一阶低通的差分方程

一阶低通的差分方程
一阶低通的差分方程

一阶低通滤波器的数字实现形式

对于一阶低通滤波器,其微分方程为:

用采样序列的差分代替微分,即:

其中,t= (n-1)T。从而:

上式令T=1,从而:

此即为一阶低通滤波器的数字实现形式。

数字滤波器(一阶低通)

2011-04-14 21:02

DSP的一阶低通数字滤波实现

2008年05月14日星期三 10:43

将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能,经推导,低通滤波算法如下:

Yn=a* Xn+(1-a)*Yn-1

式中 Xn——本次采样值

Yn-1——上次的滤波输出值;

,a——滤波系数,其值通常远小于1;

Yn——本次滤波的输出值。

由上式可以看出,本次滤波的输出值主要取决于上次滤波的输出值(注意不是上次的采样值,这和加权平均滤波是有本质区别的),本次采样值对滤波输出的贡献是比较小的,但多少有些修正作用,这种算法便模拟了具体有教大惯性的低通滤波器功能。滤波算法的截止频率可用以下式计算:

fL= a/2Pit pi为圆周率3.14…

式中 a——滤波系数;

,t——采样间隔时间;

例如:当t=0.5s(即每秒2次),a=1/32时;

fL=(1/32)/(2*3.14*0.5)=0.01Hz

当目标参数为变化很慢的物理量时,这是很有效的。另外一方面,它不能滤除高于1/2采样频率的干搅信号,本例中采样频率为2Hz,故对1Hz以上的干搅信号应采用其他方式滤除,

低通滤波算法程序于加权平均滤波相似,但加权系数只有两个:a和1-a。为计算方便,a取一整数,1-a用256-a,来代替,计算结果舍去最低字节即可,因为只有两项,a和1-a,均以立即数的形式编入程序中,不另外设表格。虽然采样值为单元字节(8位A/D)。为保证运算精度,滤波输出值用双字节表示,其中一个字节整数,一字节小数,否则有可能因为每次舍去尾数而使输出不会变化。

设Yn-1存放在30H(整数)和31H(小数)两单元中,Yn存放在32H(整数)和33H(小数)中。

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

差分方程的解法

1、常系数线性差分方程的解 方程( 8)其中为常数,称方程(8)为常系数线性方程。 又称方程(9) 为方程(8)对应的齐次方程。 如果(9)有形如的解,带入方程中可得: (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1)若(10)有k个不同的实根,则(9)有通解: , (2)若(10)有m重根,则通解中有构成项: (3)若(10)有一对单复根,令:,,则(9)的通解中有构成项: (4)若有m 重复根:,,则(9)的通项中有成项:

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k个独立的任意常数。通解可记为: 如果能得到方程(8)的一个特解:,则(8)必有通解: + (11) (1)的特解可通过待定系数法来确定。 例如:如果为n 的多项式,则当b不是特征根时,可设成形如形式的特解,其中为m次多项式;如果b是r重根时,可设特解:,将其代入(8)中确定出系数即可。 2、差分方程的z变换解法 对差分方程两边关于取Z变换,利用的Z 变换F(z)来表示出的Z变换,然后通过解代数方程求出F(z),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的 例1设差分方程,求 解:解法1:特征方程为,有根: 故:为方程的解。 由条件得: 解法2:设F(z)=Z(),方程两边取变换可得:

由条件得 由F(z)在中解析,有 所以, 3、二阶线性差分方程组 设,,形成向量方程组 (12)则 (13)(13)即为(12)的解。 为了具体求出解(13),需要求出,这可以用高等代数的方法计算。常用的方法有: (1)如果A为正规矩阵,则A必可相似于对角矩阵,对角线上的元素就是A的特征值,相似变换矩阵由A的特征向量构成:。 (2)将A 分解成为列向量,则有 从而,

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序) 摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言 线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域 法[1]. 1 迭代法 例1 已知离散系统的差分方程为)1(3 1)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()4 3()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出24 59)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下: clc;clear;format compact; a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐 n=0:10;xn=(3/4).^n, %输入激励信号 zx=[0,0],zy=[4,12], %输入初始状态 zi=filtic(b,a,zy,zx),%计算等效初始条件 [yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件 2 时域经典法 用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形 式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下. (1)求齐次解.特征方程为081432=+-αα,可算出4 1 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )4 1()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()4 3()(n u n x n =代入差分方程右端得自由项为 ?????≥?==-?+-1,)4 3(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )4 3()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)4 3(213 )41()21()(21n n n C C n y ?++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用 )(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为

差分方程求解

例题:已知差分方程51 (2)(1)()(+1)+0.5()66 x k x k x k r k r k +-++=,其中r (k )=1,k ≥0,x (0)=1, x (1)=2。 (1) 试由迭代法求其全解的前5项; (2) 分别由古典法求其零输入解、零状态解,以及全解; (3) 用Z 变换法求解差分方程。 解:注:解题过程中出现的下标“zi ”和“zs ”分别表示零输入条件和零状态条件。 1. 迭代法 题目中给出的条件仅仅是零输入初始条件,进行迭代求解时的初始条件应该是全解初始条件。 (1) 零输入初始条件 本题已给出零输入时的两个初始条件x zi (0)=1,x zi (1)=2。 (2) 零状态初始条件 取k =-2时,则51 (0)(1)(2)(1)0.5(2)66x x x r r --+-=-+-,得x zs (0)=0; 取k =-1 时,则51 (1)(0)(1)(0)0.5(1)66 x x x r r -+-=+-,求得x zs (1)=1。 (3) 全解初始条件 x (0)= x zi (0)+ x zs (0)=1; x (1)= x zi (1)+ x zs (1)=3。 (4) 根据求出的全解x (0)和x (1),利用迭代法求解 取k =0时,则51(2)(1)(0)(1)0.5(0)66x x x r r -+=+,求得23(2)6x =; 取k =1时,则51(3)(2)(1)(2)0.5(1)66x x x r r -+=+,求得151 (3)36x =; 取k =2时,则51(4)(3)(2)(3)0.5(2)66x x x r r -+=+,求得941 (4)216 x =。 2. 古典法 (1) 零输入解 令输入为零,则得齐次方程 51 (2)(1)()066 x k x k x k +-++= (a) 根据差分方程定义的算子()()n d x k x k n =+,可得它的特征方程251 066 d d -+= 求得特征根为: 112d = ,21 3 d =

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

差分方程方法

第四章 差分方程方法 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等等,但是,往往都需要用计算机求数值解。这就需要将连续变量在一定条件下进行离散化,从而将连续型模型转化为离散型模型,因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 下面就不同类型的差分方程进行讨论。所谓的差分方程是指:对于一个数列{}n x ,把数列中的前1+n 项()n i x i ,2,1,0=关联起来所得到的方程。 4.1常系数线性差分方程 4.1.1 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=+?+++---k n k n n n x a x a x a x (4.1) 其中k 为差分方程的阶数,()k i a i ,,2,1 =为差分方程的系数,且()n k a k ≤≠0。对应的代数方程 02 211=++++--k k k k a a a λ λλ (4.2) 称为差分方程的(4.1)的特征方程,其特征方程的根称为特征根。 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出差分方程解的形式。 1. 特征根为单根 设差分方程(4.1)有k 个单特征根 k λλλλ,,,,321 ,则差分方程(4.1)的通解为 n k k n n n c c c x λλλ+++= 2211, 其中k c c c ,,,21 为任意常数,且当给定初始条件 () 0 i i x λ= ()k i ,,2,1 = (4.3) 时,可以唯一确定一个特解。 2. 特征根为重根 设差分方程(4.1)有l 个相异的特征根()k l l ≤≤1,,,,321λλλλ 重数分别为 l m m m ,,,21 且k m l i i =∑=1 则差分方程(4.1)的通解为

双曲方程基于matlab的数值解法

双曲型方程基于MATLAB 的数值解法 (数学1201,陈晓云,41262022) 一:一阶双曲型微分方程的初边值问题 0,01,0 1.(,0)cos(),0 1. (0,)(1,)cos(),0 1. u u x t t x u x x x u t u t t t ππ??-=≤≤≤≤??=≤≤=-=≤≤ 精确解为 ()t x cos +π 二:数值解法思想和步骤 2.1:网格剖分 为了用差分方法求解上述问题,将求解区域{}(,)|01,01x t x t Ω=≤≤≤≤作剖分。将空间区间[0,1]作m 等分,将时间[0,1]区间作n 等分,并记 1/,1/,,0,,0j k h m n x jh j m t k k n ττ===≤≤=≤≤。分别称h 和τ为空间和时 间步长。用两簇平行直线,0,,0j k x x j m t t k n =≤≤=≤≤将Ω分割成矩形网格。 2.2:差分格式的建立 0u u t x ??-=?? 2.2.1:Lax-Friedrichs 方法 对时间、空间采用中心差分使得 2h 1 1111)(2 1u u x u u u u u t u k j k j k j k j k j k j -+-++-= +=-= ????τ τ 则由上式得到Lax-Friedrichs 格式 1 11111()202k k k k k j j j j j u u u u u h τ+-+-+-+-+=

截断误差为 ()[]k k k j h j j R u L u Lu =- 1 11111()22k k k k k k k j j j j j j j u u u u u u u h t x τ+-+-+-+-??=+-+?? 23222 3 (),(0,0)26k k j j u u h O h j m k n t x ττ??= -=+≤≤≤≤?? 所以Lax-Friedrichs 格式的截断误差的阶式2()O h τ+ 令/s h τ=:则可得差分格式为 1111 11(),(0,0)222 k k k k k j j j j j s s u u u u u j m k n +--++=-+++≤≤≤≤ 0cos()(0)j j u x j m π=≤≤ 0cos(),cos(),(0)k k k m k u t u t k n ππ==-≤≤ 其传播因子为: ()()()e e G h i h i s h i h i σσσστσ---=-+e e 221, 化简可得: ()()()()()h s G h is h G στσσστ σsin 11,sin cos ,2 2 2--=-= 所以当1s ≤时,()1,≤τσG ,格式稳定。 * 2.2.2:LaxWendroff 方法 用牛顿二次插值公式可以得到LaxWendroff 的差分格式,在此不详细分析,它的截断误差为() h 2 2 +O τ ,是二阶精度;当2s ≤时,()1,≤τσG , 格式稳定。在这里主要用它与上面一阶精度的Lax-Friedrichs 方法进行简单对比。 2.3差分格式的求解

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ )...(121----+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

大连理工大学 高等数值分析 偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+ ??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2 22122212212C u C C u C C u C u ??+???+???+??= 22 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

抛物型方程差分方法

偏微分方程数值解复习提纲 一.基本内容:(1)椭圆型方程差分方法;(2)抛物型方程差分方法;(3)双曲型方程差分方法;(4)椭圆型方程的有限元方法. 二.基本概念: (1)显式和隐式差分格式,网格比和加密路径; (2)差分格式的截断误差、相容性、稳定性、收敛性、逼近精度阶和收敛阶; (3)双曲型方程(组)的特征与Riemann不变量,差分格式的依赖区域和CFL条件; (4)差分格式的增长因子和增长矩阵、振幅误差与相位误差、耗散与色散、群速度; (5)双曲守恒方程的弱解与激波传播速度; (6)守恒性与守恒型差分格式、有限体积法; (7)差分格式的Fourier分析与L2稳定性、最大值原理与L∞稳定性、实用稳定性和强稳 定性、网格的P`e clet数; (8)椭圆边值问题的变分形式与弱解、强制边界条件与自然边界条件; (9)Galerkin方法与Ritz方法,协调与非协调有限元方法; (10)有限元与有限元空间,有限元插值算子与插值函数,有限元方程与有限元解; (11)有限元的仿射等价与等参等价,有限元剖分的正则性和拟一致性. 三.基本方法与技巧: (1)比较函数与利用最大值原理的误差分析; (2)Taylor展开、Fourier分析、最大值原理; (3)修正方程分析、能量法分析; (4)充分利用解的守恒性和特征,以及适当处理初始条件与边界条件; (5)Sobolev空间及其基本性质,如嵌入定理、迹定理,Poincar′e-Friedrichs不等式; (6)仿射等价、多项式不变算子、商空间与商范数、Sobolev空间半范数的关系; (7)Aubin-Nische技巧,bramble-Hilbert引理,双线性引理. 四.基本格式: (1)二维Poisson方程的五点差分格式; (2)抛物型方程的显式差分格式、隐式差分格式、Crank-Nicolson格式和θ-方法; (3)具有热守恒性质的格式; (4)ADI格式与LOD格式; (5)双曲型方程的迎风格式、Lax-Wendro?格式、盒式格式和蛙跳格式;

差分方程

1 设一阶采样离散控制系统的差分方程为 ()()()1c k bc k r k +-= 已知输入信号()k r k a =,初始条件为()00c =,求系统的输出响应()c k 。 解:对差分方程两边进行Z 变换,得 ()()()()0zC z zc bC z R z --= ()k z R z Z a z a ??==??- 代入初始条件()00c =,得: ()()() z C z z a z b = --= 1 z z a b z a z b ??-??---?? 查表得 ()()1 k k c k a b a b = -- 2. 求解差分方程 ()()()()2413x k x k x k k δ+-++= 已知()0x k =,0k ≤, ()1,000k k k δ=?=? ≠?, 解:对差分方程两端作z 变换,得 ()()()()()()2 2 014031z X z z x zx zX z zx X z ----+=???? 已知x (0)=0,将k =-1代入差分方程得 x (1) = 0 将x (0)=0,x (1) = 0代入z 变换式,得: ()()() 2 11 43 31X z z z z z = = -+-- ()() () 1 1 2 2 1 3 lim 1lim 343 43 k k z z z z x k z z z z z z --→→=-+--+-+ =1 0.50.53k --+? 3. 求差分方程 ()()()2 1.510.50f k f k f k -+-+=的解。已知初始条件为()0.5f T -=-, ()20.75f T -=。

2.差分方程及其求解---数字信号处理实验报告

计算机与信息工程学院验证性实验报告 一、实验目的 1.学习并掌握系统的差分方程表示方法以及差分方程的相关概念。 2.熟练使用filter 函数对差分方程进行数值求解。 3.掌握差分方程的求解及MATLAB 实现方法。 二、实验原理及方法 1.一LTI 系统可以用一个线性常系数差分方程表示: ()()N M k m k m a y n k b x n m ==-=-∑∑,任意n 如果N a ≠0,那么这个差分方程就是N 阶的,已知系统的输入序列,用这个方程可以根据当前输入x(n)和以前M 点的输入x(n-m ),…,x(n-1),以及以前N 点的输出y(n-N),…,y(n -1)来计算当前输出y(n)。在实际中这个方程在时间上是从n =-∞到n =+∞朝前计算的,因此该方程的另一种形式是: ()()()M N m k m k y n b x n m a y n k ===---∑∑ 方程的解能以下面形式求得:()()()H p y n y n y n =+分别为方程的齐次解跟特解部分。已知输入和差分方程的稀疏,可用filter 对差分方程进行数值求解。最简单形式为:y=filter(b,a,x) 其中b=[b0,b1,…,bM];a=[a0,a1,…,aN]; 2.上面差分方程解的形式为齐次解和特解,另外还可以求零输入解和零状态解理论计算中要用到z 变换,请好好掌握z 变换的内容。用MATLAB 实现时,若已知初始条件,则应用y=filter(b,a, x, xic)来求完全响应。这里xic 是初始状态输入数组。MATLAB 还提供一种filtic 函数来得到xic 。

差分方程及其应用(精)

差分方程及其应用 在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。这些量是变量,通常称这类变量为离散型变量。描述离散型变量之间的关系的数学模型成为离散型模型。对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。 本章介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。 §1 基本概念 线性差分方程解的基本定理 一、 基本概念 1、函数的差分 对离散型变量,差分是一个重要概念。下面给出差分的定义。 设自变量t 取离散的等间隔整数值:, ,,,Λ210±±=t t y 是t 的函数,记作)(t f y t =。显然,t y 的取值是一个序列。当自变量由t 改变到1+t 时,相应的函值之差称为函数)(t f y t =在t 的一阶差分,记作t y ?,即 )()1(1t f t f y y y t t t -+=-=+?。 由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。 例如:设某公司经营一种商品,第t 月初的库存量是)(t R ,第t 月调进和销出这种商品的数量分别是)(t P 和)(t Q ,则下月月初,即第1+t 月月初的库存量)1(+t R 应是 )()()()1(t Q t P t R t R -+=+, 若将上式写作 )()()()1(t Q t P t R t R -=-+, 则等式两端就是相邻两月库存量的改变量。若记 ))()1()(t R t R t R -+=?, 并将理解为库存量)(t R 是时间t 的函数,则称上式为库存量函数)(t R 在t 时刻(此处t 以月为单位)的差分。 按一阶差分的定义方式,我们可以定义函数的高阶差分。函数)(t f y t =在t 的一阶差

差分方程的解法

1、常系数线性差分方程的解 方程 a 0x n k a 1x n k 1 ... a k x n b(n) 其中 a 0 , a 1,..., a k 为常数,称方程( 8)为常系数线性方程。 又称方程 a 0x n k a 1x n k 1 ... a k x n 为方程( 8)对应的齐次方程。 第三节 差分方程常用解法与性质分析 9) n 如果( 9)有形如 x n 的解, 带入方程中可得: k k 1 a 0 a 1 ... a k 1 a k 0 10) 称方程( 10)为方程( 8)、 9)的特征方程。

n n n c 1 1 c 2 2 ... c k k , 若(10) 有 m 重根 ,则通解中有构成项: (c 1 m 1 n c 2 n ... c m n ) 显然, 如果能求出( 10)的根,则可以得到( 9)的解。 基本结果如下: 1) 若(10) 有 k 个不同的实根,则( 9)有通解:

(3)若(10)有一对单复根 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:X n 如果能得到方程(8)的一个特解:X n ,则(8)必有通解: * X n X n + 焉 (11) (1)的特解可通过待定系数法来确定。 例如:如果b (n )bk m (n ), pMn )为门的多项式,则当b 不是特征 根 时,可设成形如 bq m (n ) 形式的特解,其中 q m (n ) 为m 次多项式;如 果b 是 r 重根时,可设特解:b n n r q m (n ) ,将其代入(8)中确定出系 数即可。 arcta n — ,则(9) 的通解中有构成项: C l n . cos n C 2 sin (4)若有 m 重复根: i e ,则 (9)的通项中有成 项: cos n (C m 1 C m 2 n m 1 、 n ? c 2m n ) sin n

微分方程数值解II

微分方程数值解II 主要内容: 第一章有限差分法的理论基础 1. 构造差分格式的主要方法; 2. 差分格式的一般性要求; 3. Lax等价性定理; 4. 差分格式的von Neumann稳定性分析方法; 5. 差分格式的修正方程。 第二章线性抛物型方程的差分方法 1. 扩散方程的显式格式; 2. 扩散方程的隐式格式; 3. 线方法; 4. 多维抛物型方程的ADI方法; 5. 分数步法; 6. Burgers方程的差分法和网格雷诺数。 第三章一维线性双曲型方程的数值方法 1. 线性双曲型系统的特征和Riemann问题; 2. 守恒律的有限体积法; 3. Lax-Friedriches格式、Lax-Wendroff格式、特征线法差分格式; 4. 双曲型方程的迎风格式、CIR格式、Godunov 方法; 5. 二阶Godunov格式、总变差概念及限制器函数; 6. 双曲型方程及变系数双曲型方程的高分辨率(TVD)波传播格式。 第四章一维非线性双曲型守恒律的数值方法 1. 非线性双曲型守恒律的间断解、弱解、熵条件; 2. 标量守恒律的Riemann问题解及Godunov格式; 3. 熵修正、数值粘性、Osher格式及高分辨率波传播格式; 4. 守恒型与Lax-Wendroff定理、离散熵条件、非线性稳定性及收敛性; 5. 典型守恒律方程组的Godunov间断分解方法及Godunov格式; 6. 守恒律方程组的MUSCL格式。 第五章多维双曲型守恒律的高分辨率格式 1. 多维方程组的双曲性; 2.Lax-Wendroff方法、Runge-Kutta推进的半离散方法、维数分裂方法; 3. 标量方程的LW方法、Godunov 格式、方向迎风及角迎风格式; 4. 多维标量方程的高分辨率格式; 5. 多维方程组的高分辨率格式。 第六章双曲型守恒律的其它高分辨率方法 1. ENO与WENO格式;

差分方程的解法

差分方程常用解法 1、 常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ (1) 其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (2) 为方程(1)对应的齐次方程。 如果(2)有形如n n x λ=的解,代入方程中可得: 0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。 显然,如果能求出方程(3)的根,则可以得到方程(2)的解。 基本结果如下: (1) 若(3)有k 个不同的实根,则(2)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(3)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ ?βαρarctan ,22=+=,则(2)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21- -+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构 成项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +* n x (4) 方程(4) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多 项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1) 中确定出系数即可。

偏微分方程数值解法

第十章偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1差分方法的基本概念 1.1几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 Poisson 方程的第一边值问题为 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为 其中 n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 方程可以有两种不同类型的定解问题: 初值问题 初边值问题 其中 )(x ?,)(1t g ,)(2t g 为已知函数,且满足连接条件 边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条 件。 第二类和第三类边界条件为 其中0)(1≥t λ,0 )(2≥t λ。当0)()(21≡=t t λλ时,为第二 类边界条件, 否则称为第三类边界条件。 双曲型方程: 最简单形式为一阶双曲型方程 物理中常见的一维振动与波动问题可用二阶波动方程 描述,它是双曲型方程的典型形式。方程的初值问题为

边界条件一般也有三类,最简单的初边值问题为 1.2差分方法的基本概念 差分方法又称为有限差分方法或网格法,是求偏微分方程定 解问题的数值解中应用最广泛的方法之一。 它的基本思想是:先对求解区域作网格剖分,将自变量的连 续变化区域用有限离散点(网格点)集代替;将问题中出现的连 续变量的函数用定义在网格点上离散变量的函数代替;通过用网 格点上函数的差商代替导数,将含连续变量的偏微分方程定解问 题化成只含有限个未知数的代数方程组(称为差分格式)。如果 差分格式有解,且当网格无限变小时其解收敛于原微分方程定解 问题的解,则差分格式的解就作为原问题的近似解(数值解)。 因此,用差分方法求偏微分方程定解问题一般需要解决以下问题: (1)选取网格; (2)对微分方程及定解条件选择差分近似,列出差分格式; (3)求解差分格式; (4)讨论差分格式解对于微分方程解的收敛性及误差估计。 下面,用一个简单的例子来说明用差分方法求解偏微分方程 问题的一般过程及差分方法的基本概念。 设有一阶双曲型方程初值问题。 (1) 选取网格: -2h-h0h2h3h 首先对定解区域 }0,),{(≥+∞<<∞-=t x t x D 作网格剖 分,最简单 常用一种网格是用两族分别平行于 x 轴与 t 轴的等距直线 kh x x k ==, (0,1,2,0,1,2,)j t t j k j τ===±±=L L 将D 分成许 多小矩形 区域。这些直线称为网格线,其交点称为网格点,也称为节点, h 和τ 分别称作 x 方向和t 方向的步长。这种网格称为矩形网格。 (2) 对微分方程及定解条件选择差分近似,列出差分格式: 如果用向前差商表示一阶偏导数,即 其中 1,021<<θθ。

大连理工大学高等数值分析偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1 ±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2221222122 12C u C C u C C u C u ??+???+???+??= 2 2 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

差分方程的解法1

第三节差分方程常用解法与性质分析 高中数学新课标选修内容“一阶线性差分方程”的解法分析 江西省高中数学课程标准研究组舒昌勇(341200)在高中数学新课标选修系列4的“数列与差分”专题中,一阶常系数线性差分方程x n+1=kx n+b (1) 是讨论的重点,其一般形式为 x n+1=kx n+f(n) (2) 其中k为已知的非零常数,f(n)为n的已知函数.当f(n)≠0时,方程(2)称为非齐次的,f(n)=0时,方程 x n+1=kx n(3) 称为齐次的,并称(3)为(2)相应的齐次方程.方程(1)是方程(2)当f(n)为常数的情况,是方程(2)能用待定系数法求特解时所具有的几种特殊形式里最简单的一种.我们来讨论方程(1)和(3)通解的求法. 1 求一阶齐次差分方程x n+1=kx n的通解 用迭代法,给定初始值为x0,则一阶齐次差分方程x n+1=kx n的通解为 x1 = kx0,x2=kx1=k2x0,x3=kx2=k3x0,…, 一般地,有 x n= kx0-1= k(k n-1x0)= k n x0,n = 1,2,…, 由于x0表示初始值,可任意给定,所以可视其为任意常数,不妨用c来表示.又根据差分方程通解的定义:如果差分方程的解中含有与方程的阶数相同个数的相互独立的任意常数,则为其通解,故一阶线性齐次方程x n+1=kx n的通解可表为 x n=k n c(c为任意常数). 对于每一个任意给定的初始值x0,都能得到方程相应于该初始值的一个特解.而求特解只要将给定的初始值x0代入通解求出待定常数c即可. 2 求一阶非齐次差分方程x n+1=kx n+b的通解 2.1探索一阶非齐次差分方程x n+1=kx n+b通解的结构 设数列﹛y n﹜,﹛z n﹜为方程(3)的任意两个解,则 y n+1=k y n +b (4) z n+1= k z n +b (5) (4)-(5) 得y n +1-z n +1=k(y n- z n ) 这意味着一阶非齐次线性差分方程任意两个解的差为相应齐次差分方程的解.从而,若a n为非齐次方程(3)的任意一个解,b n为非齐次方程(3)的一个特解,则a n-b n就为相应齐次方程的一个解.为了探索一阶非齐次差分方程通解的结构,我们对它的任意一个解a n 作适当变形: a n=a n+ b n- b n= b n +( a n - b n) 这表明,一阶非齐次差分方程的任意一个解可表示为它的一个特解与相应齐次方程一个解的和的形式.从而非齐次方程的通解等于其一个特解加上相应齐次方程的通解. 2.2 求一阶非齐次差分方程(3)的通解 ①用迭代法,设给定的初始值为x0,依次将n=0,1,2,…代入(3),有 x1=kx0+b x2=kx1+b=k(kx0+b)+b =k2x0+b(1+k)

相关文档
最新文档