非常规油气水平井多级分段压裂完井技术

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

斯伦贝谢分段压裂技术

StageFRAC SIMPLE, EFFICIENT, AND EFFECTIVE StageFRAC services enable multistage hydraulic fractures of an uncemented completion in one pumping treatment. Openhole packers are run on conventional casing to segment the reservoir with ball-activated sleeves placed between each set of openhole packers.During pumping, balls are dropped from the surface to shift each sliding sleeve open and isolate previously frac-tured stages. This mechanical diversion combined with Schlumberger advanced fracturing fluid systems allows for precise fluid placement, complete zonal coverage, and greater effective fracture conductivity.The StageFRAC service also offers a relatively simple completion: The production casing is not cemented, there are no perforating operations, no bridge plugs are required for isolation, no overflushing of the stimulation treatment is needed, and no intervention is required once stimulation is completed. Finally,the entire wellbore is fracture stimulated in one pumping operation, reducing cycle times from days to hours. The service permits selective opening and closing of the ports to shut off unwanted fluids, thus maxi-mazing well production life. FIELD-PROVEN TECHNOLOGY Since the first StageFRAC well was completed in June of 2002, the technology has been used to complete more than 2,750 stages in more than 1.25 million ft of open hole, and more than APPLICATIONS I Hydraulically fractured horizontal,deviated, and vertical wells I Openhole and some cased hole completions I High-temperature, high-pressure,H 2S, and CO 2environments I Sandstone, carbonate, shale, and coal formations BENEFITS I Maximize reservoir productivity with up to 17 stimulation stages in one wellbore I Cut completion times from days to hours and shorten time to market I Maximize well longevity by shutting out unwanted fluids I Reduce fracture fluid damage through immediate flowback FEATURES I Improved access to natural fractures I Ability to space sleeves at optimal distances as dictated by reservoir conditions I Post-stimulation intervention not required I Single, continuous operation I Maximized stimulation coverage in horizontal wells I Reliable isolation in open hole I Rigless operations during fracturing I Sleeves that can be shifted to assist with reservoir management Maximize reservoir drainage The StageFRAC*?multistage fracturing service provides effective reservoir drainage through multistage fracturing of open- hole wellbores and reduces completion times from days to hours. The mechanical openhole packer with tandem elements is rated to 68.9 MPa [10,000 psi] and 218 degC [425 degF].

水平井分段多簇压裂工艺的应用

水平井分段多簇压裂工艺的应用 【摘要】鸭平4井位于玉门油田鸭西白垩系是典型的低渗透储层,井深3456m,水平段210m,实施了2段6簇的压裂,同步实施了裂缝监测,取得了理想的效果;压裂共入井液量1961.4 m3,总沙量159 m3,最高砂比26.2%,平均砂比14.5%;该井是玉门油田实施多段多簇压裂工艺的第一口井,是开发低渗透油藏水平井的新突破,探索了一条中深水平井压裂改造的新途径。 【关键词】玉门油田压裂低渗透油藏 1 鸭平4井油藏储层特征 鸭平4井水平段方位角基本在NW280-290°之间,二者基本呈90°夹角,因此有利于沿井筒形成横切裂缝。图1?鸭平4井裂缝方位及体积改造裂缝形 态 对比邻井,该井具有储层厚度较大,缝高易扩展,储层物性较好,液体效率低的特点。该井水平段较短,为提高储层动用程度及施工效率,采用水平井分段多簇压裂工艺,实现体积改造(SRV)。在水平井筒周围储层,形成一定密度的裂逢网络;从而提高增产改造体积。 2 实施分段多簇压裂设计方案 根据该井施工排量的要求,本井分两段进行压裂,每段3簇,每簇射孔段1m,孔密16孔/米,每段共计射48孔,具体射孔参数见表1。 2.1 第一段采用油管传输射孔 采用102枪127弹,孔径10.2mm,穿深680mm,相位角60°。该射孔条件下,8 m3/ min的施工排量,总孔眼摩阻小于1MPa;若压裂施工时仅1簇进液,则计算显示其孔眼摩阻将大于8MPa,则第二层被压开,这时有两簇进液,理论计算出的孔眼摩阻超过2Mpa。 2.2 第二段采用电缆射孔 采用86枪,22.7g深穿透射孔弹,孔径8.12m,穿深为729mm,相位角60°。该射孔方式在8m3/min的施工排量下,总孔眼摩阻小于3MPa;仅1簇进液时孔眼摩阻将高达20MPa,则第二簇被压开,两簇进液时的孔眼摩阻超过5MPa,同样,这种情况能够保证第三簇也能够被压开。 采用分簇射孔工艺,根据摩阻预测,每段射孔孔眼数为48孔,3簇施工时8m3/min的排量较为适宜,既能保证总孔眼摩阻很低,又能起到限流作用(限流摩阻>12MPa)从而保证压开每个射孔簇。

页岩气水平井分段压裂复杂缝网形成机制

油气藏评价与开发 第7卷第5期2017年10月 RESERVOIR EVALUATION AND DEVELOPMENT 页岩气水平井分段压裂复杂缝网形成机制 许文俊,李勇明,赵金洲,陈曦宇,彭瑀 (西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500) 摘要:水平井分段压裂是页岩气高效开发的重要技术手段,有意识地利用水力裂缝沟通页岩储层中的天然裂缝,使其闭合的部分重新开启,开启的部分又相互连通,从而在地层中形成具有较大规模的复杂裂缝网络,有利于实现地层中页岩气向井筒的高效流动。为了合理优化页岩储层压裂设计方案,提高页岩储层压裂改造效果,需先认清页岩水平井分段压裂复杂缝网形成机制。基于位移不连续理论,建立了水平井分段压裂多裂缝干扰模式下的地应力场模型,分析了天然裂缝在复杂地应力场和存在压裂液滤失作用的情况下,发生张开或剪切破裂形成复杂缝网的机理。分析表明:水力裂缝诱导应力虽能降低地层原始水平应力差,但也会增加地层中天然裂缝发生张开和剪切破裂的难度,不利于复杂裂缝网络的形成。压裂液滤失是导致地层中天然裂缝发生张开和剪切破裂形成复杂裂缝网络的关键因素,天然裂缝的剪切破裂区域要远大于张开破裂区域,多条水力裂缝滤失效应的叠加更有利于形成具有较大波及区域的复杂裂缝网络。充分考虑压裂液滤失对复杂裂缝网络形成的影响,对提高页岩气水平井分段多簇压裂改造效果具有重要意义。 关键词:分段压裂;位移不连续理论;剪切破裂区域;张开破裂区域;复杂缝网 中图分类号:TE357文献标识码:A Formation mechanism of complex fracture network under horizontal well staged fracturing in shale gas reservoir Xu Wenjun,Li Yongming,Zhao Jinzhou,Chen Xiyu and Peng Yu (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu,Sichuan 610500,China) Abstract:Horizontal well staged fracturing is an important technology for shale gas production,whose essence is to use hydraulic fracture to activate natural fractures.The natural fractures can make closed parts reopen and opened parts interconnect,and then form complex fracture network in shale reservoirs,accordingly,shale gas will flow to the wellbore through complex fracture network efficiently.In order to optimize shale reservoir fracturing design and improve the effects of shale reservoir fracturing,it is necessary to fully understand the formation mechanism of complex fracture network in staged fractured shale horizontal wells.Based on the displacement discontinuity theory,a complex stress field calculation model which takes into consideration hydraulic fracture inter?ference is established,which analyzes the mechanism that natural fractures occur open and shear fracture,and then the complex fracture network under the circumstance of complex ground stress field and fracturing fluid leak-off was formed.The results demon?strate that although the hydraulic fracture induced stress field can reduce the original horizontal stress difference,it would also in?crease the difficulty of natural fractures opening and shearing,which is unbeneficial for the formation of complex fracture network. Moreover,it is attained that fracturing fluid leak-off is the key factor that leads to the open and shear fracture of natural fractures in the formation of complex fracture network and the shear rupture zone of natural fractures is much larger than the open rupture zone, furthermore,the superposition of multiple hydraulic fracture filtration effect is more favorable for the formation of complex fracture network with a larger spread area.The impacts of fracturing fluid leak-off on complex fracture network have important significance for improving staged fracturing transformation of shale horizontal wells. Key words:staged fracturing,displacement discontinuity theory,shear rupture zone,open rupture zone,complex fracture network 收稿日期:2016-10-31。 第一作者简介:许文俊(1991—),男,在读博士研究生,油气田增产改造理论与技术方面的研究。 基金项目:国家自然科学基金重大项目“页岩地层动态随机裂缝控制机理与无水压裂理论”(51490653);国家重点基础研究发展计划“中国南方海相页岩气高效开发的基础研究”(2013CB228004)。

关于水平井分段压裂的研究及探讨

关于水平井分段压裂的研究及探讨 【摘要】能源作为现代社会的稀缺资源,直接影响着人们的生产生活,对能源的开发也是极为重要的工程。在石油储存量较小且渗透性较差的油田内,水平井是较为有效的开发方式。如果遇到油气层渗流阻力较大、渗透率极低的情况,则需要将其压开数量不等的裂缝,加强油气的渗透性及减少渗流阻力。本文简单阐述了水平井分段压力技术的原理,各种类型的分段压裂技术,包括封隔器分段压裂、段塞分段压裂、封隔器配合滑套喷砂器分段压裂、水力喷射分段压裂、TAP 分段压裂技术等,为从事能源行业的人员提供一定的技术参考。 【关键词】水平井分段压裂技术研究 由于各个油田的地质情况不一样,在开发的过程中许多特殊情况,如低渗透油气藏、稠油油气藏、储量较小、渗透阻力大等情况,需要采用水平井,其优势在于生产效率高、泄油面积大、储量的动用度较高。为了达到进一步提高水平井的产量,需要对水平井进行压裂,从而形成数量较多的裂缝,提高油气的产量,提升生产效率,但是由于水平井的跨度较大,要达到理想的压裂效果要求分段工具具有性能良好、体积合适、操作性强等特征,才能有效的提高单位油井的油气产量,实现经济效益及资源的充分开发[1]。 1 水平井分段压裂工艺的基本原理 水平井压裂后,其裂缝的形状、性能均有所区别,主要和水平井筒轴线方向及地层的主要应力的方向有着较为密切的关系。该项工艺能够提高产量的原理为压裂使石油的渗流方式发生了改变。进行压裂处理之前,石油的径向流流线主要处于井底的位置,渗透受到较大的阻力,压裂完成后,径向流流线与裂缝壁面呈平行关系,渗流受到的阻力较小。裂缝的主要形态有以下几种:①横向裂缝:当水平井筒和主要应力的方向为呈垂直关系时,即会形成横向裂缝;②纵向裂缝:当水平井筒与主要应力的方向呈平行关系时,即会形成纵向裂缝;③扭曲裂缝:当水平井筒和主要应力有一定的角度时,即会构成扭曲裂缝。压裂后形成的横向裂缝适用于渗透性较差储藏层,其可以明显的促进油井改造。而渗透性好、裂缝性的储藏层则需要利用纵向裂缝来提升改造效果[2]。 2 各种类型的分段压裂工艺2.1 段塞分段压裂 段塞分段压裂工艺是在水平井施工进入尾声时,采用年度较高的物质植入井筒中,使之形成堵塞现象,在利用其它材料,如浓度较高的支撑剂、填砂液体胶塞或者超粘完井液等,进行填充性裂缝。该工艺的优势在于对于工具的要求较低,不需要特殊工具即可以安全设计方案进行施工活动,但是其缺陷在于施工时间较长,在进行冲胶塞施工时容易出现损伤,且由于胶塞强度的限制,在深度较大的水平井中不能达到理想的封隔效果,因此逐渐被新的分段压裂技术所取代[3]。 2.2 TAP分段压裂工艺

【CN110130867A】一种小井眼侧钻水平井分段多簇压裂方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910304847.1 (22)申请日 2019.04.16 (71)申请人 中国石油天然气股份有限公司 地址 100007 北京市东城区东直门北大街9 号中国石油大厦 (72)发明人 常笃 齐银 陆红军 张矿生  卜向前 任勇 苏良银 汪澜  刘兴银 赵广民  (74)专利代理机构 西安吉盛专利代理有限责任 公司 61108 代理人 赵娇 (51)Int.Cl. E21B 43/267(2006.01) E21B 33/134(2006.01) E21B 33/13(2006.01) (54)发明名称 一种小井眼侧钻水平井分段多簇压裂方法 (57)摘要 本发明公开了一种小井眼侧钻水平井分段 多簇压裂方法,根据储层情况确定压裂段数和射 孔位置,每段采用多簇射孔,完成第一段多簇压 裂,接着通过水力泵送小直径可溶桥塞实现第二 段和以后多段的分段压裂,其中压裂施工过程中 通过泵入可溶解暂堵转向颗粒,堵塞已起裂的 簇,迫使压裂液进入未起裂的簇,实现段内多簇 有效起裂,压裂施工完成后,小直径可溶桥塞、暂 堵转向颗粒在地层条件下自行溶解,不影响改造 效果,重复上述步骤,直至完成小井眼侧钻水平 井所有段的压裂,本发明可解决小直径可捞式桥 塞施工工序复杂、笼统压裂各簇开启率较低的问 题,本发明具有不钻塞、施工效率高、成本低的特 点,实现了小井眼侧钻水平井分段多簇压裂的目 的。权利要求书2页 说明书10页CN 110130867 A 2019.08.16 C N 110130867 A

北美分段压裂技术发展现状与趋势

北美分段压裂技术发展现状与趋势国外在 20 世纪 80 年代中期开始研究水平井压裂增产改造技术,最初是沿水平井段进行笼统压裂。2002 年以后,随着致密气、页岩气、致密油等非常规油气资源的大规模开发和水平井的大规模应用,许多公司开始尝试水平井分段压裂技术。 在随后的几年里,随着微震实时监测技术的提高和工厂化作业模式的日益成熟,压裂段数越来越多,作业效率和精度越来越高。2007 年开始,水平井分段压裂技术成为非常规油气开发的主体技术,开始在北美大规模应用。 1 国外水平井分段压裂技术发展现状 1.1 形成了适用于不同完井条件的水平井分段压裂技术 经过10 多年的发展,国外已经形成较为完善的适应不同完井条件的水平井分段压裂改造技术。主流的水平井分段压裂技术有3 类:水力喷射分段压裂技术、裸眼封隔器分段压裂技术和快钻桥塞分段压裂技术,其中裸眼封隔器分段压裂技术应用最为广泛。 1.2 “工厂化”作业模式降低成本 美国非常规油气开发的成功之路就是降低钻完井成本,保证压裂质量,提高单井产量,一种重要的做法就是“压裂工厂”。2005 年哈里伯顿公司率先提出“压裂工厂(FRACFACTORY)”的概念,即在一个中央区对相隔数百米至数千米的井进行压裂。所有的压裂装备都布置在中央区,不需要移动设备、人员和材料就可以对多个井进行压裂。 “压裂工厂”作业模式成为规模化作业的雏形。后来,这一概念逐渐扩展为“工厂化钻完井”,即多口井从钻井、射孔、压裂、完井和生产整个流程都是通过一个“中央区”完成。通过采用“工厂化钻完井”的作业模式,完井周期从原来每口井60天降至目前的20天完成5口井,完井成本降低了近60%。 1.3 微震实时监测提高压裂效果 随着水平井分段压裂技术应用范围逐步扩大,压裂监测水平也有了重大突破。2006 年,威德福公司推出FracMap 微震压裂监测技术,并首次在油气勘探领域实现商业化应用。随后,斯伦贝谢、贝克休斯、哈利伯顿也相继推出微震压裂监测技术服务。通过微震监测,不但可以在压裂进行的过程中实时获取井下信息(裂缝的方位、高度、长度、复杂度等),还可以实时优化压裂程序。

水平井不动管柱封隔器分段压裂技术

万方数据

万方数据

万方数据

?144?中国石油大学学报(自然科学版)2010年8月 有限元分析,采用轴对称模型对其简化,建立的管柱模型及网格划分如图6所示。胶筒材料为橡胶,材料常数C10=1.87MPa,Co.=o.47MPa;其余材料定义为钢,其弹性模量E=206GPa,泊松比/z=0.3;网格划分中心管、套管和护套采用CAX4R单元,胶筒采用CAX4RH单元划分;定义中心管与压缩式封隔器的护套摩擦系数为0.1,其他接触摩擦系数定义为0.3;扩张式封隔器的护套与中心管定义为绑定约束,护套与长胶筒的顶部和底部也定义为绑定约束。 图6模型装配图(左)及网格划分(右) №.6Assemblydrawingofmodelandgrid mapofsealrubber 管柱力学分析分两步进行,加载方式为先在长胶筒的内部逐渐施加30一50MPa的内压力,使扩张式长胶筒与套管接触密封,管柱锚定套管不动。胶筒与套管的接触应力值如图7所示,最大接触压力为33.3MPa。然后对管柱进行加载,包括管柱的内部压力和管外压力,以及封隔器对管柱的摩擦力,封隔器附近中心管的应力值如图8所示。 图7长胶简接触应力曲线 Fig.7Contactstresscurve oflongrubber从图8应力曲线可以看出,中心管在与封隔器接触处的应力值最大,中心管的最大应力值为168.2MPa,发生在封隔器与中心管的结合处。压裂施工时该部位最容易被拉断,因此在工具设计时对该类部件选取高强度材料(选用35CrMo材料),增加抗拉强度。 图8中心管处应力曲线 Fig.8Stressclllrveofcentraltube 4创新点与优点 4.1创新点 (1)工艺管柱的无卡瓦锚定设计,设计封隔器长胶筒摩擦锚定,降低了安全事故的发生,可有效避免卡瓦式锚定工具卡钻的问题。 (2)密封胶筒内加入了特殊材料,增强密封耐压性能和抗疲劳破坏性能。 (3)设计工具挡砂传液机构,有效避免了工具内腔进砂引起的事故。 (4)综合应用不动管柱+分段压裂+可洗井等技术。 4.2技术优点 (1)可以在不动管柱的情况下,实现水平井2—3段的分段压裂;可以对水平井的长井段进行均匀布酸和有效的措施改造,大大提高水平井的压裂措施效益。 (2)一般情况,整个压裂施工可以在ld内完成,节省了泵注时间和费用,加快了返排时间,降低了残酸或压裂液对油层的污染伤害,有利于保护油气层。 (3)管柱具有反洗井功能,砂卡时可以进行反洗井作业。 5结束语 力学分析证明该新型水平井封隔器分段压裂工艺管柱达到设计要求,其中心管在与封隔器接触处的应力值最大,是应力破坏薄弱处,设计时进行了充分考虑。该技术提高了我国套管完井水平井分段压裂的工艺技术水平和配套工具水平,具有良好的推 广应用前景。万方数据

水平井分段压裂技术总结

水平井分段压裂技术总结 百度最近发表了一篇名为《水平井分段压裂技术总结》的范文,这里给大家转摘到百度。 篇一:水平井分段压裂技术及其应用水平井分段压裂技术及其应用摘要:水平井分段压裂工艺技术为改善水平井水平段渗流条件、提高单井产量了技术支持。 本文从我国水平井分段压裂技术的发展现状入手,以应用最为广泛的裸眼水平井封隔器分级压裂技术为重点,以该技术在长庆油田苏里格气田苏区块的现场应用为例,对水平井压裂技术及其现场应用情况进行了分析与总结。 关键词:水平井分段压裂封隔器苏里格气田水平井因其具有泄油面积大、单井产量高、穿透度大、储量动用程度高等优势,在薄储层、低渗透、稠油油气藏及小储量的边际油气藏等的开发上表现出了突出的优势,成为提高油气井产量和提升油田勘探综合效益的重要手段之一,近年来在我国得到了快速的发展。 然而在低渗透油藏开采中因其渗透率较低、渗透阻力大、连通性较差,导致水平井单井产量也难以提升,难以满足经济开发的要求,水平井增产改造的问题便摆在了工程技术人员的面前。 而水平井分段压裂工艺技术的推广应用为改善水平井水平段渗流条件、提高单井产量了技术支持。 一、我国水平井分段压裂技术现状我国的水平井分段压裂技术及

配套工具的研究起步较晚,国内三大石油公司对于水平井分段压裂技术开展广泛的研究开始与十一五期间,近几年得到了大力的推广应用。 目前国内应用规模较大的水平井分段压裂技术主要包括以下三种:裸眼封隔器分段压裂技术。 年我国在四川广安--井第一次实施了裸眼封隔器分段压裂试验,范文当时是由的技术。 目前该技术在我国的现场应用仍然以国外技术为主,主要采用由、、等公司的装置系统,我国应用总规模约~口,占去了水平井分段压力工艺实施的/左右,分段数最多达到段。 我国在该技术方面上处于研发和现场试验阶段,现场试验分段数能达到段,所采用的压裂材质、加工工艺等方面和国外相比还有一定差距。 水平井水力喷射分段压裂技术。 年,首先由提出了水力喷射压裂工艺方法,并将其应用于水平井压裂。 我国于年在长庆油田引进配套技术,首次成功的完成了靖平井的分段压裂。 目前该技术在我国大部分油田都得到了广泛的现场试验和应用,总实施口数达到口以上,分段数在段以内。 套管完井封隔器分段压裂技术。 该技术在我国应用和研发的规模较大,最全面的范文写作网站且

水平井分段压裂改造技术现状与展望

水平井分段压裂改造技术现状与展望 发表时间:2018-01-29T11:05:30.553Z 来源:《科技新时代》2017年12期作者:刘学伟 [导读] 摘要:水平井作为一种有效提高油气产量的重要方法,在油气田开发中扮演着越来越重要的角色,特别在“低压力低渗透率、低丰度”三低油气藏。本文主要对目前国内水平井压裂改造技术现状进行探讨。 摘要:水平井作为一种有效提高油气产量的重要方法,在油气田开发中扮演着越来越重要的角色,特别在“低压力低渗透率、低丰度”三低油气藏。本文主要对目前国内水平井压裂改造技术现状进行探讨。 关键词: 水平井分段压裂展望 近年来随着各大油气田不断开发,油气藏综合开发难度逐渐增大,低渗透、超低渗透、致密油气藏等非常规油气藏开发面临难题突显,而制约超低渗、致密油气田等经济有效开发的关键技术就是储层改造技术的突破,实现油气藏纵横剖面有效动用,提高单井产量。 1水平井压裂技术现状 1.1双封单卡上提管柱压裂技术 该技术首先将待压裂改造层段一次性分段射孔,压裂管柱由双封隔器中间夹一导压喷砂器构成,在压裂过程中利用导压喷砂器的节流压差进行压裂,通过压裂一层上提一次管柱完成多段压裂。双封单卡上提管柱压裂技术虽然压裂目的性强,操作简单,单层改造效果彻底,但是根据实际施工过程中,该技术出现砂卡概率较高,而且一旦出现砂卡不宜解卡,同时因多段压裂过程中封隔器反复坐封、解封,导致封隔器胶筒易破裂失效,从而经常起下钻具延长施工周期。该技术有待完善。 1.2可钻式复合桥塞分段压裂技术 利用可钻式复合桥塞进行分级改造,通过连续油管或电缆下入桥塞和射孔枪,爆炸射孔后取出电缆或连续油管,通过套管泵注。该技术适合于套管完井的分级改造,由于第一段没有泵送通道,多采用爬行器或连续油管带桥塞和射孔枪下入。改造完毕后钻磨桥塞,即可多层返排、合采。该技术施工周期较长,地层伤害较大。 1.3投球打滑套分段压裂技术 投球打滑套压裂技术首先将待压裂改造层段一次性分段射孔,起出射孔枪后,下入带有滑套分压工艺管柱工具串到达设计位置,压裂第一段完成后,投放与滑套尺寸相匹配的钢球,油管液体加压,打断销钉打开滑套,坐封封隔器,施工上层,逐级完成施工。该技术可实现连续压裂施工,缩短施工周期,施工效率较高,但是,因井下工具串较复杂,发生砂卡解卡较难。 1.4 TAPI阅完井分段压裂技术 该技术是一种新型无级差套管滑套分段压裂技术。在下入油层套管时在套管上连接多个特殊滑套,每一个滑套都正对目标产层。固井后,采用射孔或爆破阀打开最底部压裂滑套,完成第一段的压裂。第一段压裂结束后,从井口投入飞镖打开上面一段的压裂滑套,同时对已施工的第一段进行封闭,压裂第二段。重复此施工步骤直至所有施工段压裂结束。待所有压裂施工结束后,采用连续油管对TAP阀进行磨铣,恢复全井筒畅通。该技术具有压裂级数不受限制,可以恢复全尺寸井筒,施工流程简单,施工效率较高,在生产后期可以利用连续油管对滑套进行选择性关闭等特点。 2水平井压裂技术发展趋势 近年伴随着油气田资源开发规模逐渐加大,从目前面临“三低”的油气藏即将转战致密油气田、页岩气等油气田开发,油气藏综合开发难度逐渐增大,低渗透、超低渗透、致密油气藏等非常规油气藏开发面临难题突显,而制约超低渗、致密油气田等经济有效开发的关键技术就是储层改造技术的突破,实现油气藏纵横剖面有效动用,提高单井产量。 2.1水平井低伤害清洁压裂液体系 目前,随着地层开发难度逐渐增大,地层越来越敏感,与此同时水平井压裂技术日新月异,但是与之相配套的低伤害压裂液体系米能及时跟进。为实现这一目标,相关领域应加强对水平井低伤害清洁压裂液性能研究,配套完善的水平井压裂液体系。 2.2水平井段内多裂缝压裂技术 当前,油气田开发渗透率逐渐降低,增加改造体积充分动用储层储量,增大泄流面积,提高单井产量迫在眉睫。通过水平井段内开始多裂缝可实现储层整体的动用程度,实现水平井水平段体积化改造模式,从而提高水平井动用储量。 2.3连续油管水力喷射射孔环空压裂技术 该技术可以部分解决可钻式复合桥塞分段压裂技术出现的不足之处,作为其补充,与其配合使用。连续油管水力喷射射孔环空压裂技术已经在各大气田得到了广泛的应用,取得较好效果。 3结束语 1)水平井压裂改造技术的突破,才能有效动用控制储量,提高单井产量,最终实现油气田经济有效开发。 2)裸眼封隔器分段压裂技术和水力喷射分段压裂技术为现阶段各大油气水平井主体分段改造技术,已经推广应用,其他分段压裂技术作为其必要补充,也将发挥重要作用。 3)进一步开展水平井分段压裂改造工艺技术适应性研究,完善水平井分段压裂工艺。 参考文献: [1] 刘翔鹊,刘尚奇.国外水平井技术应用论文集[M}北京.石油工业出版社, 2001. 作者简介:刘学伟,男,出生年月:1984.03,工程师,毕业时间:2007.07,毕业院校:中国石油大学(华东),专业:化学工程与工艺,主要从事压裂技术研究工作。

固井滑套分段压裂工艺简介

1.固井滑套分段压裂简介 该工艺技术是贝壳休斯公司在固井技术的基础上结合了开关式固井滑套而形成的多层分段压裂完井技术。该技术利用可开关式固井滑套选择性的放置在油层位置,固井完成后,利用钻杆,油管或连续油管代开关工具将滑套打开,然后用同一趟管柱进行压裂作业。 该压裂完井体系可根据油藏产层情况,选择多个CM滑套,实现多层压裂投产或选择性压裂开采。该完井体系中CM系列滑套内外表面进行了特殊镀层处理,保证了工具开关性能。 该技术可应用到任何利用压裂措施投产的井。另外,根据以后生产的需要还可以调整油藏层间矛盾。提高油藏的利用率。 2.作业步骤 1)根据油藏产层情况,确定各CM滑套位置; 2)按照确定的深度将滑套和套管管柱一趟下入井内,然后进行常规固井; 3)下入压裂和滑套开关服务工具,有选择性地打开滑套进行压裂作业。 4)压裂完一层之后,通过上提下放管柱将压裂层位滑套关闭,随后打开下一层滑套进行压裂。 5)所有层位压裂完成之后,通过上提下放管柱将所有需要生产的层位的滑套打开,起出管柱,进行生产。 6)在生产过程中,如果出现产水层或者由于别的原因,需要将某个层位关闭,可下入滑套开关工具将其关闭。如果还需打开,还可以下入开 关工具将其打开。 3.优点: 1)随套管一趟下入,无需射孔。压裂作业一趟连续完成,节省了时间。 2)无需射孔,无需额外的封隔器卡层,节省了成本。 3)压裂完成之后套管内保持通径,方便了以后的修井作业。 4)滑套可以多次开关:根据生产需要,滑套可以随时关闭和打开,大大增强了其实用性。 5)在每一层压裂后,可以关闭滑套,保护地层不受污染。

4. 可用规格尺寸 尺 寸(in) 压力级别(psi) 温度级别(°F) 抗拉强度(lb) 抗扭力(ft-lb) 2 3/8 96,000 1,782 2 7/8 140,000 3,500 3 1/2 10,000 375 182,600 4,000 4 7,500 291,900 5,700 4 1/2 8,200 32 5 270,000 6,000 5 7,300 315,000 5,500 5 1/2 6,300 351,000 6,200 7 7,000 300 628,000 8,700 5. 图例 CM 滑套示意图 CM 滑套进行特殊涂层处理之后,水泥固井图

水平井分段压裂完井技术调研报告

《现代完井工程》水平井分段压裂完井技术调研报告

目录 1 研究目的及意义.............................................................. 错误!未定义书签。 2 水平井分段压裂技术...................................................... 错误!未定义书签。 2.1 国外水平井分段压裂技术研究现状................... 错误!未定义书签。 2.1.1 斯伦贝谢公司——Stage FRACTM系统错误!未定义书签。 2.1.2 哈里伯顿公司——固井滑套分段压裂系统错误!未定义书签。 2.1.3 贝克·休斯公司——Frac Piont System分段压裂系统错误!未 定义书签。 2.2 国内水平井分段压裂技术研究现状................... 错误!未定义书签。 2.2.1 水力喷射分段压裂技术............................ 错误!未定义书签。 2.2.2 双卡上提压裂多段技术............................ 错误!未定义书签。 2.2.3 分段环空压裂技术.................................... 错误!未定义书签。 2.2.4 液体胶塞隔离分段压裂技术.................... 错误!未定义书签。 2.2.5 机械桥塞隔离分段压裂技术.................... 错误!未定义书签。 2.2.6 限流压裂技术............................................ 错误!未定义书签。 2.3 本章小结............................................................... 错误!未定义书签。 3 水平井分段压裂数值模拟方法...................................... 错误!未定义书签。 3.1 笛卡尔网格的加密法........................................... 错误!未定义书签。 3.2 PEBI网格加密法.................................................. 错误!未定义书签。 3.3 表皮因子法........................................................... 错误!未定义书签。 3.4 直角网格加密法................................................... 错误!未定义书签。 3.5 本章小结............................................................... 错误!未定义书签。 4 水平井完井技术.............................................................. 错误!未定义书签。 4.1 筛管分段完井技术............................................... 错误!未定义书签。 4.2 水平井砾石充填防砂技术................................... 错误!未定义书签。 4.3 鱼骨状水平分支井完井技术............................... 错误!未定义书签。 4.4 膨胀管完井技术................................................... 错误!未定义书签。 4.5 套管射孔分段压裂完井技术............................... 错误!未定义书签。 4.6 裸眼分段压裂完井技术....................................... 错误!未定义书签。 4.7 本章小结............................................................... 错误!未定义书签。参考文献.............................................................................. 错误!未定义书签。

相关文档
最新文档