2kW新型推挽正激直流变换器的研制

2kW新型推挽正激直流变换器的研制
2kW新型推挽正激直流变换器的研制

2kW新型推挽正激直流变换器的研制

引言

在低压大电流场合中,推挽推挽电路以其结构简单、磁芯利用率高的优点而得到了广泛应用。但是,传统的推挽电路存在如下几个缺点:

1)由于原边漏感漏感的存在,功率管关断关断时,漏源极产生较大的电压尖峰;

2)输入电流纹波的安秒积分大,因而输入滤波器的体积较大。

本文在传统推挽电路的基础上增加了一个箝位电容,便可以解决上述传统电路存在的两个缺点。

1 推挽正激电路工作原理

,该变换器的两个主功率开关管开关管V1及V2和两个匝数均为Np的初级绕组Tp1及Tp2交替连接成一个回路,在回路的两个中点之间连接一个箝位电容C。Cin为输入电容,Dv1及Dv2为两个主功率开关管寄生的反并二极管。D1及D2组成双半波整流电路。

电源正极→Tp2→C→Tp1→电源负极构成一个回路。忽略变压器漏感则加在变压器原边两个绕组的电压之和为零,C上的电压为Uin,下正上负。另外一个回路为电源正极→V1→C→V2→电源负极。根据基尔霍夫电路定律可得Uds1+Uds2=Uin+Uc=2Uin

因此,当某一开关管导通时,另一开关管的电压被箝位在2Uin;当两个开关管均关断时,开关管电压各为Uin。

在分析推挽正激电路工作模态前,做如下设定:

1)V1,V2,D1,D2均为理想器件,导通压降忽略不计;

2)C较大,在工作过程中两端电压保持Uin基本不变;

3)滤波电感Lf较大,在较短的时间内可以视为恒流源,电流维持不变;稳态时输出电流Io=Uo/R;

4)原边绕组匝数同为Np,励磁电感和漏感均相同为Lm、Lσ,副边匝数同为Ns,匝比n=Ns/Np;

5)开关周期Ts,V1及V2每个周期开通时间均为ton,V1及V2工作的占空比均为D=ton/Ts;

图2为推挽正激电路工作原理波形图波形图,一共分为8个工作模态。

1)[t1-t2] 在t1之前V1及V2都是关断的,输入电流沿电源正极→Tp2→C→Tp1→电源负极回路环流工作,环流为Ia=nDIo[1](具体分析在第2节中给出)。原副边绕组电压为0,D1及D2同时导通。t1时刻V1开通,Uin加在Tp1的漏感上,i1快速增加;Uc加在Tp2的漏感上,i2迅速减小并反向增大。相应的,在副边流过D1电流iD1增大,流过D2的电流iD2减小。t2时刻,D2截止iD2=0。此模态等效电路图,持续时间为

式中:iLfmin为t1时刻滤波电感电流。

2)[t2-t3] 当D2截止时,该工作模态开始工作,Uin加在Tp1的励磁电感和漏感上,Uc加在Tp2的励磁电感和漏感上,各承担励磁电流和负载电流变化率的一半,这时初级相当于两个单端正激电路并联工作[2][3][4]。i1增加,i2反向增大。工作模态,持续时间为

3)[t3-t4] t3时刻,V1关断,该工作模态开始工作。在此之前i1始终大于i2,因此,

在V1关断瞬间V2的反并二极管Dv2导通。同时,流过D1的电流iD1减小,流过D2的电流iD2从零开始增加,副边绕组短路工作。电容电压Uc加在Tp1的漏感上,Uin加在Tp2的漏感上,i1迅速减小,i2迅速增加。

当i1=i2时该工作模态结束。等效的工作模态电路,持续时间为

式中:iLfmax为t3时刻滤波电感电流。

4)[t4-t5] 在此期间,V1和V2都关断。漏感平均电流(环流)Ia经过电源正极→Tp2→C→Tp1→电源负极回路流动。由于电源电压和箝位电容电压相等,加在原边两个绕组上的电压均为零,则环流Ia保持不变。等效的工作模态,持续时间为

5)[t5-t9] t5时刻,V2导通开始下半个周期的工作,工作模态和上半个周期相同,只是励磁电流的方向相反,完成变压器的去磁。

2 环流分析

设该推挽正激变换器的功率损耗为零,根据系统能量守恒定律可得,在半个周期Ts/2内电源输入功率为

为了分析问题的简便,我们假设以下理想条件成立:

1)原边两个绕组换流瞬间完成,即

Δt1-2=0,Δt3-4=0;

2)励磁电感Lm和滤波电感Lf较大,励磁电流为零,Lf可以看作恒流源,求得

由此可见,当电路的工作占空比D大,原边环流时间短,环流量值较大;随着输出功率的增加,环流值也增大。

3 主要参数对电路工作的影响分析

3.1 箝位电容C的作用与选取

3.1.1 箝位电容的两个主要作用

1)抑制开关管关断电压尖峰,在V1关断时,由C给变压器原边漏感提供一个Dv2→C→Tp1的低阻抗能量释放回路。将V1的漏源极电压箝位在Uin+Uc,使开关管的电压尖峰得到了有效的抑制。箝位电容C在开关管全关断时储存电能,在导通时将能量释放给负载,理论上,无能量损耗。

2)减小输入滤波器体积与传统的推挽电路相比,推挽正激电路中的箝位电容为开关管关断期间提供一个续流回路。正是由于续流回路的存在使推挽正激电路工作的输入电流纹波的安秒积分较其它拓扑小。因此,可以减小输入滤波器的体积。

3.1.2 箝位电容的选取

根据前文的分析,箝位电容C的电压脉动Δuc是由环流期间的充电量决定的,即

电路工作周期Ts、最大负载电流Io、变压器匝比n在设计前就已经确定了。在工程实际中,选取Δuc=20%Uin,因此,根据占空比D的工作范围可以计算出所需的电容值。同时,为了减小电容ESR的影响,一般采用多个薄膜电容并联的方案。

3.2 变压器漏感对PPF工作的影响

对于理想的变压器,变压器的漏感Lσ=0,无论哪个功率管关断时,变压器绕组电流瞬间减小到0,在两个开关管均关断期间无环流。实际上,任何变压器都存在漏感,在推

挽正激电路中,两个开关管均关断瞬间,原边漏感的能量通过Uin正极→Tp2→C→Tp1→Uin负极回路给C充电形成环流,在箝位电容上产生了电压脉动。同时,减小原边漏感可以减小功率管开通时的换流时间,即减小了占空比的丢失,从而提高了变压器的利用率,减小了电路工作的损耗。

从以上分析可见,减小漏感可以提高系统的效率。因此,变压器常采用原副边间绕的方法来减少漏感的值。

4 仿真和实验

4.1 仿真分析

基于以上分析,对PPF的工作进行了原理性的仿真,仿真主电路。仿真主要参数为:Uin=28V,C=70μF,n=6,Io=10A,Lf=160μH,Cf=680μF/400V×2,Ts=20μs。

图4为输出电流Io=10A,占空比D分别为0.1、0.25、0.4时对应的箝位电容C的电压脉动Δuc仿真波形图。由图4可知,当D=0.25时Δuc最大。

图5为输入电流仿真波形,其中图5(a)为原边激磁电感Lm=12μH,漏感Lσ=0.05μF时仿真波形图;图5(b)为原边激磁电感Lm=12μH,漏感Lσ=0时仿真波形图。仿真结果表明,Lσ=0时输入电流不存在环流过程。

4.2 实验结果

根据有关技术要求,研制出了一台输入DC24V~32V,输出DC120V的2kWDC/DC变换器。系统参数为:开关频率fs=50kHz;主功率开关管为IXTK180N15;整流二极管为DSEP60-06A;箝位电容C=70μF;滤波电感Lf=160μH;滤波电容Cf=680μF/400V×2;主变压器匝比n=6,磁芯为EE55×2。

图6为额定负载下实验波形图,其中图6(a)是原边绕组电流波形图(ch1为开关管V1驱动信号波形,ch2为开关管V2驱动信号波形,ch3为绕组Tp1电流波形i1,ch4为绕组Tp2电流波形i2);图6(b)是开关管漏源极波形图(ch1为开关管V1的驱动信号,ch2为开关管V1源漏极电压波形,ch3为开关管V2的驱动信号,ch4为开关管V2源漏极电压波形)。图6实验波形验证了上述理论分析的正确性。

图7为在相同Io(=16A),不同Uin与不同D时原边绕组电流和箝位电容电压脉动波形图(ch3为绕组Tp1电流波形i1,ch4为绕组Tp2电流波形i2,ch1为箝位电容电压脉动Δuc波形)。实验波形充分说明了第2节环流分析和第3.1.2节中箝位电容选取原则的正确性。

图8为2kW DC/DC变换器效率分布曲线,该变换器的效率可达93.2%。图9为变换器实物图。

5 结语

仿真分析和实验结果验证了理论分析和公式推导的正确性,表明推挽正激电路应用于该变换器中具有以下优点:

1)抑制了开关管漏源极电压尖峰,降低了开关管的电压应力和功率损耗[5],整机效率高;

2)变压器双向磁化,磁芯利用率高;

3)输入电流纹波安秒积分较其它拓扑小,减小了输入滤波器体积。

该变换器尤其在低压大电流场合中具有较高的工程实用价值。

正激变换器及其控制电路的设计及仿真

正激变换器及其控制电路的设计及仿真 电气工程 张朋 13S053081

设计要求: 1、输入电压:100V(±20%); 2、输出电压:12V; 3、输出电流:1A; 4、电压纹波:<70mV(峰峰值); 5、效率:η>78%; 6、负载调整率:1%; 7、满载到半载,十分之一载到半载纹波<200mV。 第一章绪论 1.课题研究意义: 对于大部分DC/DC变换器电路结构,其共同特点是输入和输出之间存在直接电连接,然而许多应用场合要求输入、输出之间实现电隔离,这时就可以在基本DC/DC变换电路中加入变压器,从而得到输入输出之间电隔离的DC/DC变换器。而正激变化器就实现了这种功能。 2.课题研究内容: 1、本文首先介绍了正激变换器电路中变比、最大占空比和最小占空比、电容、电感参数的计算方法,并进行了计算。 2、正激变换器的控制方式主要通过闭环实现。其中闭环方式又分为PID控制和fuzzy控制。本文分别针对开环、PID控制,fuzzy控制建立正激变换器的Matlab仿真模型,并进行仿真分析了,最后对得出的结果进行比较。 第二章:正激电路的参数计算 本章首先给出正激变换器的等值电路图,然后列出了正激变换器的四个主要参数的计算方法,并进行了计算。 1、正激变换器的等值电路图 图1 正激变换器等值电路图 2、参数计算 (1)变比n 根据设计要求,取占空比D=0.4,根据输入电压和输出电压之间的关系得到变比:

n= D U U out in ?=4.012 100 ?=3.3 (2) 最大、最小占空比 最大占空比D max 定义为 D max = ()n U U U in d out 1 min ? +, 式中U in(min) =100-20=80V ,U out =12V ,n=3.3,,U d 为整流二极管压降, 所以D max =0.495。 最小占空比D min 定义为 D min = ()n U U U in d out 1 max ? +, 式中U in(max) =120V , 所以D min =0.333。 (3) 电容 电容的容量大小影响输出纹波电压和超调量的大小。取开关频率f=200KHZ ,则T=5×10-6 s , 根据公式: C=ripple ripple V f I ??81 , 式中取I ripple =0.2A ,V ripple =0.07mV , 所以C=1.79μF 。为稳定纹波电压,放大电容至50μF 。 (4) 电感 可使用下列方程组计算电感值: U out =L ×dt di , dt= f D m in 1-, 式中U out =12V ,di 取为0.2A ,D min =0.333, 所以L=0.334mH 。 第三章 正激变换器开环的Matlab 仿真 本章首先建立了正激变换器开环下的Matlab 仿真模型,然后对其进行了仿真分析。

正激变换器工作原理

正激变换器 实际应用中,由于电压等级变换、安全、系统串并联等原因,开关电源的输入输出往往需要电气隔离。在基本的非隔离DC DC-变换器中加入变压器,就可以派生出带隔离变压器的DC DC-变换器。例如,单端正激变换器就是有BUCK变换器派生出来的。 一工作原理 1 单管正激变换器 单端正激变换器是由BUCK变换器派生而来的。图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器 图(a1)BUCK变换器

图(a2)单端正激变换器 BUCK 变换器工作原理: 电路进入平恒以后,由电感单个周期内充放电量相等, 由电感周期内充放电平恒可以得到: ?==T dt L u T L U 001

即: 可得: 单端正激变换器的工作原理和和BUCK 相似。 其工作状态如图如图(a3)所示: 图(a3)单端正激变换器工作状态 开关管Q 闭合。如图所示,当开关管Q 闭合时的工作状态如图a4所示, ? ? =- -ON ON t T t o o i dt U dt U U 0 )(i i ON o o o i OFF o ON o i DU U T t U T D U DT U U t U t U U == -=-=-)1()()(

图(a4) 根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。在此期间,电感电压为: O I L U U N N u -= 1 2 开关管Q 截止。开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降: O L U U -= 在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此: ()S O S I T D U DT U U N N ?-?=??? ? ??-1120 得: I O DU N N U 1 2= 由此可见,单端正激变换器电压增益与开关导通占空比成正比,

一种推挽正激电路

一种推挽正激电路 在低压大电流场合中,推挽电路以其结构简单、磁心利用率高的优点而得到了广泛应用。但是,传统的推挽电路存在如下几个缺点:(1)由于原边漏感的存在,功率管关断时,漏源极产生较大的电压尖峰;(2)输入电流纹波的安秒积分大,因而输入滤波器的体积较大。 本文在传统推挽电路的基础上增加了一个箝位电容C,得到如图1所示的新型推挽正激电路拓扑。该电路可以解决上文所述的传统电路存在的两个缺点。 图1:新型推挽正激电路拓扑 2. 推挽正激电路工作原理 如图1所示为推挽正激变换器。该变换器的两个主功率开关管V1、V2和两个匝数均为Wp的初级绕组Tp1、 Tp2交替连接成一个回路,在回路的两个中点之间连接一个箝位电容C。Cin为输入电容, Dv1 、Dv2为V1 、V2寄生的反并二极管。D1、D2组成双半波整流电路。 电源正→原边绕组Tp2→箝位电容C→原边绕组Tp1→电源负构成一个回路。忽略 变压器漏感则加在变压器原边两个绕组的电压之和为零,箝位电容上的电压为Uin ,下正上负。另外一个回路:电源正→V1→箝位电容C→V2→电源负。根据基尔霍夫电路定律可得: Uds1+Uds2=Uin+Uc=2Uin 因此,当某一开关管导通时,另一开关管的电压被箝位在2Uin ;当两个开关管均关断时,开关管电压各为Uin。 在分析推挽正激电路工作模态前,我们做如下设定: (1)开关管V1、V2均为理想器件,整流二极管D1、D2为理想器件,导通压降忽略不计; (2)箝位电容C较大,在工作过程中两端电压保持Uin基本不变; (3)滤波电感Lf较大,在较短的时间内可以视为恒流源,电流维持不变;稳态时输出电流Io=Uo/R; (4)原边绕组匝数同为Wp,励磁电感和漏感均相同为Lm、L ,副边匝数同为Ws,匝比n=Ws/Wp;

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器的工作原理 2.1 有源箝位正激变换器拓扑的选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。 (1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。 它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。 它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 (3) LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。 它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝

推挽正激变换器关键参数的计算及仿真

推挽正激变换器关键参数的计算及仿真 【摘要】本论文首先介绍了推挽正激变换器(PPFC)的基本原理,在此基础上给出了推挽正激电路关键参数的计算方法。运用了Saber仿真软件对PPFC 主要波形进行了仿真,最后得出,理论和仿真一致,推挽正激变换器适用于低压大电流场合。 【关键词】推挽正激电路;参数计算;Saber 1.引言 氢是宇宙中含量最丰富的元素,氢能清洁、高效、安全,被视为21世纪最具发展潜力的能源。氢能的开发利用对世界能源结构的变革举足轻重,燃料电池(Fuel Cell)则正是其突破口。燃料电池输出为低压大电流的直流电,在负载变化时其输出电压变化范围宽且动态响应速度较慢,这要求DC/DC变换器能适应低压大电流、宽范围输入电压工作,并具有较快的动态响应速度[1]。本文提出一种适用于燃料电池发电系统的推挽正激拓扑电路,并通过Saber仿真软件对其进行分析。 2.推挽正激电路分析 2.1 推挽正激电路基本原理 图1为推挽正激电路,整个电路有开关管、,两个原边绕组、,两开关管之间串有箝位电容,在变压器副边有副边绕组,全桥式整流电路由二极管,,,以及输出滤波器LC组成。其中、为开关管、的寄生反并二极管,、为、寄生的结电容。当开关管导通时,输入电源和原边绕组并联,电容和并联同时向负载供电。在此期间,该电路相当于两个单端正激电路并联工作,故将此电路拓扑命名为推挽正激变换器电路[2](PPFC)。 2.2 推挽正激电路关键参数计算 2.2.1 设计指标 输入电压;输出电压;频率:50kHz;最大占空比:0.45;效率:大于90%;额定功率:1000W。 2.2.2 变压器设计 (1)磁芯的选取 选取JP4铁氧体材料,其饱和磁密:,时,取最大工作磁密:,则:,磁芯初选南京720厂的EE58/28/17,其有效截面积为:

加无源无损缓冲吸收的推挽正激变换器设计

加无源无损缓冲吸收的推挽正激变换器设计 中心议题:推挽正激变换推挽正激变换器的工作原理加无源无损缓冲吸收缓冲吸收的推挽正激变换器变换器设计 解决方案:缓冲吸收电路参数设计 推挽正激变换器是低压大电流输入场合的理想拓扑之一,但其输出整流二极管上由于反向恢复产生很高的电压尖峰。这将导致整流二极管选取困难,并影响其使用寿命。本文研究了一种加无源无损缓冲吸收的推挽正激变换器,整流二极管上尖峰电压小,可靠性高。并给出了该变换器的工作原理和缓冲电容的参数设计,还通过lkW实验样机给出了加缓冲吸收电路前后的实验波形。样机取得了高效率和高可靠性。0 引言在输入低压大电流场合,推挽正激变换器(Push-Pull Forward,PPF)因具有以下3方面的优点而得到广泛应用:(1)输入滤波器的体积和重最小;(2)箝位电容无损耗地抑制了功率管的电压尖峰;(3)变压器磁芯利用率高。在输出高电压时(本文为360V),变压器副边线圈匝数较多,副边漏感不可忽略。在整流二极管反向恢复时间内,整流二极管上存在很高的电压尖峰,给整流二极管的选取带来困难,并降低了整流二极管的可靠性。虽然RC或者RCD缓冲电路可以一定程度上抑制二极管的电压尖峰,但是电阻上损耗较大。文献[3]提出了一种简单的无源无损缓冲吸收电路,可以较好地抑制整流二极管的电压尖峰。本文将该无损缓冲吸收电路应用于蓄电池供电的推挽正激变换器中,显著降低了整流二极管的电压尖峰。制作的原理样机电路结构简单,功率器件工作可靠性高,并且实现了高的整机变换效率。1 工作原理图1为加无损缓冲吸收的PPF电路。Ds1、Ds2分别为开关管S1、S2寄生的反并二极管,变压器的Np1=Np2=Np、Ns1=Ns2=Ns分别为原、副边的匝数,匝比n=Ns/Np,原边两个绕组的励磁电感均为Lm,Lo(图1中未标出)为变压器原边绕组的漏感.Lo’为折算到变压器副边绕组的漏感,D5、D6、D7、C1、C2构成无损缓冲吸收电路,且C1=C2=Cc。变压器副边两个绕组的连接点与输出滤波电容C3和C4的中点相连,输出电压为±V0/2。 在分析电路原理前,假定:(1)S1、S2,D1、D2、D3、D4导通压降忽略不计;(2)箝位电容C 较大,在稳态工作时两端电压保持为Vin不变;C3=C4=C0足够大,将它看作电压恒定为V0/2的电压源;L1=L2=L足够大,将它看作电流为I0的电流源;(3)开关周期为Ts,S1、S2每个周期开通时间均为Ton,S1、S2工作的占空比D=Ton/Ts。根据输出电感的伏秒积分平衡,可得变换器输入输出关系:V0=4nDVin。图2为加无损缓冲吸收的PPF电路工作原理波形图,一共分为14个工作模态。 (1)工作模态l[t0-t1] ,在t0以前,S1和S2都是关断的,输入电流沿回路Vin-Np-C-Np2环流,环流为Ia=2nDI0。原、副边绕组电压为零,整流二极管同时导通,iD1=iD2=I0/2。t0时刻,S1导通,Vin加在原边漏感Lo上,ip1迅速增加;Vc加在绕组的漏感上,ip2迅速减小并反向增人。同时,流过iD1、iD4的电流增大,流过iD2、iD3的电流减小,此过程持续到iD2减小到0并且增大到最大反向恢复电流时结束。模态l中,Vc1=Vc2=0,VD5=VD6=Vo/2,VD7=0。(2)工作模态2[t0-t2] ,t1时刻,D2、D3中反向恢复电流达到最大值,D5、D6导通,D2、D3达到瞬时反向电压Vo,缓冲电容C1(C2)和副边漏感Lo’开始谐振。Vin、VC分别加在原边绕组Np1、Np2上,ip1正向增大,ip2减小并反向增大。两端电压从零开始谐振增大,在半个谐振周期后达到最大值VC1max=VC2max=2nVin-Vo,此时模态2结束。模态2中,VD5=VD6=0,VD7=Vo。二极管D2、D3两端反向电压从V0逐渐增大VD2=VD3=4nVin-V0。(3)工作模态3[t2-t3] ,t2时刻,D2、D3两端电压回落到稳态关断值2nVin,D5、D6关断。变压

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

正激变换器与控制电路的设计和仿真

正激变换器及其控制电路的设计及仿真 设计要求: 1、输入电压:100V(±20%); 2、输出电压:12V; 3、输出电流:1A; 4、电压纹波:<70mV(峰峰值); 5、效率:η>78%; 6、负载调整率:1%; 7、满载到半载,十分之一载到半载纹波<200mV。 第一章绪论 1.课题研究意义: 对于大部分DC/DC变换器电路结构,其共同特点是输入和输出之间存在直接电连接,然而许多应用场合要求输入、输出之间实现电隔离,这时就可以在基本

DC/DC 变换电路中加入变压器,从而得到输入输出之间电隔离的DC/DC 变换器。而正激变化器就实现了这种功能。 2.课题研究内容: 1、本文首先介绍了正激变换器电路中变比、最大占空比和最小占空比、电容、电感参数的计算方法,并进行了计算。 2、正激变换器的控制方式主要通过闭环实现。其中闭环方式又分为PID 控制和fuzzy 控制。本文分别针对开环、PID 控制,fuzzy 控制建立正激变换器的Matlab 仿真模型,并进行仿真分析了,最后对得出的结果进行比较。 第二章:正激电路的参数计算 本章首先给出正激变换器的等值电路图,然后列出了正激变换器的四个主要参数的计算方法,并进行了计算。 1、正激变换器的等值电路图 图1 正激变换器等值电路图 2、参数计算 (1)变比n 根据设计要求,取占空比D=0.4,根据输入电压和输出电压之间的关系得到变比: n= D U U out in ?=4.012 100 ?=3.3 (2) 最大、最小占空比 最大占空比D max 定义为 D max = ()n U U U in d out 1 min ? +, 式中U in(min) =100-20=80V ,U out =12V ,n=3.3,,U d 为整流二极管压降, 所以D max =0.495。 最小占空比D min 定义为

2kW新型推挽正激直流变换器的研制.

2kW新型推挽正激直流变换器的研制 2kW新型推挽正激直流变换器的研制 类别:电源技术 电路的工作原理,对环流过程进行了透彻分析,分析了箝位电容和变压器原边漏感对电路工作的影响。通过仿真和实验对所述理论分析进行了验证。基于此研制出输入电压dc24~32v,输出电压dc120v的2kw直流变换器样机,典型效率为93.2%,表明该电路具有可靠、效率高的特点,适合于低压大电流输入中大功率应用场合。引言在低压大电流场合中,推挽电路以其结构简单、磁芯利用率高的优点而得到了广泛应用。但是,传统的推挽电路存在如下几个缺点:1)由于原边漏感的存在,功率管关断时,漏源极产生较大的电压尖峰;2)输入电流纹波的安秒积分大,因而输入滤波器的体积较大。本文在传统推挽电路的基础上增加了一个箝位电容,便可以解决上述传统电路存在的两个缺点。图11 推挽正激电路工作原理如图1所示,该变换器的两个主功率开关管v1及v2和两个匝数均为np的初级绕组tp1及tp2交替连接成一个回路,在回路的两个中点之间连接一个箝位电容c。cin为输入电容,dv1及dv2为两个主功率开关管寄生的反并二极管。d1及d2组成双半波整流电路。电源正极 →tp2→c→tp1→电源负极构成一个回路。忽略变压器漏感则加在变压器原边两个绕组的电压之和为零,c上的电压为uin,下正上负。另外一个回路为电源正极→v1→c→v2→电源负极。根据基尔霍夫电路定律可得uds1+uds2=uin+ uc=2uin因此,当某一开关管导通时,另一开关管的电压被箝位在2uin;当两个开关管均关断时,开关管电压各为uin。图2 在分析推挽正激电路工作模态前,做如下设定:1)v1,v2,d1,d2均为理想器件,导通压降忽略不计;2)c较大,在工作过程中两端电压保持uin基本不变;3)滤波电感lf较大,在较短的时间内可以视为恒流源,电流维持不变;稳态时输出电流io=uo/r;4)原边绕组匝数同为np,励磁电感和漏感均相同为lm、lσ,副边匝数同为ns,匝比n=ns/np;5)开关周期ts,v1及v2每个周期开通时间均为ton,v1及v2工作的占空比均为d=ton/ts;图2为推挽正激电路工作原理波形图,一共分为8个工作模态。图3 1)[t1-t2] 在t1之前v1及v2都是关断的,输入电流沿电源正极→tp2→c→tp1→电源负极回路环流工作,环流为ia=ndio[1](具体分析在第2节中给出)。原副边绕组电压为0,d1及d2同时导通。t1时刻v1开通,uin 加在tp1的漏感上,i1快速增加;uc加在tp2的漏感上,i2迅速减小并反向增大。相应的,在副边流过d1电流id1增大,流过d2的电流id2减小。t2时刻,d2截止id2=0。此模态等效电路图如图3(a)所示,持续时间为式中:ilfmin为t1时刻滤波电感电流。2)[t2-t3] 当d2截止时,该工作模态开始工作,uin加在tp1的励磁电感和漏感上,uc加在tp2的励磁电感和漏感上,各承担励磁电流和负载电流变化率的一半,这时初级相当于两个单端正激电路并联工作[2][3][4]。i1增加,i2反向增大。工作模态如图3(b)所示,持续时间为3)[t3-t4] t3时刻,v1关断,该工作模态开始工作。在此之前i1始

双路输出正激式DC/DC变换器的设计双路输出正激式DC/DC变换器的设计

双路输出正激式DC /DC 变换器的设计双路输出正激式DC /DC 变 换器的设计 双路输出正激式DC /DC 变换器的设计 0 引言开关电源以其高效率、小体积等优点已获得了广泛应用。而转换器是开关电源中最重要的组成部分,转换器有5 种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。在所有的DC /DC 隔离变换器中,正激变换器是低电压大电流功率变换器的首选拓扑结构。由于正激变换器使用无气隙铁心,电感值高,原边和负边峰值电流小,铜损小,所以变压器利用率较高,输出效率也很高;其次,正激变换器中输出电感器和续流二极管的存在,也可以有效衰减纹波电流。为此,本文介绍了一种采用单端正激式结构设计的双路输出(%26#177;6 V ,1.5 A)DC /DC 变换器的设计过程。1 电路工作原理本变换器的电路原理框图如图1 所示。当直流输入电压经过滤波电路进入辅助电源后,即由辅助电源给控制器供电,然后在控制器作用下,用开关管控制电流的通断以形成高频脉冲电流,再经高频变压器,使其在输人为高(开关管接通)时整流二极管导通,从而使串联电感为充电状态,最后经滤波电路向负载传送能量并输出直流电压;相反,在输入低电平(开关管断开)时,电感为放电状态,电路将

通过续流二极管继续向负载释放能量,并输出直流电压。为了保持电压稳定,两路输出电压经取样、隔离反馈电路送到控制器后将使输出脉冲宽度随输出电压的变化而变化,从而稳定输出电压。由于变压器原边绕组通过的是单向脉动电流,为避免磁性饱和,确保励磁磁通在每一个开关周期开始时处于初始值,设计时必须使变压器的铁芯磁性复位。2 控制回路的设计传统的开关电源普遍采用电压型脉宽调制(PWM) 技术,而近年来,电流型PWM 技术得到了飞速发展,本设计采用电流型控制器UC1843 来实现控制回路。UC1843 工作频率可达500 kHz ,并它具有大电流推拉式输出,低启动工作电流等特点。电路中在开关管通断瞬间,必须供给栅极较大电流,并对栅源极间电容进行快速充放电,以使开关管高速工作。UC1843 的输出级为图腾柱式,输出电流为1 A 。它不必增加任何外围电路,就可将其直接接到开关管的栅极,并驱动VMOS 管高速工作。UC1843 具有精度高、电压稳定、外围电路简单优点。相比电压型PWM ,电流型PWM 具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也有明显的改善。3 双路输出设计本设计中的双路输出部分电路如图2 所示。由于该电路要求对称输出,故将正负两路输出 滤波电感L1 、L2 绕制在同一磁芯上,并采用双线并绕的方法来保证L1 、L2 电感量完全相同。线路在接人方法上采用了差模相位关系,这种连接方法可使2 路输出电流的变化量相互感应,从而在一定程度上改善2 路输出的调整率。其次。也可将采样比较器R1 、R2 直接跨接到正负电源的输出端上。本设计的逻辑"地"不是电源的输出地.而

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器的 工作原理 令狐采学 2.1 有源箝位正激变换器拓扑的选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD 箝位技术。这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。

(1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。 它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。 它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 (3)LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。

它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝比变大,从而可以有效地减少原边的导通损耗; (2)在变压器磁复位过程中,寄生元件中存储的

轻载下的正激同步整流变换器分析_百度文库.

摘要:同步整流技术的广泛应用促进了低电压大电流技术的发展,但是,使用同步整流技术会造成开关电源在轻载情况下的低效率问题。以正激式同步整流变换器为例,从电感电流连续和断续两种状态,分析了轻载工况下的工作情况。 关键词:同步整流;CCM;DCM;环路电流;振铃 O 引言 随着计算机、通讯和网络技术的迅猛发展,低压大电流DC/DC变换器成为目前一个重要的研究课题。传统的二极管或肖特基二极管整流方式,由于正向导通压降大,整流损耗成为变换器的主要损耗。功率MOSFET导通电阻低、开关时间短、输入阻抗高,成为低压大电流功率变换器首选的整流器件。根据MOSFET的控制特点,应运而生了同步整流(Synchronous rectification,SR这一新型的整流技术。 1 同步整流正激变换器 图l给出的是一种电压自驱动同步整流正激变换器,图l中两个与变压器耦合的分离辅助绕组N4、N5用来分别驱动两个同步整流管S201、S202。当主开关管导通时,变压器副边绕组上正下负,S201栅极电压为高,导通整流;主开关管截止时,副边绕组下正上负,续流S202 栅极为高,导通续流。 正激变换器中,同步整流S201的运行情况与变压器磁复位方式有关。如果采用如图1所示的辅助绕组复位电路,在复位结束过程之后,变压器电压保持为零的死区时间内,输出电流流经续流同步整流管S202,但是S202栅极无驱动电压,所以输出电流必须流经S202的体二极管。M0SFET体二极管的正向导通电压高,反向恢复特性差,导通损耗非常大,这就使采用MOSFET整流的优势大打折扣,为了解决这一问题,较为简单的做法是在S202的漏极和源极之间并联一个肖特基二极管D201,在S202截止的时间内,代替S202的体二极管续流,这 一方法增加的元件不多,线路简单,也很实用。 为了优化驱动波形,可以采用分离的辅助绕组来分别驱动两个同步整流管,比起传统的副边绕组直接驱动的同步整流变换器来说,这种驱动方式无工作电流通过驱动绕组,因此不需要建立输出电流的时间,MOSFET能够迅速开通,开通时的死区时间即体二极管导通的时间减少了一半。另一方面驱动电压不只局限于副边电压,可以通过调整辅助线圈来得到合适的驱动电压。 2 轻载条件下的同步整流 对于正激变换器,在主开关管截止的时间里,输出电流是靠输出储能电感里的能量维持的,因此变换器有两种可能的运行情况:电感电流连续模式(CCM,continuous current mode和电感电流断续模式(DCM,discontinuous current mode。

正激、反激、双管反激、推挽开关电路小结

开关电源电路学习小结 1.正激(Forward)电路 正激电路的原理图如图1所示: 图1、单管正激电路 1.1电路原理图说明 单管正极电路由输入Uin、滤波电容C1、C2、C3,变压器Trans、开关管VT1、二极管VD1、电感L1组成。 其中变压器中的N1、N2、N3三个线圈是绕在同一个铁芯上的,N1、N2的绕线方向一致,N3的绕线方向与前两者相反。 1.2电路工作原理说明 开关管VT1以一定的频率通断,从而实现电压输出。当VT1吸合时,输入电压Uin被加在变压器线圈N1的两边,同时通过变压器的传输作用,变压器线圈N2两边产生上正下负的电压,VD1正向导通。Uin的能量通过变压器Tran传输到负载。 由于N3的绕线方向与N1的相反,VT1导通时,N3的电压极性为上负下正。 当VT1关断时,N1中的电流突然变为0,但铁芯中的磁场不可能突变,N1产生反电动势,方向上负下正;N3则产生上正下负的反向电动势,多出的能量将被回馈到Uin。 通过上述内容可以看到W3的作用,就是为了能使磁场连续而留出的电流通路,采用

这种接线方式后,VT1断开器件,磁场的磁能被转换为电能送回电源。 如果没有N3,那么VT1关断瞬间要事磁场保持连续,唯有两个电流通路:一是击穿开关;二是N2电流倒流使二极管反向击穿。击穿开关或二极管,都需要很高电压,使击穿后电流以较高的变化率下降到零;而很高的电流变化率(磁通变化率)自然会产生很高的感生电动势来形成击穿电压。 由此可见,如果没有N3,则电感反向时的磁能将无法回收到电源;并且还会击穿开关和二极管。 1.3小结 1)正激电路使用变压器作为通道进行能量传输; 2)正激电路中,开关管导通时,能量传输到变压器副边,同时存储在电感中;开关管 关断时,将由副边回路中的电感续流带载; 3)正激电路的副边向负载提供功率输出,并且输出电压的幅度基本是稳定的。正激输 出电压的瞬态特性相对较好; 4)为了吸收线圈在开关管关断时时的反电动势,需要在变压器中增加一个反电动势吸 收绕组,因此正激电路的变压器要比反激电路的体积大; 5)由于正激电路控制开关的占空比都取0.5左右,而反激电路的占空比都较小,所以 正激电路的反激电动势更高。

(完整)高效单端正激DCDC变换器.

高效单端正激DC/DC变换器 高效单端正激DC/DC变换器 类别:电源技术 作者:西安交通大学王 鹤杨宏(西安710049)来源:《电源技术应用》 摘要:介绍一种特殊的单端正激DC/DC变换器,该变换器具有较高的功率传输效率和较大的功率输出。 关键词:单端正激变换器 高效 1 引言 DC/DC变换器广泛应用于通信、计算机及汽车等领域,近年来DC/DC 变换器技术有了很大的发展,重点是研究高效、高功率输出、结构简单和价廉的变换器。 本文介绍一种特殊的单端正激200W48V/24V变换器,由于电路的特殊结构,该变换器具有稳定性好、效率高、功率密度高等优点。 2 电路设计 该DC/DC变换器的控制电路选用TL494,它是一种性能优良、功能齐全的集成控制器,功能框图如图1所示,主要管脚功能如下: 12脚:接电源正端,电压范围7V~40V。 7脚:公共负端。 14脚:输出5V基准电压。 6脚:外接定时电阻RT,常取数kΩ以上。 5脚:外接定时电容CT,产生锯齿波电压送比较器和死区时间比较器,振荡频率为 f=1/RTCT 4脚:死区时间控制,输入直流电压(0~4)V,控制TL494输出脉冲的占空比=0.45~0,在此基础上,占空比还受反馈信号控制,4脚还常用作软起动控制端,使输出脉冲宽度由0逐渐达到设计值。

13脚:输出方式控制,当U13=0时,用于驱动单端电路。 TL494的内部包含两个相同的误差放大器,它们的输出端经二极管隔离后送至比较器的同相端,与反相端的锯齿电压相比较,并决定输出电压的宽度,调宽过程可由3脚上的电压来控制,也可分别经误差放大器进行控制。两个放大器独立使用,用于反馈电压和过流保护,3脚接RC网络,提高整个电路的稳定性。完整电路原理如图2所示。 输出电压UO经R1和R2分压后加到1脚,当UO变化时,误差放大器1的输出电压随之改变,即与锯齿波电压的比较电平发生改变,比较器输出的脉冲宽度改变,通过TL494输出的驱动脉冲改变开关管的导通时间,从而实现调宽稳压的目的。基准电压(14脚)另一路通过R9和R10分压后加到误差放大器的反相端15脚,同相端16脚接过流保护电阻R12的一端,当输出电流超过20A时,误差放大器2输出高电平,随之使开关管的导通时间变短,关断输出。 另外,为了提高整个电路的功率传输效率,该单端正激变换器未采用加去磁绕组的方案,去磁由接到变压器T次级电路的二极管、电容来完成。在设计时应精确计算电容的取值,确保磁通复位,二极管选用超快速恢复型,同时为防止变压器磁通饱和,在次级电路中采用直流隔离电容C8。磁性材料选用日本TDK公司的PC40。 3 实验结果 在实验过程中,进行了多次严酷环境下的老化实验,结果表明,该设计方案是可靠的,变换器的各项参数如下: 输入电压:(40~60)V; 输入电流:5A(满载时); 输出电压:24V; 电压调整率:0.02%(40~60)V输入时; 额定输出功率:200W; 峰值功率:400W; 效率:92%。 4 结语 该设计方案采用了独特的正激拓朴结构,从原理上提高了DC/DC变换器的效率,经过长时间的老化和各种恶劣环境下的实验,证明该设计方案是可行的。

正激式开关电源详解

正激式变压器开关电源工作原理 时间:2012-09-0414:50:17来源:作者: 正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路

完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管 D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充电;另一方面,流过反馈线圈N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。 由于控制开关突然关断,流过变压器初级线圈的励磁电流突然为0,此时,流过反馈线圈N3绕组中的电流正好接替原来励磁电流的作用,使变压器铁心中的磁感应强度由最大值Bm返回到剩磁所对应的磁感应强度Br位置,即:流过反馈线圈N3绕组中电流是由最大值逐步变化到0的。由此可知,反馈线圈N3绕组产生的感应电动势在对电源进行充电的同时,流过反馈线圈N3绕组中的电流也在对变压器铁心进行退磁。 图1-18是图1-17中正激式变压器开关电源中几个关键点的电压、电流波形图。图1-18-a)是变压器次级线圈N2绕组整流输出电压波形,图1-18-b)是变压器次级线圈N3绕组整流输出电压波形,图1-18-c)是流过变压器初级线圈N1绕组和次级线圈N3绕组的电流波形。

推挽电路

开关电源模块并联供电系统 摘要: 本系统以推挽电路为主电路、以集成PWM芯片SG3525为控制核心,实现24V输入、额定输出8V、满载16W的DC/DC变换。通过SG3525的闭环调整,两路DC/DC变换器实现并联输出,且两路输出电流可按指定比例调整。以单片机DSPIC30F2012为主控芯片,实现对DC/DC变换的电流采样、基准给定及系统的控制管理。 实验结果表明:DC/DC变换器在全负载范围内稳压精度大于99%,系统满载效率大于80%;按指定模式并联输出时,各DC/DC变换器的输出电流相对误差绝对值小于2%,且电路能精确实现过流保护。 Abstract: A push-pull circuit of the system is the main circuit, The SG3525 PWM chip integration for the control of the core, to achieve 24V input, depending on the output 8V, loaded with 16W of DC / DC converter. SG3525 through closed-loop adjustment, two DC / DC converters to achieve parallel output, and two output currents can be specified scaling. As the master chip to chip DSPIC30F2012, to achieve the DC / DC converter of the current sampling, the benchmark for a given system control and management. The results show that: DC / DC converter at full load regulation accuracy within 99% full load efficiency is more than 80%; parallel output mode specified when the DC / DC converter output current relative absolute error less than 2%, and the over-current protection circuit accurately. 关键字:开关电源;推挽式变换电路;SG3525、 1.方案论证与选择 1.1主电路的选择方案 方案一:主电路部分采用推挽式变换电路。该电路的结构特点就相当于两个单端正激变换电路通过高频变压器形成并联结构,电路不需单独的去磁电路就能正常工作。由于推挽式开关电源中的两个控制开关轮流交替工作,其输出电压波形非常对称,并且开关电源在整个周期之内都向负载提供功率的输出,因此推挽式开关电源是所有开关电源中电压利用率最高的开关电源。其主要优点有: (1)推挽式开关电源输出电流瞬态响应是速度较高,电压输出特性比较好; (2)推挽式变换电路的功率开关管是共地的,驱动时不用隔离,因此驱动方便;(3)只用两只功率管就可以输出较大功率; (4)推挽式变换电路的功率开关管最大承受而被的输入电压。

全桥-半桥-推挽-正激-反激的优缺点比较及应用场合分析

全桥,半桥,推挽,正激,反激的优缺点比较及应用场 合分析 优缺点比较 一、全桥式开关电源的优点和缺点 1、全桥式变压器开关电源输出功率很大,工作效率很高 全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。 2、全桥式开关电源的优点是开关管的耐压值特别的低 全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。其最高耐压等于工作电压与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。 3、全桥式变压器开关电源主要用于输入电压比较高的场合 在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率大很多。因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。而在输入电压较低的情况下,推挽式变压器开关电源的输出功率又要比全桥式变压器开关电源的输出功率大很多。 4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些 因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。 5、 与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。但对于大功率开关电源变压器的线圈绕制没有优势,因为,大功率开关电源变压器的线圈需要用多股线来绕。 6、

相关文档
最新文档