钢构桥的地震反应分析

张燕飞1胡国民2

(1、内蒙古通辽市交通工程局,内蒙古通辽0280002、长安大学,陕西西安710064)

1概述目前,随着混凝土强度的不断改善,设计和施工工艺的不断完善,连续钢构桥越来越受到桥梁工程师的青睐。连续钢构桥上部结构连续长度,桥墩高度有不断增大的趋势。特别是在跨径在200至300m之间刚构桥应用越来越多。随着连续钢构桥的大量建设,其在地震作用下的反应分析成为研究的热点。本文探讨系梁对连续刚构桥在地震能力的影响,以地震做用下控制截面的内力,位移等来分析系梁的作用,并加以算例说明。

2抗震分析理论

2.1动态时程分析原理

动态时程分析法是随着强震记录的增多和计算机技术的广泛应用而发展起来的,是公认的精细分析方法。目前,对于重要、复杂、大跨的桥梁抗震计算都建议采用动态时程分析法。

地震作用下,桥梁结构地震运动微分方程为:公式中:[M]、[C]、[K]分别为系统的总体质量矩阵、阻尼矩阵和刚度矩阵,

{U}为对应的自由度的广义坐标列阵,P(t)为外荷载。上述方程是二阶微分方程,右端输入的实际是地震加速度时程,它是不规则的,难以用确定的函数表达。解方程较为有效的方法是逐步积分法,逐步积分法根据已知的位移、速度、加速度和荷载条件,从前一时刻计算下一时刻地震反应,具体计算步骤分为如下三步。

a.将振动时程分为一系列相等或不相等的微小时间间隔Δt;b.假定在Δt时间间隔内,位移、速度、加速度按一定规律变化

建立三者之间的关系;

c.求解ti+Δt时刻结构的地震反应;通过对上述b、c两个步骤采用不同假定,发展了很多积分方法。

根据对位移、速度和加速度之间关系的不同假定,时程分析计算的方法可以分为:NewMark-β法以及Wilson-θ法本文在计算分析时采用midascivil大型通用有限元分析程序中的常加速度法。

2.2地震动的输入

采用1940年美国帝国峡谷地震的EI-Centro地震波输入。荷载工况取工况1:横向地震波输入+纵向地震波输入。并采用同步一致输入。

2.3阻尼问题

阻尼是结构的一个重要动力特性,也是结构地震反应中最为重要的参数之一,其大小和特性直接影响结构的基本动力反应特征。由于阻尼的存在,物体的自由振动将会逐步衰减。目前,匀质结构一般都采用瑞利阻尼,即假定阻尼矩阵为刚度矩阵和质量矩阵的线性组合。

通过结构模态实验得到的两阶不同模态的固有频率和阻尼比。的数值可以求得系数α、β,从而可以近似确定结构的结构阻尼矩。本文模型计算时频率的数值取前两阶的自振频率,阻尼比取0.05。

3算例分析3.1工程概况

某桥主桥为60.0+95+60.0米三跨一联的预应力混凝土变截面

摘要:采用大型通用有限元程序midascivil对大跨度连续刚构桥进行地震动态时程分析,分析比较系梁对连续刚构桥抗震性能的

影响。分析结果表明:

系梁的设置可以提高结构整体抗震性能,对于较高桥墩的连续刚构桥宜设置系梁,并重视系梁位置变化对结构抗震能力的作用。

关键词:桥梁工程;连续钢构桥;系梁;系梁位置;

时程分析267··

TMD多点控制体系随机地震响应分析的虚拟激励法_朱以文

收稿日期:2003-10-26; 修回日期:2003-11-22 基金项目:国家电力公司资助项目(KJ 00-03-26-01) 作者简介:朱以文(1945-),男,教授,主要从事计算力学和结构防灾减灾研究 文章编号:1000-1301(2003)06-0174-05 TM D 多点控制体系随机地震响应 分析的虚拟激励法 朱以文,吴春秋 (武汉大学土木建筑工程学院,湖北武汉430072) 摘要:对于频率分布密集或受频带较宽的地震激励的结构,其响应不再以某一单一振型为主,须考虑采用多点控制。本文对受T M D 多点控制的结构进行了研究。文中建立了带有多个子结构系统的以模态坐标和子结构自由度为未知量的统一运动方程。针对所得方程为非对称质量、非对称刚度、非经典阻尼的情况,本文给出了使用直接法求解的格式。地震随机响应分析采用了虚拟激励法,可以考虑各振型之间的耦合项,计算量小且精度高。本文的方法适用于带有多个子结构的系统的一般性问题,具有广泛的应用价值。 关键词:多点控制;主结构;子结构;随机地震响应中图分类号:P315.96 文献标识码: A Pseudo -excitation method for random earthquake response analysis of control system with MTMD ZH U Yi -wen ,WU Chun -qiu (Civil and structural engineering school ,W uhan university ,Wuhan 430072,China ) A bstract :The response of the structure is no t constituted with one sing le mode shape w hen the frequency distri -bution is dense o r the earthquake excitation 's frequency band is w ide .At this time ,it is necessary to adopt the multi -point control sy stem .The study on the structures w ith M TMD is carried out in this paper .The uniform dynamic equation w ith mode coordinate and slave system 's DOF as variables is established fo r the system w ith multi slave sy stem .The equatio n has asy mmetric mass m atrix ,asymmetric stiffness matrix and nonclassical damping m atrix ,and the direct solving format is given in this paper .The random earthquake response is studied by using pseudo -excitation method ,thus the coupling items between modes can be considered .The calculation is cheap and precision is high .The method in this paper is adaptable to the general case of the sy stem with multi -slave structures and has broad application wo rth .Key words :multi -point control ;master structure ;slave structure ;random earthquake response 1 引言 对于高层建筑、大跨桥梁、高耸塔架等高柔结构采用TMD (Tuned Mass Damper )减小风振及地震响应是有效的,这一点得到了人们的普遍认同。TMD 对建筑结构的功能影响较小,便于安装、维修和更换控制元 第23卷第6期2003年12月地 震 工 程 与 工 程 振 动EA RT HQ UAK E ENG IN EERI NG A ND ENG IN EERIN G V IBRA T ION V ol .23,No .6 Dec .,2003DOI :10.13197/j .eeev .2003.06.028

地震反应谱分析实例

结构地震反应谱分析实例 在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0

!进行模态求解 ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom

结构地震反应谱分析实例

在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X 与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0<T<=0.04 秒 0.4853*(0.10/T)^(-0.686) 0.04<T<=0.1 秒 0.4853 0.1<T<=1.2 秒 0.4853*(1.2/T)^1.5 1.2<T<=4 秒 以下是命令流程序 ---------------------------------------------------------------------------------------------------- /filname,SPEC,1 /PREP7 !定义单元类型及材料特性 ET,1,45 MP,EX,1,2.8E10 MP,DENS,1,2.4E3 MP,NUXY,1,0.18 !建立模型 BLOCK,0,1,0,1,0,5 !网格剖分 ESIZE,0.5 VMESH,all /VIEW,,-0.3,-1,1 EPLOT FINISH /SOLU !施加底部约束 ASEL,,LOC,Z,0 DA,ALL,ALL ALLSEL !施加自重荷载 ACEL,0,0,10 !进行模态求解

ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom lcwrite,11

简支梁的地震响应分析

简支梁的地震响应分析 /PREP7 !进入前处理模块 /TITLE, EX 8.4(3) by Zeng P, Lei L P, Fang G ET,1,BEAM3 !设定1号单元 L=240 $A=273.9726 $H=14 $I=1000/3 !设定几何参数 R,1,273.9726,(1000/3),14 !设定1号实常数(梁单元) MP,EX,1,3E7 $MP,PRXY,1,0.3 $MP,DENS,1,73E-5 !设定弹性模量, 泊松比, 密度 K,1,0,0 $K,2,L,0 !生成两个关键点 L,1,2 !由关键点生成线 ESIZE,,8 !设定单元网格划分的分段数 LMESH,1 !对1号线划分单元网格 NSEL,S,LOC,X,0 !选择位置x=0的节点 D,ALL,UY !对所选择的节点施加位移约束UY=0 NSEL,S,LOC,X,L !选择位置x=L的节点 D,ALL,UX,,,,,UY !对所选择的节点施加位移约束UX=UY=0 NSEL,ALL !选择所有节点 FINISH !结束前处理模块 /SOLU !进入求解模块 ANTYPE,MODAL !设定模态分析方式 MODOPT,REDUC,,,,3 !设置缩减算法,提取3阶模态 MXPAND,1,,,YES ! 设定模态扩展的阶数为1,并计算单元及支反力结果 M,ALL,UY !对所有节点定义主自由度UY OUTPR,BASIC,1 !设置输出结果的方式 SOLVE !进行求解 *GET,F1,MODE,1,FREQ !提取第一阶模态频率,赋给F1 FINISH !结束 /SOLU !进入求解模块 ANTYPE,SPECTR !设定谱分析方式 SPOPT,SPRS !设定单点激励谱分析 SED,,1, !设定单点激励的方向为Y轴 SVTYP,3 !指定单点响应谱类型为地震位移谱 FREQ,.1,10 !设定频率数据表格的频率点 SV,,.44,.44 !设定频率数据表格的对应于频率点的激励值SOLVE !进行求解 *GET,F1_COEF,MODE,1,MCOEF !提取模态1的谱分析结果的模态系数FINISH !结束求解 /POST1 !进入一般性后处理模块 SET,1,1,F1_COEF !调出第1阶模态的结果,并乘以模态系数PRNSOL,DOF !打印节点结果 PRESOL,ELEM !打印单元结果 PRRSOL,F !打印支反力结果

ANSYS地震响应分析讨论

地震响应分析 1模态组合就是根据模态分析中的几阶振型(也可以少于这几阶,看你要求的精度)进行组合(类似于结构最不利组合),从而求出地震响应的最大值。 2组合各振型反应的最大值,求得结构地震响应的最大值。 这个问题在论坛上已经有很多人问过,也有各种各样的回答,但是至今没有令人满意的解答。我自己试过很多种方法,加上论坛上其他人提到的方法,大致归类如下: 1.先做静力恒载工况分析,打开预应力pstres开关;然后转到时程分析。 结果:恒载对后面的时程计算不起作用,时程计算依然从0开始。 2.直接在antype,trans中考虑恒载:先把timint,off加acel,,9.81,打开应力刚化,sstif,on,lswrite,1,然后timint,on开始时程计算。 结果:恒载9.81起作用了,但结果是错的,它被积分了。 3.不用什么前处理,直接把9.81加在地震波上acel,9.81+ac(i)。 结果,同2,9.81带入了积分,这个9.81相当于阶跃荷载,而不是产生恒载。 4.ansys帮助中施加初始加速度的方法(篇幅限制请自己看帮助)。 结果,同2、3,9.81还是带进时间积分。 5.这种是我受到别人的启发,通过结构受ramp荷载的特点施加的,可以近似的解决问题。 即1)求出结构的自振一阶频率w 2)令tr=1/w 3) 定义ramp荷载为从0到tr加到9.81,然后在整个时间积分中保持不变 4)antype,trans中分几个荷载步将荷载从0加到9.81 5) 在随后的荷载步中acel,,9.81+ac(i) 这种做法虽然也是将9.81++加到地震波中,但是因为满足TR的要求,所以这个动力效应被削弱到了静力效应,它作用在结构上就像静载一样。对于单自由度结构理论上跟静载是完全一样的,但是多自由度会子静力效应上下很小的范围内波动,所以可以认为相当于静载的作用,这样我们就可以达到考虑恒载的目的了。 第5种是我至今为止考虑恒载的做法,我也很想知道还有没有更简单精确的方法,或者在前4种方法中就有只是我使用不正确,希望大家能一起来讨论,彻底解决这个问题。谢谢! 地震反应怎么考虑重力 SOLU ANTYPE, TRANS TRNOPT,FULL TIMINT,OFF !*先关闭时间积分效应 TIME,1E-8 !*设一个极短的积分时间 acel,,9.8 NSUBST,2 !有时候子步数要增大 KBC,1 LSWR,1 !*把这个写入第一步 TIMINT,ON !*然后再时间积分效应开关,以后就正常写载荷步了 这种方法应该是对的,ANSYS帮助文件中也有提到, 可是,有一个问题:由于是阶跃荷载,就会产生动力效应,整个结构的变形大于实际的情况吧?这样与实际结构在重力下受到的变形就不一样了!

地震反应分析:动力方法

地震反应分析:动力方法Structural Response Analysis: Dynamic Methods 教师:李爽副教授 lleshuang@https://www.360docs.net/doc/7f9802298.html, 2015年4月10日 1

本章导读 ?多维动力分析输入的一般处理方法 ?多次动力分析结果的一般处理方法 ?增量动力分析法(Incremental Dynamic Analysis Method,IDA) ?云图分析方法(Cloud Analysis Method)?结构地震模拟振动台试验基本步骤 2

多维动力分析输入的一般处理方法?当结构采用三维空间模型等需要双向 (两个水平方向)或三向(两个水平一 个竖向)地震动输入时,其加速度峰值 可按1(水平1):0.85(水平2):0.65 (竖向)的比例调整 ?具体如何操作? 3

4 多维动力分析输入的一般处理方法 (2)初步选择若干条地震动,将所选择地震动进行反应谱分析,并与设计反应谱绘制在一起 (3)计算结构振型参与质量达到XX %(如50%~90%)对应各周期点处的地震动谱值(或0.2T 1~1.5T 1)。检查各周期处的包络值与设计反应谱值相差是否不超过20%。如不满足,则回到第二步重新选择地震动 (4)将各地震动在主要周期点处各方向上的值,按1(水平1):0.85(水平2):0.65(竖向)加权求和,按该求和值从小到大的顺序输入地震动(仅针对振动台试验,数值 计算不用分先后顺序,因为后者没有损伤)(1)根据研究对象所在场地类型和设防烈度确定地震设计反应谱(加速度反应谱)

多次动力分析结果的一般处理方法 ?《规范》规定 特别不规则的建筑、甲类建筑和下表所列高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算;当取三组加速度时程曲线输入时,计算结果宜取时程法的包络值和振型分解反应谱法的较大值。当取七组及七组以上的时程曲线时,计算结果可取时程法的平均值和振型分解反应谱法的较大值 5

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化 摘要:目前我国规范要求结构计算中地震作用的计算方法一般为振型分解反应 谱法。时程分析法作为补充计算方法,在不规则、重要或较高建筑中采用。进行 时程分析时,首先面临正确选择输入的地震加速度时程曲线的问题。时程曲线的 选择是否满足规范的要求,则需要首先将时程曲线进行单自由度反应计算,得到 其反应谱曲线,并按规范要求和规范反应谱进行对比和取舍。本文通过介绍常用 的数值计算方法及计算步骤,实现将地震加速度时程曲线计算转化成反应谱曲线,从而为特定工程在时程分析时地震波的选取提供帮助。 关键词:时程分析,地震波,反应谱,动力计算 1 地震反应分析方法的发展过程 结构的地震反应取决于地震动和结构特性。因此,地震反应分析的水平也是随着人们对 这两个方面认识的深入而提高的。结构地震反应分析的发展可以分为静力法、反应谱法、动 力分析法这三个阶段。在动力分析法阶段中又可分为弹性和非弹性(或非线性)两个阶段。[1] 目前,在我国和其他许多国家的抗震设计规范中,广泛采用反应谱法确定地震作用,其 中以加速度反应谱应用得最多。反应谱是指:单自由度弹性体系在给定的地震作用下,某个 最大反应量(如加速度、速度、位移等)与体系自振周期的关系曲线。反应谱理论是指:结 构物可以简化为多自由度体系,多自由度体系的地震反应可以按振型分解为多个单自由度体 系反应的组合,每个单自由度体系的最大反应可以从反应谱求得。其优点是物理概念清晰, 计算方法较为简单,参数易于确定。 反应谱理论包括如下三个基本假定:1、结构物的地震反应是弹性的,可以采用叠加原理 来进行振型组合;2、现有反应谱假定结构的所有支座处地震动完全相同;3、结构物最不利 的地震反应为其最大地震反应,而与其他动力反应参数,如最大值附近的次数、概率、持时 等无关。[1] 时程分析法是对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法。由 于此法是对运动方程直接求解,又称直接动力分析法。可直接计算地震期间结构的位移、速 度和加速度时程反应,从而描述结构在强地震作用下弹性和非弹性阶段的内力变化,以及结 构构件逐步开裂、屈服、破坏甚至倒塌全过程。 根据我国《建筑抗震设计规范》(GB5011-2010)(以下简称《抗规》)第5.1.2-3条要求,特 别不规则的建筑、甲类建筑和表5.1.2-1所列高度范围的高层建筑,应采用时程分析法进行多 遇地震下的补充计算。此外《高层建筑混凝土结构技术规程》(JGJ3-2010) (以下简称《高规》)第4.3.4条也有相关要求。 2 时程分析时地震波的选取要求 在进行时程分析时,首先面临地震波选取的问题。所选的地震波需要符合场地条件、设 防类别、震中距远近等因素。《抗规》对于地震波的选取主要有以下几点要求: 1、当取三组加速度时程曲线输入时,计算结果宜取时程法的包络值和振型分解反应谱法 的较大值;当取七组及七组以上的时程曲线时,计算结果可取时程法的平均值和振型分解反 应谱法的较大值(其中实际强震记录的数量不应少于总数的2/3)。 2、弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计 算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计 算结果的80%。 3、多组时程曲线的平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数 曲线在统计意义上相符。根据规范条文说明,所谓“统计意义上相符”指的是,多组时程波的 平均地震影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在对应于结构主 要振型的周期点上相差不大于20%。但计算结果也不能太大,每条地震波输入计算不大于135%,平均不大于120%。 4、时程曲线要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间均要符合规

地震响应的反应谱法与时程分析比较

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt

2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45单元,设置拖拉方向的单元尺寸并清楚初始平面单元plane42,将平面单元进行拖拉,最后生成发电厂墙体的有限元立体几何模型。单元总数为6060个,总节点数为8174个,有限元模型如图2所示: 图2 发电厂墙体有限元模型 3.2 荷载说明

结构地震反应分析

结构地震反应分析 摘要:结构地震反应分析方法有很多,单自由度体系可以采用duhamel积分法,多自由体系可以采用振型分解法,和直接积分法。在工程实践中,根据建筑物的结构体系,抗震设防烈度,选择合适的方法,计算结构的动力特性和响应。本文对一个7层框架结构进行抗震计算,采用不同的计算方法计算结构动力特性和响应。 关键词:duhamel积分法多自由度体系振型分解法直接积分法 Structural seismic response analysis FeiJianWei Civil and traffic institute structural engineering 200820104470 Abstract: There are many methods for Structural seismic response analysis, single-degree-of-freedom system using duhamel integral method, more free system can use strikeout decomposition method, and the direct integral method. In engineering practice, according to the building of the structure types, the seismic fortification intensity, select the appropriate method to calculate the dynamic characteristics, and response. Article choose a 7 layers framework for earthquake-resistant calculation, using different calculation method to calculate the dynamic characteristics and response. Keywords: duhamel integral method ;multi-freedom system ;vibration mode decomposition method ;direct integral method 1 前言 建筑结构抗震设计首先要计算结构的地震作用,然后再求出结构和构件的地震作用效应。结构的地震作用效应就是指地震作用在结构中所产生的内力和变形,主要有弯矩、剪力、袖向力和位移等,最后将地震作用效应与其他荷载效应进行组合,并验算结构和构件的抗震承载力及变形,以满足“小震不坏,中震可修,大震不倒”的抗震设计要求。 结构的地震反应是指地震引起的结构振动,它包括地震在结构中引起的速度、加速度、位移和内力等。结构的地震反应分析属于结构动力学的范畴,比结构的静力分析要复杂得多。因为结构的地震反应不仅与地震作用的大小及其随时间的变化特性有关,而且还取决于结构本身的动力特性,即结构的自振周期和阻尼等。然而,地震时地面的运动是一种很难确定的随机过程,运动极不规则,而建筑结构又是一个由各种不同构件组成的空间体系,其动力特性也十分复杂。因此,地震引起的结构振动实际上是一种很复杂的空间振动。这样,在进行建筑结构的地震反应分析时,为了便于计算,常需做出一系列简化的假定[1]。 1.1 结构抗震理论的发展 近百年来,经过各国学者的共同努力,结构抗震理论的研究取得了长足的发展。结构抗震理论的发展可以划分为静力理论、反应谱理论和动力理论三个发展阶段。 1.1.1 静力理论 水平静力抗震理论创始于意大利,发展于日本,1900年日本学者大森房吉提出震度法的概念。该理论认为:结构物所受到的地震作用,可以简化为作用于结构的等效水平静力F,其大小等于结构重力荷载G乘以地震系数k,即: F =α G / g = kG(1.1)

地震反应分析

结构地震反应分析 结构地震反应分析的主要工作是首先将结构简化成力学分析模 型,然后输入地震作用,计算模拟结构的反应行为,包括内力和变 形反应时程或最大值。其目的是为结构抗震设计提供必要的数据资 料;或为抗震安全鉴定和拟定抗震加固方案提供参考依据;或为研 究结构破坏机理提供基本手段,从而改善设计,提高结构的抗震性 能。 结构地震反应取决于地震动输入特性和结构特性。随着人们对 地震动特性和结构特性的了解越来越多,特别是技术手段越来越先 进,结构地震反应分析方法也跟着有了飞跃的发展。 结构抗震分析方法的发展大体上可分为三个阶段,即静力法、 拟静力法(通常指反应谱方法)和动力法阶段。 静力法是20世纪初首先在日本发展起来的。该方法将结构物看 成是刚体,并刚接于地面。这样,结构在最大水平加速度绝对值为max a 的地面运动激励下,受到的最大水平作用力P (即最大惯性力)为 kW A g W P ==max 其中,W 是结构物的重量,k 是地面最大水平加速度绝对值max A 与重 力加速度g 之比,称为地震系数。 在当时人们对地面运动的频谱和卓越周期的了解还不够多,以 及房屋多为低层建筑的情况下,应用上述地震荷载计算公式于抗震

设计还是可以的。但是,随着地震资料的积累和城市与工业建设的发展,使人们认识到作为静力法基础的刚性结构假定已明显地远离实际情况,于是考虑结构物的弹性性质、阻尼性质及相应动力特性的反应谱方法便发展起来了。 反应谱方法出现在20世纪40年代。美国的一些学者在取得了一部分强震地面运动记录之后,考虑地震动特性与结构动力特性共同对结构地震反应产生决定性影响的这一事实,提出了反应谱概念和相应的设计计算方法。这一方法有动力法的内容,却具静力法的形式,故可称之为拟静力法。该方法对结构地震反应分析产生巨大影响,至今仍是结构抗震设计的主要计算方法。 尽管反应谱方法取得的进步是实质性的,但它的应用还是受到一些限制,如原则上只能用于线性结构体系;不能真实反映复杂结构体系的动力放大作用。因此,随着重大工程的不断兴建和计算机技术的飞速发展,20世纪70年代,结构地震时程反应分析得到全面发展。 相对于反应谱方法而言,时程反应分析是一种动力分析方法,它求取的不是结构的某种最大反应或其近似估计,而是结构在地震激励下的反应时间历程,即地震与结构相互作用的过程,其结果更为可靠。另外,时程反应分析可以真正处理非线性问题,这是结构地震反应分析一个非常重要的方面。 随计算机和有限元技术的发展,结构分析模型也经历了一个由极

多点激励下桥梁的地震动响应

多点激励下桥梁的地震动响应研究摘要:桥梁是重要的交通枢纽,一旦发生破坏将会造成重大的经济损失,严重影响人民的生命财产安全。同时,地震是一种自然灾害,时刻威胁着人们的生命财产安全。为此,本文基于四川地区某一多跨连续梁混凝土桥,利用有限元软件开展数值模拟,研究了一致性激励和非一致性激励作用下桥梁的地震响应,结果表明:(1)、不论一致性激励还是非一致性激励作用下,桥面均存在较大的地震动响应;(2)、非一致性激励作用下桥面的地震动加速度较一致性激励作用下的大。 关键词:桥梁;地震;一致性;非一致性 abstract: the bridge is an important transportation hub, and once produce destruction will can cause significant economic losses, the serious influence people’s lives and property security. at the same time, the earthquake is a natural disaster, the time is affecting people’s life and property security. therefore, this article is based on the sichuan region across a more concrete continuous beam bridge, and by using the finite element software in numerical simulation, studies the consistency of inconsistent incentive effect on the incentive and under seismic response of the bridge, and the results show that: (1), whether or not the consistency incentive consistency excitation, the bridge

地震响应方法比较

反应谱分析和时程分析 从理论上讲,如果反映谱分析所用的反映谱是时程分析分析时用的地震波所产生的反映谱,而分析又限於弹性阶段,两者几乎没有差别,因为反映谱分析(取足够的模态)只是忽略了影响很小的高阶效应。 但是如果结构进入非弹性阶段,只有用时程分析。 反应普法有几个假设:1,结构是弹性反应,反应可以叠加;2,无土结的相互作用;3,质点的最大反应即为其最不利反应;4,地震是平稳随机过程. 而时程分析是把地震过程安时间步长分为若干段,在每时间段内安弹性分析,算出反应,然后再调整刚度和阻尼.总得一句话,就是步步积分法! ①反应谱方法是一种拟静力方法,虽然能够同时考虑结构各频段振动的振幅最大值和频谱两个主要要素,但对于持时这一要素未能得到体现,震害调查表明,有些按反应谱理论设计的结构,在未超过设防烈度的地震中,也遭受到了严重的破坏,这充分说明了持时要素在设计中应该被考虑。 ②反应谱方法忽略了地震作用的随机性,不能考虑结构在罕遇地震下逐步进入塑性时,因其周期、阻尼、振型等动力特性的改变,而导致结构中的内力重新分布这一现象。 ③反应谱方法假设结构所有支座处的地震动完全相同,忽略基础与土层之间的相互作用。时程分析方法是一种相对比较精细的方法,不但可以考虑结构进入塑性后的内力重分布,而且可以记录结构响应的整个过程。但这种方法只反应结构在一条特定地震波作用下的性能,往往不具有普遍性。 我国反映谱方法的曲线是由255条地震波的地震反映的平均值,而非包络值,体现的是共性,但无法反映结构进入塑性的整体结构性能。时程方法体现的是具体某条地震波的反映,不同地震波作用下结果的差异也很大,需要合理选波。 底部剪力法/反应谱法/时程分析法一些有用的概念

桥梁抗风与抗震

桥梁抗风与抗震 1. 桥梁抗震 1.1桥梁的震害及破坏机理 调查与分析桥梁的震害及其破坏机理是建立正确的抗震设计方法,采取有效抗震措施的 科学依据。 国内外学者对桥梁震害的调查研究结果表明,桥梁震害主要表现为: (1) 上部结构的破坏:桥梁上部结构本身遭受震害而被毁坏的情形不多,一般都是由于 桥梁结构的其他部位的毁坏而引起的。如落梁,一种是由于弹性设计理论采用毛截面刚度, 这样就会低估横向地震作用和位移。导致活动节点处所设置的支座长度明显不足以及相邻梁 体之间因横向距离不足而引起的相互冲击,造成落梁及相邻结构的撞击破坏;另外一种是由 于地基土的作用造成大的地震位移,这种桥梁震害主要发生在建在软土或者可能液化的地基 土上的桥梁上。软土通常会使结构的振动反应放大,使得落梁的可能性增加。 (2) 支座连接部位的破坏:这中破坏比较常见,由于连接部位的破坏会引起力传递方式 的变化,从而对结构其他部位的抗震产生影响,进一步加重震害。这种破坏是抗震设计中最 关注的问题之一。 (3) 下部结构和基础的破坏:下部结构和基础的严重破坏是引起桥梁倒塌,并在震后难 以修复使用的主要原因。除了地基毁坏的情况,桥梁墩台和基础的震害是由于受到较大的水 平地震力,瞬时反复振动在相对薄弱的截面产生破坏而引起的,从大量震害实例来看,比较 高柔的桥墩多为弯曲破坏,矮粗的桥墩多为剪切型破坏,介于两者之间的为混合型。地基破 坏主要表现为砂土液化,地基失效,基础沉降和不均匀沉降破坏及由于其上承载力和稳定性不够,导致地面产生大变形,地层发生水平滑移,下沉,断裂。 (4) 桥台沉陷,当地震加速度作用时,由于桥台填土与桥台是不完全固结的,桥台填土 的纵向土压力增大,桥梁与桥台之间的冲撞会产生相当大的被动土压力,造成桥台有向桥跨 方向移动的趋势。由于桥面的支撑作用,桥台将发生以桥台顶端为支点的竖向旋转,导致基础破坏。如果桥台基础在液化土上,又将引起桥台垂直沉陷,最终导致桥梁破坏。 以上所介绍桥梁的几种破坏形式是相互影响的,不同的地质条件和不同的抗震措施所造 成的破坏程度和类型往往是不同的。这就要求我们在桥梁设计中尤其是不规则桥梁和大跨度 桥梁,必须从整体分析桥梁的抗震性能。

相关文档
最新文档