快速地震报警系统和实时自动动作-多智能体硬件的应用(IJITCS-V10-N2-7)

快速地震报警系统和实时自动动作-多智能体硬件的应用(IJITCS-V10-N2-7)
快速地震报警系统和实时自动动作-多智能体硬件的应用(IJITCS-V10-N2-7)

I.J. Information Technology and Computer Science, 2018, 2, 73-82

Published Online February 2018 in MECS (https://www.360docs.net/doc/7510581424.html,/)

DOI: 10.5815/ijitcs.2018.02.07

Rapid Earthquake Alarm System and Real-Time Automated Action: Application of Multi-Agent

Hardware

Ahmad Ghodselahi

PhD, University of Tehran, Tehran, Iran (Corresponding author)

E-mail: Ahmad.Ghodselahi@https://www.360docs.net/doc/7510581424.html,

Mostafa Ghodselahi and Farid Tondnevis

MSc, Allameh Tabatabaee University, Tehran, Iran, PhD Candidate, University of Tehran, Tehran, Iran

E-mail: mostafa.g.elahi@https://www.360docs.net/doc/7510581424.html,, farid_ftnk@https://www.360docs.net/doc/7510581424.html,

Received: 22 October 2017; Accepted: 03 December 2017; Published: 08 February 2018

Abstract—Earthquake is the most dangerous natural disaster in the whole era of human being life. Scientist efforts for predicting earthquake have no prolific result, so far. The earth complexity and geology structures are the main obstacles of these efforts. The importance of time at the occurrence of the earthquake has resulted in using powerful systems for real-time alarming and therefore lessening the casualties of the earthquake. In this paper we have designed a rapid earthquake alarm system and we have implemented it in parallel processing and continuous processing. We have tried to apply hardware intelligent agents for real-time and parallel processing of data and data fusion of sensors. By applying this technology, the performance of rapid earthquake alarm system will be improved. Through this improvement, the rapid and automated action of rapid earthquake alarm system can lead to reducing the effect of earthquake.

Index Terms—Multi-agent Hardware Precursor, earthquake Rapid Reaction.

I.I NTRODUCTION

Earthquake is the shaking of earth, which is the reason of rapid release of energy and often is due to fault slippage. The released energy from its source, which is named focus, is disseminated in all aspect. These waves is similar to waves generated from apiece stone fallen into water. Alike the waves in the water, the waves of earthquake will disseminate in the surface of the earth. As the waves outspread from the focus rapidly, some sensitive devices around the world will sense these waves and record them [1]. Earthquakes are categorized in different group according to their characteristics. Different types of earthquakes are:

1.Tectonic earthquakes: Many of the earthquakes

occurring in the world yearly are tectonic

earthquake. The movement of tablets, which is the

former of earth cortex, is the reason of this type of

earthquake.

2.Volcanic earthquakes: these kinds of earthquake

occur in the places with volcanic mountain and are

referred volcanic explosion, too.

3.Collapse earthquakes: the collapse of caves and

underground channel can cause shakes named

Collapse earthquakes.

4.Induced earthquakes: As the reason of abrupt

changes in sluices, these kinds of earthquake occur.

5.Explosions earthquakes: The military of industrial

explosions is the main cause of these earthquakes.

The magnitude, place and the time of occurrence

are predictable.

Measuring the earthquake is based on two approaches. One is based on device measurement and the other on is based on the influences that earthquake has on handiwork [2]. The intensity of earthquake is different in various places and will reduce by diffusing farther from focus, but the magnitude of earthquake is constant and is not dependent to the distance from focus, because it is directly pertain to the total released energy.

A. Earthquake magnitude

Earthquakes magnitude is used in order to measure earthquakes and obtain an evaluation criterion, which is in accordance to the range of fluctuation [3].

B. Seismology

It has been centuries that scientists are researching about earthquakes. Nowadays great networks of seismographs are installed all around the world and are registering different quakes. These data make the feasibility of earthquakes research. When earthquake occurs, different waves will be generated each of which has various speed and range. By having different speed, the reach time of these waves to seismograph is different. The focus and depth of earthquake is calculated based on

the differences in the reach time of P and S waves. The drastic movement of the earth is the main cause for ruination of handiwork and people damages. Generally, after earthquake occurrence and earth energy release, the released energy disseminated as quakes waves in all dimensions and transmits the energy with them. Earthquake wave are categorizes into two groups based on their movement in or on the surface of the earth. These two groups are body waves and surface waves. Body waves move and convey in the body of earth and are transmitted in all dimensions and are faster than surface waves. Body wave is also categorizes into two kinds of waves, namely, primary waves and secondary waves. Surface waves have the most energy causes from low-depth shakes and are the main reason of residential areas damages. Surface waves have two kinds of waves, love waves and Rayleigh waves. Aforementioned waves are differentiated base on their speed, range, wavelength, alternation and frequency.

?Primary waves: Primary waves are capable of passing from different environment e.g. gases,

solid and liquid environments. Ingredients that are

exposed to this kind of waves are fluctuating

forward and backward. The name of primary

waves is generated from their speed, for they are

the first waves sensed by seismographs. They lose

their energy as transmitted and cause almost no

damage.

?Secondary waves: These kinds of waves are transmitted in such environment that can resist

against transfiguration e.g. solids. These waves

cannot pass through gases and liquid

environments. The fluctuation is staple.

?Rayleigh waves: These kinds of waves have circular movement like the movement of waves in

an ocean. But the direction of movement is

contrary to ocean waves.

?Love waves: The movement of these waves is similar to secondary waves. But the direction is

parallel to the earth surface.

C. Focus and depth of earthquakes

The location of rupture in the fault is called earthquake focus or hypocenter and it is the primary place of energy release inside of the earth. Earthquakes are grouped into three classes based on their depth:

?Low depth: with the depth of 0 to 70 KM.

?Mediate depth: with the depth of 70 to 300 KM.

?Deep: with the depth of more than 300 KM (No earthquakes have been occurred with the depth of

more than 720 KM).

The depth of earthquake is important matter because the intensity of damage and the region exposed to quake damage are related to its depth.

II.C ONCEPTS &R ELATED W ORKS

A. Earthquake prediction

Earthquake prediction is the prediction of time, location and the magnitude of a quake, which is forthcoming. Nowadays the location of quake is predictable to somehow but the time and magnitude of it is not accurately predictable. One of the ways for predicting the earthquake is to trace the precursor of quakes. Earthquake occurrence has some precursor, which occur before quakes. These precursors can be e.g. magnetic scopes, electrical scopes, shaking behaviors, atmospheric incidents and so on. Many precursors occur before earthquake occurrence, but none of them can definitely be an earthquake occurrence criterion, alone. Although many researches have been done in this field, it is not clearly defined whether or not a generic pattern for earthquake occurrence exists. In spite of the mentioned issue, for predicting earthquake occurrence some prerequisite are needed which are as follow:

?Short quakes reduction: seismographs are recording the generated quakes ceaselessly. The

reason of quakes reduction is stone volume

increase before rupture, which leads to cracks in

stone. This phenomenon causes quake reduction

and changes the transmitting speed [4].

?Crust deformation: the reason of most of major earthquakes is sudden break in the part of the crust,

which hinder the movement of plate of the crust.

By applying tension on plate of the crust,

deformation occurs on some definite location of

earth [5,6].

?Change in the level of well water: This incident occurs because of the temperature changes and

pressure decrease or increase on soil holes which

make the water level to spurt or shrivel.

?Increase in the distance of earth near the location of rupture and fault: these changes are captures

through accurate measuring devices and aerial

photography [7].

?Earth temperature changes and gases emersion: the changes in the temperature of the earth and gas

emersion such radon and argon that make the

animals to come out from their nest in the earth.

Investigation of geochemical gases especially

radon is one of five main earthquake precursor

introduced by International Institute of

Seismology and earth science physic[8,9] ?Earth electromagnetic changes: changes in earth characteristic like electromagnetic [10].

?Animal behavior: animals show various behaviors before earthquake, e.g. fishes come seashore. Regarding the importance of earthquakes and its prediction for saving people lives; researchers have investigated some methods for earthquake prediction. Novikova and Rotwain [11] applied CN algorithm for prediction of earthquake in 22 regions. In 11 cases from 24 cases, the alarm was at right time, earthquake

occurrence time. Vorobieva [12] investigated an algorithm for the prediction of a subsequent large earthquake, which is based on analysis of the aftershock sequence following the first shock and of local seismic activity preceding it. He had considered that many large earthquakes come in pairs separated by relatively small times and distance. Murru and Console [13] utilized an earthquake clustering epidemic model for short-term forecasting of mediate and major earthquake. They consider every earthquake as being started by previous event and starting subsequent earthquakes. The model predicts the magnitude and probability of shaking in upcoming 24 hours. Uyeda et al. [10] applied the methodology of reverse tracing and monitoring precursor for short time prediction. Pulinets [14] applied spacecrafts for monitoring precursors and subsequently, short time prediction of earthquakes. Talebian et al. [15] investigated the electromagnetic change as a precursor of earthquake and by monitoring such changes; it was revealed that electromagnetic anomaly lead to earthquakes. Resaneh and Hajbabaee [16] investigated temperature anomaly, temporary temperature increase, almost 1 week prior to earthquake as a precursor of it, which can be captured from satellite. Ondoh [17] tried to predict earthquake based on ionosphere, atmosphere and water level as earthquake precursors. Nanjo et al. [18] proposed a modification of pattern informatics method, which has been designed for predicting the location of forthcoming major earthquakes and is based on analyzing the space-time patterns of past earthquakes to find possible locations where forthcoming earthquakes are exposed to occur. In this modified method the effects of errors in the location of past earthquakes on the output predict are reduced. Their goal is to more accurately define the location of forthcoming earthquake. Adeli and Pankat [19] designed an artificial neural network for predicting major earthquakes magnitude in future. The prediction is based on 8 parameters as earthquake indexes. Alcik et al. [20] established an early warning system that applied a simple and robust algorithm, based on the exceedance of specified threshold time domain amplitude and the cumulative absolute velocity levels. Manjunatha et al. [21] developed a n automated system for fire detection for manufacturing industries. They have used neuro-fuzzy algorithm to identify the exact location of fire pixel in the image frame. Hepsiba and Justus [22] defined the important role of data and knowledge and the process of knowledge creation. The carried a survey on the knowledge representation models. Hazra et al. [23] addresses a number of target searching problems related to various defense scenarios by considering mobile sensors.

B. Multi agent system

Application of multi agent systems have been considered in many field, such as social science, engineering [24], physical theories and mathematics. Multi agent systems are a subfield of distributed artificial intelligence, which have attracted so many concentrations toward it. Rapid evolution and improvement in computer resources, both hardware and software, that are in use in computational and distributed environments, has lead to this growth. Agent technology is base on reactive, autonomous and active entities that evolves in dynamic environment [25]. Agent has a collection of goals, definite capabilities for functioning, and set of beliefs and knowledge about its environment. Agent would use its knowledge for reasoning in its environment so that perform its operations and reaches to its goals. The multi agent system paradigm is a popular and effective method for building a co-operating knowledge base team with same goal. A multi agent system consists of a group of agents, interacting with one another to collectively achieve their goals. By drawing on other agent’s knowledge and capabilities, agents overcome their inherent bounds of intelligence [26]. Multi agent systems’ models have fine representation of entities, which are distributed, functionally and geographically. The architecture of multi agent system is dynamic and has following characteristic:

The structure of agents is dynamic. The role of agent is defined through its services presenting in multi agent system. Once the role of agent is changed, the agent should present the services related to its new role and the structure of system should adapt with this alteration. The structure of communication between agents is dynamic: The agents that a specified agent is connected to them and has communication with them would change in different period of agent lifetime base on the operation it is performing.

Agent-based techniques are from an attractive paradigm for building real-time parallel applications because they have several high-level characteristics: flexibility, modularity, concurrency, reactivity, proactiveness, reasoning, learning, autonomy, communication, and cooperation. When agents are effectively implemented, they can react to environmental changes by adapting to unpredictable events [27]. Having specifications like scalability, flexibility, reliability and robustness, multi agent systems can perform their parallel operation, which bring more speed and efficiency rather than centralized systems. Multi agent systems take a distributed problem solving approach where the agents are autonomous and socially situated, and can react to a dynamically changing environment [28]. Multi agent systems allow the simulation of complex phenomena that cannot easily be described analytically. Multi agent approaches are often based on coordinating agents whose actions and interactions are related to the emergence of the phenomenon to be simulated [29]. Agents have traditionally been assumed to be constructed using computer software. However with the advent of large-scale commercially available reprogrammable logic, it is now possible to extend the multi agent paradigm to a more general environment in which agents can reside in both the software and hardware of the system. The current state of Field Programmable Gate Array, FPGA technology and other reconfigurable hardware has allowed hardware to be much more flexible, and in so doing has narrowed the

gap between hardware and software [30]. One application of hardware agent is in automated sensors field. Network of sensors is needed for utilizing many of sensors in order to gather information from different locations. This kind of network consists of sensors, which have connection with each other wirelessly. These sensors are applicable for environments that are not easily reachable [31]. Most of automated systems have sensors for information gathering and awareness of their environmental condition. The system uses this information as feedback for controlling modules. The capability of a system for performing a task is nearly dependent to the information quality received from sensors, which is pertaining to sensor quality. Data fusion is done for resolving this kind of deficiencies and this is possible from combining the information of two or more sensors. FPGA technology and other reconfigurable hardware technologies make it possible for hardware implementation, which brings more flexibility rather than the flexibility generated by software. Implementation of agent-based techniques in reconfigurable hardware makes it possible to build real time systems that predispose more parallelism rather than software systems. To be effective, hardware agent based systems must continuously adapt their behavior to meet the temporal demands of the run time environment. To accomplish this, agents can be implemented in a wide variety of ways that allow their belief systems to evolve over time in direct response to various forms of learning stimuli that come from the environment and interaction with other agents in the system. Naji et al. [28] presented data fusion through hardware agents for taking advantage from the advantage of hardware agents and their ability. It is obvious that application of some sensors could decline the uncertainty and supply more accurate information rather than a single sensor. The aim of sensor network application is to provide robust and reliable evaluation.

III.R ESEARCH M ODEL

In order to build a real time earthquake alarm system we need following issues:

?Earthquake network infrastructure

?Real time incident identifier

?Estimation of earthquake damage

?An alarm system

Fig.1. Proposed model

It is important to note that current technology limit the hardware agent to have less complexity in structure and more reliability in operation than software agents. In order to facilitate their implementation, as hardware agents within reprogrammable logic, the sets of beliefs, desires and intentions may be reduced to the minimum set necessary to provide adequate though sometimes sub-optimal understanding and control of the system [27]. Earthquake identifier and real time alarm systems are in need of rapidity and maximum productivity from earthquake time occurrence. For installing sensors and earthquake identifier processors in the unhandy location and highland, the energy resource supplement is an important matter. Another potential advantage of hardware agent is lower power consumption. Hardware agents can be better suited for monitoring the environment and placing different system elements into low-power standby mode, which more efficiently reduces power consumption. Also implementing a system entirely in reconfigurable hardware might use less power than one using microprocessors because reconfigurable hardware will implement only the necessary functions at any one time. In contrast, microprocessors typically implement more instructions than are normally used, particularly when using a complex-instruction-set computing processor rather than a reduced-instruction-set computing processor [27].

IV.I MPLEMENTATION AND T EST OF M ODEL

If designers use a multi agent system to perform several operations in a complex computational system, they can implement each operation or each group of operations with a single agent. The agents act in parallel on isolated operations, get information from the environment or other agent agents, and send the results back to the environment or other agents. Implementing the operations with hardware agent exploits the specialized hardware’s speed in processing the input information and producing the results. Whenever each agent completes the operation, it sets its “done” signal and sends it to the successive agent’s “strobe” signal. Then it sends the value of that result to the agent in the next level. In this model, hardware agents use done and strobe signals for handshaking. Agents can use their request and acknowledge signals to interact with the environment. Each agent is nondeterministic and intelligent. It receives input information and saves its current state in memory. Its new state is a combination of the old state, what it has learned from the environment, and what it has calculated itself. If an agent doesn’t receive any information within a certain period of time, it will timeout and take appropriate action relative to the environment and according to its current state. For earthquake prediction or earthquake early warning accurate and real-time information gathering and information processing for calculating the earthquake time is an important issue. Therefore, it is proposed that a network of seismographs and measuring sensors stations for monitoring and recording the earthquake precursors measurement, like temperature, pressure, level of radon, level of water and electromagnetic, be utilized. In order to reduce any delay, each station consists of set of processing systems and hybridizing of hardware and software agent, which perform the information processing rapidly and autonomously. Application of intelligent hardware agents considering their advantages in speed, reliability, efficiency, low energy consumption and aforementioned advantages is rational in earthquake rapid alarm system [32, 28, and 27]. Regarding the importance of any fraction of time, application of hardware agent makes us capable of using any split of time [33,34]. Each station must send the captured information in definite period of time to an integrated database and this database should be maintained. Data mining will be performed on the information of the database for discovering the earthquake occurrence pattern and the relation of each precursor with the earthquake occurrence. Beside this database, by using expert knowledge in terms of discovered pattern from the information of database, extracting unknown pattern and related data will be possible gradually. So, we will have a growing knowledge base that will compare the recognized pattern with new information received from different stations and any miss accordance will be investigated. There will be a cloud of information between different stations that any valuable information and recognized pattern will be circulated in all stations. For saving any time and reducing delay for early warning of earthquake protocol will be used for information dissemination between all stations in same time instead of peer-to-peer protocol. In each station an agent is responsible for receiving other stations information and transmition of this information to other agent or activating other agent. For instance, when a high possibility of earthquake and its estimated magnitude is received from other station, the responsible agent role is to activate the agent which can estimate the magnitude of earthquake at the location of its own station providing that earthquake occurs. These station agents also transmit the processed information to other stations. One important part of each station is its sensors. These sensors should be active permanently and be standby to capture the shakes, while should define fake shakes. The state chart of stat ions’ sensors is presented in figure 2. Earthquake detection is possible through three ways: ?By receiving primary shakes of earthquake via each station’s sensors.

?By receiving the information of precursor and utilization of knowledgebase and expert system or

data mining for predicting the probable upcoming

earthquake.

?By receiving the processed information relating to earthquake occurrence from other stations.

Once each station received the earthquake signals, it embarks on computing the impact and possibility of earthquake on its own related area and performs the strategies associated with the earthquake impact and

possibility. If needed, the station will perform preventive actions. The formalism used for the hardware agents is derived from the well-known Beliefs, Desires, and Intentions (BDI) architecture. In the beliefs, desires, and Intentions architecture each agent maintains a set of beliefs, a set of desires and a set of intentions. The set of beliefs indicates what the agent currently believes to be true concerning its environment. It is a localized view where what an agent believes to be true may or may not in fact be true. For a system as a whole the set of desires is a set of outcomes that each agent would like to cause in its own environment. Note that the agent may or may not be able to bring its desires about. Achieving its desire may require action from other agents or may not be possible at all. Finally, the set of intentions is a set of actions that the agent intends to take to attempt to bring about its desires. The agent includes a function to map its inputs and current set of beliefs to an updated set of beliefs. Also, the agent has a function to map its current set of beliefs to a set of desires. Finally, the agent has a function that maps its set of desires to the set of intentions that are to be invoked to bring about these desires [28, 35].

Fig.2. State chart of station seismograph

In the tables 1 through 5 some relationship for earthquake prediction and its precursor are presented in the BDI architecture. In proposed model sets of sensors and agents are utilized. Sensors are for monitoring the precursor changes. As it was mentioned in previous sections, before the earthquake occurrence or as it occurs, different events and changes take place. Different earthquake may have different or similar precursors. Monitoring one precursor is not sufficient for earthquake prediction. On the other hand monitoring all precursor changes is not possible due to difficulty in implementation and making apt infrastructures. In the proposed model some common precursors, which have taken, place in the most past earthquakes are considered.

Table 1. Earthquake Magnitude Estimation Agent

average error drops to 0.35

Table 2. Earthquake Probability Estimation Agent

Table 3. Attenuation Estimation Agent

Table 4. Earthquake Time Estimation Agent Table 5. Epicenter Location Estimation Agent

These precursors are temperature anomaly, pressure anomaly, and change in radon, electromagnetic change and geological movements monitored by GPS. For each situation based on the input information, an appropriate action is defined. Sensors’ information will be used in the database. This information is used for pattern recognition. Data mining technique is used for discovering hidden pattern for earthquake prediction in terms of precursors. In accordance with the agents’ inputs, rule extraction based on the inputs and historical data and the knowledge base, contingency actions will be performed. These actions are codified into two groups, which are early warning and automated actions. Each of these groups consists of different levels based on the earthquake magnitude. Intelligent hardware agents are capable of rapid data preprocessing, data processing and data fusion once they receive data and this advantage make the system capable of early earthquake determination and consequently real-time alarm or action will be performed. Promising results are considered, as the each fraction of time is vital in this matter. Using this system for disabling urban gas distribution network and electrical network can restrain any subsequent damages like firing and explosions. Disabling trains and subways once the earthquake occurs can be another application of this system. The system also can release early warning alarm in public areas like schools, hospitals or public offices, regarding the estimated earthquake magnitude. This early warning alarm makes some chances for people to exit or move to a safer place which will decrease the casualty of earthquake. For practical system evaluation, the research team embarks on developing the earthquake simulator system. The system was developed in C# and by applying SQL Server 2005 for data capture and keeping. The system simulated earthquakes with the magnitude of 1 to 10 Richter considering 36 seismograph stations and data recording for these stations. The stations receive various data relating to earthquake and monitor them. If an earthquake occurs, which is generated randomly, the first station receiving the primary waves calculated the parameter related to the location, time and magnitude of upcoming earthquake and register the records into database. Then it notifies other stations and based on the calculated magnitude, intensity and depth of earthquake predefined strategies, warning or automated actions will be performed. In order to boost the system processing speed, multithreading of functions in C# was utilized. This characteristic makes it possible to perform multi process in same time and in parallel manner. The ability to perform multi process in same time and in parallel manner is similar to intelligent hardware agents. The summon of agent and agent interactions is possible in the simulated system. Regarding the complexity of the computational processes

relating to earthquake precursors, agent parallel processing leads to calculation speed enhancement and the final result of whole process will be available faster. Therefore, we tried to define the functions autonomously being process in parallel manner, according to the proposed model. In the table 6 the results of software agents implementation on two systems with Windows XP Sp3 and Windows 7 and hardware agent implementation on two sample system from Xilinx are presented. The third and fourth rows of table 6 are based on Naji [27] which compare the run time of software and hardware agents. As it is demonstrated, application of hardware agents can increase the speed of run time significantly which is vital in the case of earthquake early warning system. In terms of contributions presented in this research, we have speed augment in two stages. First by application of software agent using parallel processing rather than serial processing and then, application of hardware agent instead of software agent. The system was tested into phase, structured and functional implementation, and multi agent and parallel processing implementation. The system run time for similar process was recorded for two phases and the time of multi agent and parallel processing implementation is 2.7 times less than consecutive structured and functional implementation. In terms of the investigation of Naji [27] research the hardware multi agent systems run time is 24 to 32 times less than software multi agent systems. So by applying hardware multi agent for rapid earthquake alarm system and real-time automated action, the system will be capable of processing 70 to 90 times faster and consequently faster warning or action is performed while as the earthquake occurs the any fraction of time is vital.

Table 6. Results

V.C ONCLUSION

The earthquakes with the magnitude of 5.5 Richter or more are the most destroyer natural disaster for people lives and properties. During 1900-1976 more than 2.7 million people have died for sake of earthquakes. During the same time 1.8 million people have died for sake of other natural disasters except earthquakes. The statistics shows that the earthquake is the most destroyer natural disaster for people lives and properties. The matter that makes the earthquake most dangerous disaster is its occurrence, which is not predictable and surprise people. Despite scientist studying, no definite and scientific method is discovered for earthquake prediction. The importance of speed enhancement is so much as any fraction of time is vital before and once the earthquake occurs. The time between the primary waves and damaging waves is considered as vital chance for warning or performing contingency actions and it can impact on saving the people lives. Parallel processing and cooperation of hardware multi agent systems is so helpful for real-time processing of earthquake precursors’ information and adopting apt strategy for warning and automated action. In this paper we tried to develop and test a system for early warning and real-time action once the earthquake occurs. Data collected by the stations will be used for developing knowledge base and further earthquake prediction.

R EFERENCES

[1]Yeats, R. S. and A. M. Robert .2001. Geology of

Earthquakes. Encyclopedia of Physical Science and

Technology. New York, Academic Press: 649-661.

[2]U.S. Geological Survey .2010. Faqs - Measuring

Earthquakes. Retrieved 2010/02/18, 2010, from

https://www.360docs.net/doc/7510581424.html,/learn/faq/?categoryID=2. [3]Faccioli, E. 1983. Measures of Strong Ground Motion

Derived from a Stochastic Source Model.International Journal of Soil Dynamics and Earthquake Engineering

2(3): 135-149.

[4]Papadimitriou, E. E. 1994. Long-Term Earthquake

Prediction of Large Shallow Mainshocks Along the Tonga-Kermadec-New Zealand Seismic Zone Based on a Time- and Magnitude-Predictable Model. Tectonophysics 235(4): 347-360.

[5]Shalimov, S. and M. Gokhberg .1998. Lithosphere-

Ionosphere Coupling Mechanism and Its Application to the Earthquake in Iran on June 20, 1990. A Review of Ionospheric Measurements and Basic Assumptions.

Physics of the Earth and Planetary Interiors105(3-4): 211-218.

[6]Saygili, G. and E. M. Rathje .2009. Probabilistically

Based Seismic Landslide Hazard Maps: An Application in Southern California.Engineering Geology109(3-4): 183-194.

[7]Meng, J. 2007. Earthquake Ground Motion Simulation

with Frequency-Dependent Soil Properties.Soil Dynamics and Earthquake Engineering 27(3): 234-241.

[8]Utkin, V. I. and A. K. Yurkov. 2010.Radon as a Tracer of

Tectonic Movements.Russian Geology and Geophysics 51(2): 220-227.

[9]KülahcI, F., M. Ince?z, M. Dogru, E. Aksoy and O.

Baykara .2009. Artificial Neural Network Model for Earthquake Prediction with Radon Monitoring.Applied Radiation and Isotopes 67(1): 212-219.

[10]Uyeda, S., T. Nagao and M. Kamogawa .2009. Short-

Term Earthquake Prediction: Current Status of Seismo-Electromagnetics. Tectonophysics 470(3-4): 205-213. [11]Novikova O and R. I 1999. Performance of the

Earthquake Prediction Algorithm Cn in 22 Regions of the World. Physics of the Earth and Planetary Interiors 111: 207-213.

[12]Vorobieva, I. A. 1999. Prediction of a Subsequent Large

Earthquake. Physics of the Earth and Planetary Interiors

111(3-4): 197-206.

[13]Murru, M., R. Console and G. Falcone. (2009). Real

Time Earthquake Forecasting in Italy.Tectonophysics

470(3-4): 214-223.

[14]Pulinets, S. A. 2006. Space Technologies for Short-Term

Earthquake Warning. Advances in Space Research 37(4): 643-652.

[15]Talebian, M.,Latifi, K., Amini, B., Fereydoni, A.,

Anbaran, H.and Nemati, M., (2007). Investigating the records of electromagnetic precursor station of Tehran for

a two-year period. The first conference of earthquake

precursor. 160-166.

[16]Resaneh, G and Hajbabaee, N. (2007). Introducing some

weather precursor and analyzing the trend of their variations prior to earthquake (The case of Bam earthquake). The first conference of earthquake precursor.

102-109.

[17]Ondoh, T. 2009. Investigation of Precursory Phenomena

in the Ionosphere, Atmosphere and Groundwater before Large Earthquakes of M > 6.5.Advances in Space Research 43(2): 214-223.

[18]Nanjo, K. Z., J. R. Holliday, C. c. Chen, J. B. Rundle and

D. L. Turcotte .2006. Application of a Modified Pattern

Informatics Method to Forecasting the Locations of Future Large Earthquakes in the Central Japan.

Tectonophysics 424(3-4): 351-366.

[19]Adeli, H. and A. Panakkat .2009. A Probabilistic Neural

Network for Earthquake Magnitude Prediction.Neural Networks 22(7): 1018-1024.

[20]Alcik, H., O. Ozel, Y.M. Wu, N. M. Ozel and M. Erdik .

2010. An Alternative Approach for the Istanbul Earthquake Early Warning System. Soil Dynamics and Earthquake Engineering. In Press, Corrected Proof. [21]Manjunatha, K.C., Mohana, H.S. and Vijaya, P.A.2015.

Implementation of computer vision based industrial fire safety automation by using neuro-fuzzy algorithm. I.J.

nformation technology and computer science04:14-27. [22]Hepsiba, M. and Justus, S. 2016. A review on the

knowledge representation models and its implementations.

I.J. Information technology and computer science 10:72-

81.

[23]Hazra, T., Kumar C. and Nene, J. 2017 Strategies for

searching targets using mobile sensors in defense scenarios. I.J. Information technology and computer science 5:61-70.

[24]Abedinzadeh, S. and Sadaoui, S. 2013. A Rough Sets-

based Agent Trust Management Framework. I.J.

Intelligent systems and applications 04: 1-19.

[25]Balbo, F. and S. Pinson .2005. Dynamic Modeling of a

Disturbance in a Multi-Agent System for Traffic Regulation. Decision Support Systems 41(1): 131-146. [26]Chow, H. K. H., K. L. Choy and W. B. Lee. 2007. A

Dynamic Logistics Process Knowledge-Based System - an Rfid Multi-Agent Approach.Knowledge-Based Systems 20(4): 357-372.

[27]Naji, H. R. 2008. Solving Complex Computational

Problems Using Multiagents Implemented in Hardware.

Computing in Science & Engineering 10(5): 54-63. [28]Naji, H. R., B. E. Wells and L. Etzkorn .2004. Creating

an Adaptive Embedded System by Applying Multi Agent

Techniques to Reconfigurable Hardware. Future Generation Computer Systems 20(6): 1055-1081.

[29]Doniec, A., R. Mandiau, S. Piechowiak and S.

Espié .2008. A Behavioral Multi-Agent Model for Road Traffic Simulation. Engineering Applications of Artificial Intelligence 21(8): 1443-1454. [30]Naji, H. R. and B. E. Wells .2002. On Incorporating

Multi-Agents in Combined Hardware/Software Based Reconfigurable Systems - a General Architectural Framework.System Theory,2002. Proceedings of the Thirty-Fourth Southeastern Symposium on.

[31]Biswas, P. K. and S. Phoha .2004. A Middleware-Driven

Architecture for Information Dissemination in Distributed Sensor Networks. Intelligent Sensors, Sensor Networks and Information Processing Conference Proceedings of the 2004.

[32]Naji, H. R. 2005. Sensor Fusion Using Hardware Agents,

an Implementation Example. Industrial Informatics, 2005.

INDIN '05. 2005 3rd IEEE International Conference on. [33]Hsiao, N.-C., Y.-M. Wu, L. Zhao, D.-Y. Chen, W.-T.

Huang, K.-H. Kuo, T.-C. Shin and P.-L. Leu.2010 A New Prototype System for Earthquake Early Warning in Taiwan.Soil Dynamics and Earthquake Engineering In Press, Corrected Proof.

[34]Asgary, A., J. K. Levy and N. Mehregan.2007.

Estimating Willingness to Pay for a Hypothetical Earthquake Early Warning Systems. Environmental Hazards 7(4): 312-320.

[35]Naji, H. R. 2003. Implementing Data Flow Operations

with Multi Hardware Agent Systems. System Theory, 2003. Proceedings of the 35th Southeastern Symposium on.

Authors’ Profiles

Ahmad Ghodselahi is R&D consultant in

Day bank. He earned his degree of MSc in

information management from Tarbiat

Modares University and PhD in

management from university of Tehran. His

field of research is strategic planning,

marketing strategies, machine learning and

data mining.

Mostafa Ghodselahi Works at Day Bank as

Data analyst. He has MSc in Information

Technology Management and BSc in

Industrial Management. His Working

Interest are Strategic And Operational

Planning, Data Mining And Business

Intelligence, and Business Development.

Farid Tondnevis is PhD Candidate of

Finance and has MSc in industrial

Engineering (finance sub discipline) and

BSc in Industrial Engineering. His research

interests include financial risk management

techniques and models based on Business

intelligence approach and portfolio

optimization (active and passive approaches). How to cite this paper: Ahmad Ghodselahi, Mostafa Ghodselahi, Farid Tondnevis, "Rapid Earthquake Alarm System and Real-Time Automated Action: Application

of

Multi-Agent Hardware", International Journal of Information Technology and Computer Science(IJITCS), Vol.10, No.2, pp.73-82, 2018. DOI: 10.5815/ijitcs.2018.02.07

铁路智能运输系统构成及作用

铁路智能运输系统构成及作用

铁路智能运输系统构成及作用 北京交通大学交通运输学院摘要:本文总结了国内外铁路智能运输系 统的研究进展,介绍了我国铁路智能运输系 统的主要构成及其作用,通过对铁路智能运 输系统构成及主要研究内容的分析,总结出 了ITS的实际意义。 关键词:智能交通;铁路智能运输系统;构成;作用 中图分类号:U29-39 文献标志码:A Composition and Function of Railway Intelligent Transportation System School of Traffic and Transportation,Beijing Jiaotong University,Beijing,100044,China Abstract: This paper summarizes the research progress of railway intelligent transportation systems, introduces the main components and their role in China's railway intelligent transportation systems, intelligent transportation system through the railway structure and main content of the analysis, summed up the practical significance of ITS. Keywords: Intelligent Transportation; RITS; Composition ; Function 铁路作为服务于社会的一种公共运输形式,其始终不变的目的是安全、迅速、可靠、准确和经济地运送旅客和货物。铁路作为社会的主导产业和新兴科学技术的推动者和体现者,在各国社会和经济发展中起着不可替代的作用。以货物重载化和客运高速化为典型特征和发展方向的中国铁路不仅是国民经济发展水平和国家综合科技水平的重要标志,而且是相关产业和技术发展的巨大推动力。 20世纪80年代以后,社会对铁路运输业的

智能台灯毕业设计文献综述

关于“智能台灯的设计与开发”的文献综述 一、前言部分 毕业设计是大学四年最后一个阶段特别重要的一个作业,它能让我们将大学四年学习的课本知识联系到具体的应用当中去。它是对我们大学阶段所学知识的一次综合运用,不但能使我们各方面的知识系统化,而且使所学知识实践化。要求我们了解并掌握硬件知识,软件知识,培养我们独立分析解决实际问题的能力及创新能力,并锻炼我们调查研究,搜集资料、查阅资料及阅读中、外文文献的能力等,为以后独立工作贡献社会做大学期间最后的准备。 我选择的设计题目是智能台灯的设计与开发。随着智能化时代的到来,智能产品层出不穷,已逐步渗入到人们工作和生活的方方面面。当前,患有近视眼的人数越来越多,我国近视眼发病率尤其突出。由于没有正确使用台灯,当光线变得昏暗时忘记及时打开台灯,或者长时间在高亮度的台灯下工作,久而久之,都会对视力产生一定的影响。虽然市场上已出现了具有调亮功能概念的台灯,但其仍不具备成熟的自动调亮功能。本设计所制作的智能台灯具备手动和自动调节两种模式,同时还加入了人体检测功能,可实现人走灯灭。在保护视力的同时,也为节能环保做出了一份贡献。 二、主题部分 2.1传统台灯与智能台灯的区别 传统的台灯的功能比较单一,主要就是为了实现照明,既不节约也不环保。而智能灯的主要含义是除了智能灯体,还有一个手持智能控制设备,智能灯控制设备具备计算能力和网络联接能力,通过应用程序,功能可以不断扩展。智能灯的核心功能是控制、灯光效果、创作、分享、光与音乐互动、光提升健康和幸福。 2.2智能台灯的发展方向 2.2.1、走向以人为本的科学化照明 智能化灯将从纯粹的智能功能的发展转向更注重人的行为的智能灯控。以人的行为、视觉功效、视觉生理心理研究为基础,开发更具有科学含量的,以人为本的高效、舒适、健康的智能化照明。 2.2.2、满足个性化、层次化的照明 智能技术与灯光控制的结合使照明更进一步地满足不同个体、不同层次群体的照明需求,是使照明从满足一般人的需求到满足个体、个性需求的必不可少的技术手段。这也应该是智能灯的发展方向。 2.2.3、智能技术与新光源及新照明技术的结合,创造崭新的照明文化 智能技术和电子开关等新照明光源和照明技术的结合,将构筑崭新的照明技术平台,其应用领域从智能家居照明到智能化的城市照明,有无限广阔的前景,并且正在创造一种崭新的高技术和高科学思想含量的照明文化。智能化照明的出现是灯具市场的发展趋势。 2.3此款台灯的有关技术知识 本人设计的智能台灯涉及的主要内容有热释电红外传感器技术,PWM脉冲宽度调制技术,模—数转换技术,电子电路技术以及有关的编程知识。 2.3.1热释电红外传感器 它主要是由一种高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、硫酸三甘钛等制成尺寸为2*1mm的探测元件。在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。由探

中国移动智能家庭网关帮助

帮助文档 一、状态 1.设备信息 ?显示设备型号,设备标识号,硬件版本,软件版本等信息。 2.网络侧信息 ?显示连接信息和PON信息。连接信息显示网络侧连接状态,各条PVC的IP地址、子网掩码,默认网关,DNS服务器信息;PON信息显示PON的链路连接状态,链路性能统计,光模块信息。 3.用户侧信息 ?显示WLAN接口信息,以太网接口信息。 WLAN接口信息显示无线网络连接状态,信道,各个SSID的统计信息、SSID、认证方式和加密状态等;以太网接口信息显示网关IP地址,MAC地 址,每个LAN口的状态、收发包和字节数。 4.宽带语音信息 ?宽带语音信息包括业务注册状态和电话号码;业务状态包括已注册和未注册等状态;电话号码显示注册的电话号码。 5.远程管理状态 ?显示交互建立情况、业务配置下发状态,交互建立包括主动上报Inform情况以及接受ITMS 连接请求情况。 二、网络 1.宽带设置 (1).状态显示 ?Internet连接 (2).操作 ?宽带设置:对宽带连接进行相关参数设置,设置完成后,界面上显示相应的状态。 o WAN连接:单击“新建连接”添加一条WAN连接;单击“删除连接”删除本连接。 o启用:让该条PVC生效。 o启用绑定:可以把各个LAN口、各个SSID和对应的WAN口绑定。 o模式:分成Route、Bridge两种模式。Route模式下有三种连接模式DHCP(从ISP处得到一个IP地址)、Static(经ISP配置一个静态的IP给你)、PPPoE。Bridge模 式可以将设备配置成介于LAN和ISP之间的网桥设备,它可以使得两个或多个网络 的通信就像处在同一LAN物理连接上。 o链接方式:包括通过IP方式建立链接和通过PPP方式建立链接两种。根据实际的网络需要选择建立链接的方式。 o IP协议版本:设置链接使用的IP版本,通常使用IPv4版本,也可以通过选择IPv6来支持IPv6。如果选择IPv4/v6方式,则同时使用IPv4和IPv6两种IP版本。 o PPPoE:ISP将提供帐号,填入包括如下信息:用户名、密码、服务名称,并配置拨号方式。该模式系统将通过PPPoE动态获得IP。 o DHCP:设备将从ISP通过DHCP自动获得IP。

多智能体技术

多智能体技术 [摘要]当今,分布式人工智能研究的一个热点是多智能体系统,它是分布式问题求解的进一步发展。随着多智能体理论与技术的发展,其应用范围也在不断扩大着,但是由于其理论与应用研究刚起步不久,还有不少问题有待解决。本论文回顾了多智能体技术的发展历史,指出了多智能体理论及应用的研究方向,介绍了多智能体技术的基本概念和特点,多智能体系统的体系结构,多智能体中的协调与协作方法等内容。 [关键词]多智能体系统;多智能体结构;多目标优化;协调协作 Multi-agent technology [Abstract] Nowadays, one of the hot points in distributed artificial intelligence research is multi-agent system, which is the further development in distributed problem solving. With the development of multi-agent theory and technology, its application is being expanded.As the theory and application is just starting, there are many issues to be resolved.In this paper, the thesis reviews the development of EGCS, points out the research directions of multi-agent theory and application, and introduces the basic concepts and characteristics, Multi-agent system architecture,the coordination and collaboration on Multi-agent system. [Keywords] Multi-agent systems;Multi-agent architecture;Multi-objective optimization;Coordination and collaboration 1.前言 目前的工业系统正向大型、复杂、动态和开放的方向转变,传统的工业系统和多机器人技术在许多关键问题上遇到了严重的挑战。分布式人工智能 (DAI,Distributed Artificial Intelligence)与多智能体系统(MAS, Multi-Agent System)理论为解决这些挑战提供了一种最佳途径。智能体系统是分布式人工智能的一个重要分支,是20世纪末至21世纪初国际上人工智能的前沿学科。研究的目的在于解决大型、复杂的现实问题,而解决这类问题已超出了单个智能体的能力,将DAT、MAS充分应用于工业系统和多机器人系统的结果,便产生了一门新兴的机器人技术领域一多智能体机器人系统(MARS,MultiAgent Robot System)。总的来说,多智能体系统领域正在蓬勃发展。 2.多智能体 2.1多智能体理论的发展历史 智能体—Agent的概念最早可以追溯到1977年的 Carl Hewitt的“Viewing Control Structure as Patterns of Passing Messages”一文。在此文中,Carl Hewitt 给出了一个称为“Actor”的对象,它具有自身的内在状态,又能与其他同类对象发送和反馈信息。而正式采用“Agent”一词可见于M. Minsky于1986年出版的“Society of Mind”一书,文中用“Agent”称呼一些具有特别技能的个体,它们存在于社会中,并通过竞争或协商求解矛盾[1]。 多智能体系统(简称 MAS)是由多个单Agent组成的集合,该系统可以协调一组Agent的行为(知识、目标、方法和规划),以协同完成一个任务或是求解问题,各个单

地震专项应急处置方案

地震专项应急处置方案 编制部门: 编制人: 审批人: 编制时间:

地震专项应急处置方案 1.编制目的 为确保本项目部在地震事故发生时能及时予以控制,有效地组织救援和抢险,防止事故的扩大,减少地震灾害造成的人员伤亡和财产损失,特制定本方案。 2.编制依据 《安全生产法》 《国家安全生产事故灾难应急预案》 《生产经营单位安全生产事故应急预案编制导则》 《中华人民共和国防震减灾法》 《破坏性地震应急条例》 《集团安全生产事故应急救援预案》 《国家突发公共事件总体应急预案》 3.适用范围 本方案适用于施工现场发生地震灾害事故时的应急救援和处置。 4.应急预案体系 项目部应急救援体系见7.1。 本预案为项目部专项应急救援处置方案。 5.应急救援方针与原则 实施专项应急救援处置方案以保护人员优先、防止和控制事故蔓延优先、保护环境优先为指导方针,体现事故损失控制、预防为主、统一指挥、高效协调和持续改进的思想。 6.危险源与风险分析 我项目部是建筑安装施工企业项目部,部分施工现场于地震带上。在建工程及施工现场临时建筑的抗震强度较低,一旦发生地震容易发生建筑物倒塌,造成人员和财产损失。有些深基坑工程在地震发生时时常发生坍塌事故,塔吊等起重、垂直运输机械也易发生事

故。因此,建筑施工场地在地震发生时较易成为受灾严重场所。 7.组织机构及职责 7.1应急组织体系 7.1.1项目部应急救援领导小组 组长: 副组长: 成员: 7.1.2组长职责: 根据施工所在地政府发布的地震应急救援命令,全面指挥施工现场应急救援工作。 7.1.3副组长职责: 7.1.3.1协助组长负责工地应急救援的具体指挥工作,协调、组织和调集应急救援所需设备、物资和人员; 7.1.3.2向组长提出应采取的减缓事故后果行动的应急反应对策和建议; 7.1.3.3保持与事故现场有关方面的直接联系; 7.1.3.4组织相关技术和其他管理人员对施工现场重大危险因素进行风险评估; 7.1.3.5定期检查各应急救援组织机构和部门日常工作和应急反应准备状态。 7.1.4领导小组职责: 7.1.4.1指导生产安全措施落实和监控工作,减少地震发生时产生的灾害损失; 7.1.4.2负责建立应急队伍、建立通讯与警报系统,储备抢险、救援、救护方面的装备、物资; 7.1.4.3完善风险评估资料信息,为应急反应的评估提供科学的、合理的准确的依据; 7.1.4.4收集和整理在应急反应技能演练和实施中所获得的信息; 7.1.4.5做好消防、医疗、交通管制、抢险救灾及与公共救援部门联系工作; 7.1.4.6向上级主管部门、当地政府报告事故情况,必要时向当地政府和有关单位发出紧急救援请求。 7.1.4.7编制地震专项应急处置方案,做好应急救援队伍的建设,开展对职工的防震知识、自救和互救知识的宣传和教育。 7.1.5常设机构 7.1.5.1项目部应急救援领导小组下设办公室,为常设机构,设在项目部(电话为:)。 办公室负责指导各工地编制生产安全事故应急救援处置方案,做好应急救援专业队

智能材料及其发展

智能材料及其发展 1.材料的发展 材料是人类用于制造物品、器件、构件、机器或者其他产品的物质,是人类生活、生产的基础,是人类认识自然和改造自然的工具,与信息、能源并列为人类赖以生存、现代文明赖以发展的三大支柱。材料也是人类进化的标志之一,一种新材料的出现必将促进人类文明的发展和科技的进步,从人类出现,经历旧石器时代、新石器时代、青铜时代……,一直到21世纪,材料及材料科学的发展一直伴随着人类的文明的进步。在人类文明的进程中,材料大致经历了一下五个发展阶段。 1)利用纯天然材料的初级阶段:在远古时代人类只能利用纯天然材料(如石头、草木、野兽毛皮、甲骨、泥土等),也就是通常所说的旧石器时代。这一阶段人类只能对纯天然材料进行简单加工。 2)单纯利用火制造材料阶段:这一阶段跨越了新石器时代、青铜时代和铁器时代,它们风别已三大人造材料为象征,即陶、铜、铁。这一时期人类利用火来进行烧结、冶炼和加工,如利用天然陶土烧制陶、瓷、砖、瓦以及后来的玻璃、水泥等,从天然矿石中提炼铜、铁等金属。 3)利用物理和化学原理合成材料阶段:20世纪初,随着科学的发展和各种检测手段及仪器的出现,人类开始研究材料的化学组成、化学键、结构及合成方法,并以凝聚态物理、晶体物理、固体物理为基础研究材料组成、结构和性能之间的关系,并出现了材料科学。这一时期,人类利用一系列物理、化学原理、现象来创造新材料,这一时期出现的合成高分子材料与已有的金属材料、陶瓷材料(无机非金属材料)构成了现代材料的三大支柱。除此之外,人类还合成了一系列的合金材料和无机非金属材料,如超导材料、光纤材料、半导体材料等。 4)材料的复合化阶段:这一阶段以20世纪50年代金属陶瓷的出现为开端,人类开始使用新的物理、化学技术,根据需要制备出性能独特的材料。玻璃钢、铝塑薄膜、梯度功能材料以及抗菌材料都是这一阶段的杰出代表,它们都是为了适应高科技的发展和提高人类文明进步而产生的。 5)材料的智能化阶段:自然界的材料都具有自适应、自诊断、自修复的功能。如所有的动物和植物都能在没有受到毁灭性打击的情况下进行自诊断和修复。受大自然的启发,近三四十年的研发,一些人工材料已经具备了其中的部分功能,即我们所说的智能材料,如形状记忆合金、光致变色玻璃等。但是从严格意义上将,目前研制成功的智能材料离理想的智能材料还有一定的距离。 材料科学的发展主要集中在以下几个方面:超纯化(从天然材料到复合材料)、量子化

2021年智能铁路

1、智能铁路总体研究现状 欧阳光明(2021.03.07) (1)我国铁路发展及面临挑战 根据中国铁道部发布的《中国铁路中长期发展规划》,到2020年,为满足快速增长的旅客运输需求,将建立省会城市及大中城市间的快速客运通道,规划“四纵四横”铁路快速客运通道以及三个城际快速客运系统。其中,预计到2012年,中国将有1.3万公里高速铁路投入运营。省会城市都将通过快速客运专线连接,时速200公里以上的铁路线路将达到5万公里以上。预计到2020年,中国200公里及以上时速的高速铁路建设里程将超过1.8万公里,将占世界高速铁路总里程的一半以上。同时,中国铁路的运营里程仅占世界铁路的6%,却完成了世界铁路总运量的22%。 中国铁路目前正面临着有史以来最深刻的变革和社会经济发展所提出的越来越高、越来越多样化和越来越复杂的需求。目前和未来相当长的时期内,铁路运输系统所面临的挑战主要归结为几个方面:①在运输能力的保持与优化方面:需要提供集成化的列车运营管理系统、智能化的列车运行控制系统和智能化检测、诊断和维修系统以实现“高速度、高密度”的铁路运输。建立全国通用的铁路数据共享平台,实现铁路运输各子系统之间信息的高度共享和充分利用以及资源的优化管理。提供可靠的高速、宽带的车地高速数据接入手段,以实现铁路移动设备和固定设备间的一体化协同管理。

②在提高效率方面: 建立综合化的调度指挥系统,以实现运输、机务、电务等相关资源的综合利用,以便充分挖掘基础设施的潜力,提高调度指挥的效率和水平。提供面向局部和全国的客货运输营销决策支持体系,以增强铁路适应市场需求的能力、提高运营效率和效益。 ③在提高安全保障能力方面: 提供保障运营安全和维修效率的移动 设备和固定设备状态的实时检测、评估和维修支持的手段,以及在安全数据共享基础上的安全评估决策体系。提供完善的以状态实时检测系统为基础,以包括语音、数据、静态及动态图像传输系统为信息支持,以GPS/GIS为定位手段的具备快速响应能力的铁路防灾、救援、决策与指挥信息系统。提供基于图像识别技术的智能化平交道口监控和车站监控系统,以保障列车运行的安全和防止铁路与其它相关系统的冲突。 ④在提高服务品质方面:为旅客提供详尽的信息查询服务、客票电子交易服务及导航服务等,辅助旅客制定出行决策,以及提供相关信息在车站及车上的传输、显示等。为货主提供与货运资源相关的实时位臵、状态等信息查询服务,以满足货主对货运过程全程监督的需要。 面临这些需求和挑战,单纯依靠设备设施在速度和载重等方面的提高来提升铁路能力、效率、安全和服务已愈来愈受到限制。同时,随着运输能力瓶颈问题的逐步解决,铁路运输系统的优化和低成本运维等问题愈来愈显著。而且,客运专线已逐步成网,和既有线一起构成规模巨大的中国铁路网,网络化运营带来了信息获取共享、协同、优化和决策支持等空前复杂问题。因此,重新审视铁路发展

自动化文献综述

文献综述 前言 从20世纪40年代起,特别是第二次世界大战以来,自动化随着工业发展和军事技术需要而得到了迅速的发展和广泛的应用。如今,自动控制技术不仅广泛应 用于工业控制中,在军事、农业、航空、航海、核能利用等领域也发挥着重要的 作用。例如,电厂中锅炉的温度或压力能够自动恒定的不变,机械加工中数控 机床按预定程序自动地切削工件,军事上导弹能准确地击中目标,空间技术中人 造卫星能按预定轨道运行并能准确地回收等,都是应用了自动控制技术的结果。 自动控制,是指在没有人直接参与的情况下,利用控制装置对机器设备或生产过程进行控制,使之达到预期的状态或性能要求。 双容水箱液位控制系统就是自动控制技术在液位控制方面的应用。其在化工,能源(电厂)等工业工程控制中得到了广泛应用。 过程控制的发展历程 随着过程控制技术应用范围的扩大和应用层次的深入,以及控制理论与技术的进步和自动化仪表技术的发展,过程控制技术经历了一个由简单到复杂,从低 级到高级并日趋完善的过程。 1过程控制装置的发展 1.1基地式控制阶段(初级阶段) 20世纪50年代,生产过程自动化主要是凭借生产实践经验,局限于一般的控制元件及机电式控制仪表,采用比较笨重的基地式仪表(如自力式温度 控制器、就地式液位控制器等),实现生产设备就地分散的局部自动控制。在设 备与设备之间或同一设备中的不同控制系统之间,没有或很少有联系,其功能往 往限于单回路控制。其过程控制的主要目的是几种热工参数(温度、压力、流量 及液位)的定值控制,以保证产品质量和产量的稳定。 1.2单元组合仪表自动化阶段 20世纪60年代出现了单元组合仪表组成的控制系统,单元组合仪表有电动和气动两大类。所谓单元组合,就是把自动控制系统仪表按功能分成若干 单元,依据实际控制系统结构的需要进行适当的组合。单元组合仪表之间用标准 统一的信号联系,气动仪表(QDZ系列)信号为0.02~0.1MPa气压信号,电动 仪表信号为0~10mA直流电流信号(DDZ-II系列)和4~20mA直流电流信号 (DDZ-III系列)因此单元组合仪表使用方便、灵活。由于电流信号便于远距离 传送,因而实现了集中监控和集中操纵的控制系统,对于提高设备效率和强化生 产过程有所促进,适应了工业生产设备日益大型化于连续化发展的需要。

地震应急救援演练方案

地震应急救援演练方案 根据新修订的《中华人民共和国防震减灾法》第四十四条第三款之规定,为在学校全面普及防震减灾法制科普知识,增强学生防震减灾意识和自救互救能力,使全校师生在破坏性地震发生时能做到沉着冷静、迅速有序地实施紧急避震疏散,保障师生生命安全,建设平安校园,维护社会稳定,特制定本演练方案。 在本演练方案实施前,学校要采取橱窗、墙报、板报、课堂教学等多种形式强化防震减灾知识宣传教育,确保每位学生掌握避震疏散常识、自救互救常识和紧急救护、消防安全常识,并在显眼位置设置疏散指示标志,让每位学生明确疏散路线,做好演练充分准备。 一、演练领导小组及机构设置 1、领导小组办公室组长:xx: 2、抢险救灾组组长:xx 成员:xx xx 3、后勤保障组组长:xx 成员:xx、 6、治安保卫组组长:xx 成员:xx xx 二、演练内容 紧急避震疏散 三、演练时间 2010年5月10日15时00分 四、演练程序 (一)14:35-14:55 班主任老师向学生作演练动员,讲解避震动作要领和疏散要求及各项安全注意事项。 (二)14:35-14:55 学校防震减灾领导小组检查演练现场布置;抢险救灾组、后勤保障组分别到各班级对各疏散区域、疏散线路、疏散步骤、各班级准备情况进行检查。治安保卫组负责行班级前疏散。15:00负责班级疏散的老师和各小组全部到位。 (三)15:05 演练开始。学校防震减灾领导小组组长启动地震紧急警报(三次急促的铃声或三次急促的口哨声)。 解说词:2010年5月10日下午14时59分55秒,我省西南部发生了一次6.0级地震。我县普遍有强烈震感,人们惊逃户外,部分危旧建筑物遭受不同程度的破坏。 (四)15:05-15:07 师生迅速就地避震,在老师的指挥下,学生迅速抱头、闭眼,躲在课桌下,老师躲在讲桌下。 解说词:地震发生了,正在上课的同学们在经历了短暂的惊慌和混乱之后,根据掌握的地震知识迅速的躲避在课桌下。在突发的地震面前,人们难免惊慌失措,甚至采取不正确的避震措施。地震来时是躲还是跑?根据以往的地震经验,震时就近躲避,震后迅速撤离到空旷安全的地方是应急避震的优选方法。破坏性地震从人的感觉到建筑物倒塌只有十几秒钟,在这短短的时间内千万不可惊慌,应根据所处的环境做出正确的选择。跳窗逃生的方法是绝对不可取的,跳窗即使不摔伤,也极有可能被建筑物跌落的砖瓦砸伤。同时,注意不要靠近窗口。 地震过后,建筑物大都处于坏损的状态,为防止强余震到来时建筑物的倒塌,

高速铁路和城市轨道交通智能化系统应用与发展.

高速铁路和城市轨道交通智能化系统应用与发展 1、序言 2010年6月,在中国(长春)国际轨道交通与城市发展高峰论坛上,铁道部总工程师、中国工程院院士何华武介绍,今年国家将投入7000亿元加快高速铁路建设,计划新线投产4613公里。目前我国在建的高速铁路有1万公里,包括京哈、哈大、合福、京武、沪宁等多条线路。何华武还表示,目前我国投入运营的高速铁路已经达到6552营业公里。据悉,我国在今年将进一步扩大并完善铁路网布局,扩大西部路网规模,完善中东部路网结构,规划新建1万公里铁路。 预计到2020年,中国200公里及以上时速的高速铁路建设里程将超过1.8万公 里,将占世界高速铁路总里程的一半以上。 目前我国25个城市正在进行城市轨道交通的前期工作,总规划里程超过5000公里,总投资估算超过8000亿元。据了解,目前全国已开通城市轨道交通的城市有北京、上海、天津、广州、长春、大连、重庆、武汉、深圳、南京10个城市20条线,其中,北京、上海、广州三个城市近几年每年新增的线路长度都达到了30—50公里。“十五”期间,中国城市轨道交通建设投资达2000亿元。在“十一五”期间,全国特大城市的地铁和轻轨通车里程将超过1500公里,还将投资约6000亿元。据不完全统计,目前全国48个百万人口以上的特大城市中25个城市正在进行轨道交通的前期工作,总规划里程超过5000公里,总投资估算超过8000亿元。“在今后的20年内,轨道交通将始终处于高速发展时期,轨道交通建设不会减速,反而会提速,甚至现在根本不是减速的问题,而是发展太慢。” 2、高速铁路信息化数字化系统简介 高速铁路信息化数字化系统,也称高速铁路智能化系统,主要包括五个系统:通信系统、信号系统、电力系统、电气化系统和信息系统,其中前四个系统在行业内又 称“四电”系统。 1、通信系统是保障高速铁路安全、稳定、高效、舒适运营的基本设施,可满足高速铁路语音、数据和图像等综合业务通信的需要。它包括通信承载网、通信业务网和通信支撑网,是高速铁路安全运营和高效管理的信息基础平台,是能与既有铁路

文献综述_人工智能

人工智能的形成及其发展现状分析 冯海东 (长江大学管理学院荆州434023) 摘要:人工智能的历史并不久远,故将从人工智能的出现、形成、发展现 状及前景几个方面对其进行分析,总结其发展过程中所出现的问题,以及发展现状中的不足之处,分析其今后的发展方向。 关键词:人工智能,发展过程,现状分析,前景。 一.引言 人工智能最早是在1936年被英国的科学家图灵提出,并不为多数人所认知。 当时,他编写了一个下象棋的程序,这就是最早期的人工智能的应用。也有著名的“图灵测试”,这也是最初判断是否是人工智能的方案,因此,图灵被尊称为“人工智能之父”。人工智能从产生到发展经历了一个起伏跌宕的过程,直到目前为止,人工智能的应用技术也不是很成熟,而且存在相当的缺陷。 通过搜集的资料,将详细的介绍人工智能这个领域的具体情况,剖析其面临的挑战和未来的前景。 二.人工智能的发展历程 1. 1956年前的孕育期 (1) 从公元前伟大的哲学家亚里斯多德(Aristotle)到16世纪英国哲学家培根(F. Bacon),他们提出的形式逻辑的三段论、归纳法以及“知识就是力量”的警句,都对人类思维过程的研究产生了重要影响。 (2)17世纪德国数学家莱布尼兹(G..Leibniz)提出了万能符号和推理计算思想,为数理逻辑的产生和发展奠定了基础,播下了现代机器思维设计思想的种子。而19世纪的英国逻辑学家布尔(G. Boole)创立的布尔代数,实现了用符号语言描述人类思维活动的基本推理法则。 (3) 20世纪30年代迅速发展的数学逻辑和关于计算的新思想,使人们在计算机出现之前,就建立了计算与智能关系的概念。被誉为人工智能之父的英国天才的数学家图灵(A. Tur-ing)在1936年提出了一种理想计算机的数学模型,即图灵机之后,1946年就由美国数学家莫克利(J. Mauchly)和埃柯特(J. Echert)研制出了世界上第一台数字计算机,它为人工智能的研究奠定了不可缺少的物质基础。1950年图灵又发表了“计算机与智能”的论文,提出了著名的“图灵测试”,形象地指出什么是人工智能以及机器具有智能的标准,对人工智能的发展产生了极其深远的影响。 (4) 1934年美国神经生理学家麦克洛奇(W. McCulloch) 和匹兹(W. Pitts )建立了第一个神经网络模型,为以后的人工神经网络研究奠定了基础。 2. 1956年至1969年的诞生发育期 (1)1956年夏季,麻省理工学院(MIT)的麦卡锡(J.McCarthy)、明斯基(M. Minshy)、塞尔夫里奇(O. Selfridge)与索罗门夫(R. Solomonff)、 IBM的洛

移动智能设备用于教学可行性分析

移动智能设备用于教学可行性分析 沈龙飞 【摘要】随着科技的不断进步,越来越多的多媒体设备应用到日常教学过程中,为我们教师教学带来了十足的帮助,但随着硬件和软件的不断发展,普通台式电脑、笔记本电脑作为多媒体教学的核心硬件已经渐渐显现疲态,社会的进步,学生认知的发展已一种前所未有的速度在加快,以往的诸多教学手段的弊端慢慢显现,我们迫切需用一种新的改变本质的辅助教学方式融入我们的教学,通过本文的创作,对移动智能设备用于教学的可行性做简要分析。 【关键字】移动智能设备miracast 便捷 一、多媒体应用辅助教学的现状 1、随着国家对教育教学的投入不断加大,很多学校都已经配备了多媒体教学平台,虽然组成不一,但大多都有电脑主机、显示器、控制台、各种其他输入输出设备等组成,各种输出设备,液晶电视、屏幕投影是学生获取视觉信息的途径,鼠标键盘是教师和学生的交互工具。 2、多媒体平台使用效率不高,频率更低。由于这样的平台使用都是需要事先做相应准备的,所以有的教师往往不到万不得已不会去使用它,多媒体平台更多作为备用手段而不是主要手段,没有发挥出其应有的功能。 3、使用多媒体平台,需要一定的维护知识,经常出问题的多媒体平台,日常维护是十分麻烦的,各种接口、连接线、切换键,我们在使用的时候往往需要不断的切换,使用繁琐,一些老教师不愿意去用,有些想法的年轻教师又不屑去用,因为功能太过“单一”。 二、现有多媒体平台的弊端 1、目前使用的多媒体平台的最大弊端就是点的弊端。 以现有的多媒体平台为依托,台式电脑、笔记本、实物投影等设备是主要硬件,所以在使用多媒体平台的时候往往要围绕在这一类的辅助设备周围,使得教师不在学生中间,和学生交流存在不小的距离,教师台上台下不断的跑,效率也受到影响,浪费了课堂时间。 2、学生参与有难度,时间浪费很显著。 我们在应用多媒体辅助教学的过程中,有的时候需要学生参与互动或配合操作,不可能每一个学生都到前面演示,所以人少了参与面窄,人多了时间大大浪费。我们面向的学生从一年级到六年级,年龄跨度比较大,学生操作水平良莠不齐,所以人人参与的可能性不大。 3、无法充分激趣,学生感觉平平无奇。 电脑进入我们生活已经很多年,学生对其兴趣慢慢下降,导致在上课过程中,不能很好的起到吸引学生有意注意的目的,美轮美奂的课件不可能每节课都有,那么如何让学生注意到我们的教学内容,多媒体平台的功能正在慢慢退化。 4、课件制作有难度,教师得下狠功夫。 如果你的课件不够精美,没有面面俱到,那么的教学过程中,起到的辅助作用是很小的,课件最难制作的方面是交互和随机两个方面,这是一门学问,我们普通级教师不是程序员,不可能每个人都掌握,很多时候都是想的很好做不出,设计很好呈现不出。 三、解决策略 1、引入新的平台技术。 科技的发展日新月异,平板电脑、智能手机等移动智能设备运用,已经不是什么时新的

多智能体系统及其协同控制研究进展

多智能体系统及其协同控制研究进展 摘要::对多智能体系统及其协同控制理论研究和应用方面的发展现状进行了简要概述.首先给出Agent及多Agent 系统的概念和特性等,介绍了研究多Agent系统协同控制时通常用到的代数图论;然后综述了近年来多Agent系统群集运动和协同控制一致性方面的研究状况,并讨论了其在军事、交通运输、智能机器人等方面的成功应用;最后,对多Agent系统未来的发展方向进行了探讨和分析,提出几个具有理论和实践意义的研究方向,以促使多Agent系统及其协同控制理论和应用的深入研究. 关键词:多Agent系统(MAS);协同控制;代数图论;群集运动;一致性协议 Advances in Multi-Agent Systems and Cooperative Control Abstract: Progress in multi-Agent systems with cooperative controlwas reviewed in terms of theoretical research and its applications. Firs,t concepts and features used to define Agents and multi-Agents were analyzed. Then graph theory was introduced, since it is often used in research on cooperative control of multi-Agent systems. Then advances in swarming/flocking as well as the means used to derive a consensus among multi-Agents under cooperative control were summarized. The application of these abilitieswas discussed for the military, transportation systems,and robotics. Finally, future developments for multi-Agent systemswere considered and significant research problems proposed to help focus research on key questions formulti-Agent systemswith cooperative control. Key words:Multi-Agent system (MAS) ; Cooperative control; Graph theory; Swarming/ flocking; Consensus protocol 分布式人工智能是人工智能领域中一个重要的研究方向,而多Agent系统(multi-Agent systemMAS)则是其一个主要的分支. 20世纪90年代,随着计算机技术、网络技术、通信技术的飞速发展,Agent及MAS的相关研究已经成为控制领域的一个新兴的研究方向.由于Agent体现了人类的社会智能,具有很强的自治性和适应性,因此,越来越多的研究人员开始关注对其理论及应用方面的研究.目前,人们已经将MAS的相关技术应用到交通控制电子商务、多机器人系统、军事等诸多领域.而在MAS中,Agent之间如何在复杂环境中相互协调,共同完成任务则成为这些应用的重要前提.近年来,从控制的角度对MAS进行分析与研究已经成为国内外众多学术机构的关注热点,人们在MAS协同控制问题上做了大量的研究工作,特别是在MAS群集运动控制和协同控制一致性问题方面取得了很大的进展.目前对MAS的研究总体上来说还处于发展的初步阶段,离真正的实用化还有一定的距离;但其广泛的应用性预示着巨大的发展潜力,这必将吸引更多专家、学者投入到这一领域的研究工作中,对MAS的理论及应用做进一步探索.根据上述目的,本文主要概述了多智能体系统(MAS)在协同控制方面的研究现状及其新进展. 1Agent与MAS的相关概念 1.1Agent的概念 Agent一词最早可见于Minsky于1986年出版的《Social of Mind》一书中.国内文献中经常将Agent翻译为:智能体、主体、代理等,但最常见的仍是采用英文“Agent”;因为Agent的概念尚无统一标准,人们对于

某电厂地震应急救援预案演练方案

************发电公司 2014年三季度地震应急预案演练案 批准 审核 编写 安全技术部 二○一四年八月十二日

地震应急预案演练案 为了更好地贯彻落实《中华人民国防震减灾法》、《破坏性地震应急条例》,按照我公司《防地震灾害专项应急预案》的要求,以保证地震应急工作高效有序地进行,提高应急反应能力,特制定此次地震应急演练案。 一、演练目的 通过本次地震应急演练,进一步增强全公司所有人员的防震减灾意识,掌握应急避震的正确法,熟悉地震发生时紧急疏散的程序、式、路线和安全避险区域,培养自我保护、自救互救、团队协作的基本能力,确保在地震来临时我公司地震应急预案能够快速启动,各项工作能够快速、高效、有序地进行,从而最大限度地保护公司人员的生命安全,减少不必要的二次伤害。 二、组织机构和职责 总指挥: 副总指挥: 成员: 参加演习部门:综合部、财务部、经管部、安技部、燃运部、维修部、发电部

三、地震应急演练的实施 (一)演练时间、地点及人员 计划时间:2014/8/26 14:00~15:00 地点:办公楼、检修楼、化学楼、主控室、燃运控制室及相关外委单位人员(运行当值人员,不参加本次演习)。 (二)演练程序 1.演练总指挥于14:00准时发出演练开始启动指令。 2.信号员发出“地震警报”信号。(每栋楼将会有专人负责进行呼 叫) 3.参加演练人员就地避震,约1分钟(监督要点:观察参演人员的 就地避震表现是否规)。 4.约1分钟后,信号员发出第二声警报信号,所有参加演习人员开始疏 散(监督要点:观察所有参加演习人员疏散路线是否正确、是否及时到达应急疏散区)。 5.所有人员进入临时避险区域,各部门管理人员维持秩序、清点人数,并 及时将疏散情况报告总指挥。(监督要点:管理人员是否清楚当日具体上班人数,若避险人数与上班人数不符,追问失踪员工去向,并安排地震停止后,去现场搜寻。) 6.人员集中后,接通知,因地震引起火灾、人员受伤。

智能材料

智能材料及其在医学领域的应用 目录 1、智能材料的概述 1.1智能材料的定义和基本特征........................................................ 1.2智能材料的构成............................................................................ 1.3智能材料的分类............................................................................ 1.4智能材料的制备............................................................................ 2、智能材料的应用领域 2.1智能材料的研究方向................................................................... 2.2智能材料在医学上的应用............................................................ 2.3智能材料在医疗方法中的应用....................................................

2.4智能材料在医学器械方面的应用................................................. 3、结束语.................................................................... 4、参考文献................................................................ 摘要本文综合评述了智能材料的研究、应用和进展。对智能材料与结构的概念进行了描述,全面总结了智能材料智能材料生物医药方面的应用, 探讨了智能材料光明的应用前景和发展趋势。 关键词智能材料;医学应用;发展 1智能材料的概述 1.1定义:智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。 基本特征:因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征: (1)传感功能(Sensor)

某小区的智能化系统设计-文献综述

文献综述 智能建筑起源于20世纪80年代初的美国,经过短短几十年的迅猛发展,已在世界各地逐步广泛普及开来。近几年来,随着计算机的普及和信息产业的发展,人们对居住环境要求的不断提高,“智能化”的概念也逐渐被引入了现代化住宅小区建设当中,智能小区已成为现代建筑行业中,继单一型智能建筑之后的又一热点,得到业内人士的广泛关注,并进入快速发展阶段。目前,智能小区不仅成为房地产开发商的投资的重点,而且也是人们购房的新热点。智能化住宅将成为21世纪的概念住宅。 据我国建设部住宅产业化办公室提出的智能化住宅小区新概念,即:在现代化的城乡住宅小区内综合采用微型计算机、自动控制、通信与网络等技术,建立一个由住宅小区综合物业管理中心与安防系统,信息通信服务与管理及家庭智能化系统组成的“三合一”住宅小区服务与管理集成系统,使小区与每个家庭达到安全、舒适、温馨和便利的环境。 理想的智能化家居可以使人们足不出户就可以进行网络漫游、电子购物、网上医疗、参观虚拟博物馆和图书馆、点播自己喜爱的影视节目,甚至在数千里之外通过因特网遥控家里的电器的开关和调节器,从而调整房间照明亮度、控制环境的温度和湿度等。当家庭中发生安全警报时(盗警、火警、煤气泄漏以及疾病紧急呼救等),在外的家庭成员可以接到报警信息,并可通过电话或网络查询确认家庭中的安全状况。智能化工程各系统要体现当今时代潮流,设计合理,具有既可单独操作控制,又能整体管理的功能,安装维护方便,安全可靠。智能化工程的核心在于其强大的一体化智能网络系统,它是智能住宅的灵魂和中枢。具体而言,既通过小区物业管理中心控制室实现对整个小区的功能控制和物业信息管理,把各相互独立的弱电子系统构件整合一个完美的整体,协同工作,并可视具体要求和将来发展任意拆装各弱电子系统。 对小区智能化系统,基本要求是:小区智能化系统的建设要达到建设部提出

相关文档
最新文档