轻量级分组密码算法ESF的不可能差分分析

轻量级分组密码算法ESF的不可能差分分析
轻量级分组密码算法ESF的不可能差分分析

代数分析及其对若干轻量级分组密码的应用

目录 代数分析及其对若干轻量级分组密码的应用 (1) 摘要.................................................................................................................................................................. I ABSTRACT ................................................................................................................................................... I II 目录. (1) 第一章绪论 (1) 1.1研究背景 (1) 1.2研究内容与创新点 (3) 1.3论文结构 (3) 第二章代数分析基本方法 (5) 2.1代数分析的起源 (5) 2.2代数方程的构建方法 (6) 2.2.1S盒的代数描述 (6) 2.2.2 相遇式方程构造方法 (10) 2.3代数方程的求解方法 (12) 2.3.1 基于Gr?bner基的求解方法 (12) 2.3.2 基于可满足性问题的求解方法 (14) 2.3.3 其它求解方法 (16) 2.4本章小结 (17) 第三章差分方法在代数分析中的应用 (18) 3.1采用差分构建中间变量的等式 (18) 3.2采用差分构建轮密钥的等式 (20) 3.3基于差分S盒的应用形式 (21) 3.3.1 差分S盒的定义 (21) 3.3.2 使用差分S盒模拟加密 (21) 3.3.3 基于模拟加密的代数攻击 (23) 3.4差分链搜索算法 (25) 3.4.1 搜索中的候选链接 (25)

国内外分组密码理论与技术的研究现状及发展趋势

国内外分组密码理论与技术的研究现状及发展趋势 1 引言 密码(学)技术是信息安全技术的核心,主要由密码编码技术 和密码分析技术两个分支组成。密码编码技术的主要任务是寻求产 生安全性高的有效密码算法和协议,以满足对数据和信息进行加密 或认证的要求。密码分析技术的主要任务是破译密码或伪造认证信 息,实现窃取机密信息或进行诈骗破坏活动。这两个分支既相互对 立又相互依存,正是由于这种对立统一的关系,才推动了密码学自 身的发展[6]。目前人们将密码(学)理论与技术分成了两大类, 一类是基于数学的密码理论与技术,包括分组密码、序列密码、公 钥密码、认证码、数字签名、Hash函数、身份识别、密钥管理、 PKI技术、VPN技术等等,另一类是非数学的密码理论与技术,包括 信息隐藏、量子密码、基于生物特征的识别理论与技术等。 在密码(学)技术中,数据加密技术是核心。根据数据加密所 使用的密钥特点可将数据加密技术分成两种体制,一种是基于单密 钥的对称加密体制(传统加密体制),包括分组密码与序列密码, 另一类是基于双密钥的公钥加密体制。本文主要探讨和分析分组密 码研究的现状及其发展趋势。 2 国内外分组密码研究的现状 2.1 国内外主要的分组密码 美国早在1977年就制定了本国的数据加密标准,即DES。随着 DES的出现,人们对分组密码展开了深入的研究和讨论,已有大量 的分组密码[1,6],如DES的各种变形、IDEA算法、SAFER系列算 法、RC系列算法、Skipjack算法、FEAL系列算法、REDOC系列算 法、CAST系列算法以及Khufu,Khafre,MMB,3- WAY,TEA,MacGuffin,SHARK,BEAR,LION,CA.1.1,CRAB,Blowfish,GOST,SQUA 算法和AES15种候选算法(第一轮),另有NESSIE17种候选算法 (第一轮)等。 2.2 分组密码的分析 在分组密码设计技术不断发展的同时,分组密码分析技术也得 到了空前的发展。有很多分组密码分析技术被开发出来,如强力攻 击(穷尽密钥搜索攻击、字典攻击、查表攻击、时间存储权衡攻 击)、差分密码分析、差分密码分析的推广(截段差分密码分析、 高阶差分密码分析、不可能差分密码分析)、线性密码分析、线性 密码分析的推广(多重线性密码分析、非线性密码分析、划分密码 分析)、差分线性密码分析、插值攻击、密钥相关攻击、能量分 析、错误攻击、定时攻击等等。 其中,穷尽密钥搜索攻击是一种与计算技术密不可分的补素密码分 析技术,也是最常用的一种密码分析技术。通过这种技术,可以破 译DES的算法。在DES最初公布的时候,人们就认为这种算法的密钥 太短(仅为56bit),抵抗不住穷尽密钥搜索的攻击。因此,1997 年1月28日,美国colorado的程序员Verser从1997年3月13日起, 在Internet上数万名志愿者的协同下,用96天的时间,于1997年6

现代密码学-第3章分组密码习题与解答-20091206

第3章 分组密码 习题及参考答案 1. 设DES 算法中,明文M 和密钥K 分别为: M =0011 1000 1100 0100 1011 1000 0100 0011 1101 0101 0010 0011 1001 1110 0101 1110 K =1010 1001 0011 0101 1010 1100 1001 1011 1001 1101 0011 1110 1101 0101 1100 0011 求L 1和R 2。 解: 初始变换IP : 1001 1010 1101 0101 1101 0010 0011 1000 0101 0110 0010 0101 1100 0101 1110 1000 则,0L =1001 1010 1101 0101 1101 0010 0011 1000 0R =0101 0110 0010 0101 1100 0101 1110 1000 K 去校验位得: 0C =1101 0111 1100 0000 0010 0111 0111 0D =1010 1000 0111 0110 0011 0101 0010 循环左移一位:1C =1010 1111 1000 0000 0100 1110 1111 1D =0101 0000 1110 1100 0110 1010 0101 经过置换选择得到:1K =0000 1111 0110 1000 1101 1000 1001 1010 1000 0111 0011 0001 同样可以得到:2K =0101 0101 0110 0001 1101 1101 1011 0101 0101 0000 0110 1110 1L =0R =0101 0110 0010 0101 1100 0101 1110 1000

分组密码算法

实验二分组密码算法DES 一、实验目的 通过用DES算法对实际的数据进行加密和解密来深刻了解DES的运行原理。 二、实验原理 分组密码是一种对称密码体制,其特点是在明文加密和密文解密的过程中,信息都是按照固定长度分组后进行处理的。在分组密码的发展历史中,曾出现了许多优秀的算法,包括DES,IDEA,AES,Safer++等等。下面以DES算法为例介绍分组密码算法的实现机制。 DES算法将明文分成64位大小的众多数据块,即分组长度为64位。同时用56位密钥对64位明文信息加密,最终形成64位的密文。如果明文长度不足64位,即将其扩展为64位(如补零等方法)。具体加密过程首先是将输入的数据进行初始置换(IP),即将明文M中数据的排列顺序按一定的规则重新排列,生成新的数据序列,以打乱原来的次序。然后将变换后的数据平分成左右两部分,左边记为L0,右边记为R0,然后对R0实行在子密钥(由加密密钥产生)控制下的变换f,结果记为f(R0,K1),再与L0做逐位异或运算,其结果记为R1,R0则作为下一轮的L1。如此循环16轮,最后得到L16、R16,再对L16、R16实行逆初始置换IP-1,即可得到加密数据。解密过程与此类似,不同之处仅在于子密钥的使用顺序正好相反。DES全部16轮的加密过程如图1-1所示。 DES的加密算法包括3个基本函数: 1.初始置换IP 它的作用是把输入的64位数据块的排列顺序打乱,每位数据按照下面的置换规则重新排列,即将第58位换到第一位,第50位换打第2位,…,依次类推。置换后的64位输出分为L0、R0(左、右)两部分,每部分分别为32位。 58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4 62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8 57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3 61 53 45 37 29 21 13 5 63 55 47 39 31 23 1

基于3DES算法的文档加密的设计与实现

青岛农业大学 本科生毕业论文(设计) 题目基于3DES算法的文档加密的设计与实现姓名: 学院: 专业: 班级: 学号: 指导教师: 完成时间: 2013年6月10日

基于3DES算法的文档加密的设计与实现 摘要:随着社会进入信息化时代,由于互联网的开放性,网络资源的共享性、网络操作系统的漏洞、网络系统设计的缺陷、网络的开放性以及恶意攻击等等,都给网络带来了不安全的隐患,计算机和信息的安全问题将更加突出,网络和连接在网络上的信息系统面临着各种复杂的、严峻的安全威胁。因此,如何保障数据和信息的安全已成为人们关注的问题。 3DES(Triple DES) 是三重数据加密算法, 也是DES(Data Encryption Algorithm)向AES(Advanced Encryption Standard)过渡的加密算法。1999年,美国的NIST将3DES指定为过渡的加密标准。它比DES具有更高的安全性,克服了DES因密钥长度短而造成的暴力攻击。 本文对3DES数据加密算法进行了全面介绍,分析了该算法的设计思想。并且基于3DES数据加密算法,采用VS2010的开发环境,实现了对文件的加密与解密,从而为保障数据和文档的安全性提供了支持。 关键字:信息安全;加密;密码学;3DES加密算法

The design and implementation of the document encryption based on 3DES algorithm Abstract: As society into the information age, the openness of the Internet, network resource sharing, network operating system vulnerabilities, network system design flaws, network openness and malicious attacks, etc., gave network brings insecurity hidden, computer and information security issues will become more prominent, networks, and connected to the network of information systems face a variety of complex and serious security threat. Therefore, how to protect the data and information security has become an issue of concern. 3DES (Triple DES) is a triple data encryption algorithm is DES to AES encryption algorithm transition. In 1999, the U.S. NIST the 3DES encryption standards specified for the transition. It has a higher than DES security, to overcome the short key length DES caused due to violent attacks. In this paper, 3DES data encryption algorithm is fully described, analysis of the algorithm design. And based on 3DES data encryption algorithm, using. NET development techniques, to achieve the document encryption and encryption, so as to safeguard the security of data and documents provided support. The keyword: Information Security; Encryption; Cryptography; 3DES encryption algorithm

轻量级密码研究综述

轻量级密码研究进展综述 摘要:随着物联网的发展,RFID、无线传感器的应用越来越广泛,为了保护这类资源受限设备所传输、处理的数据,轻量级密码应运而生,并成为密码学的一个研究热点,取得了丰富的研究成果。本文介绍了轻量级密码的研究进展,包括轻量级密码的设计要求及设计特点、典型的轻量级分组密码和流密码,并总结了轻量级密码的实现性能和安全性。 关键词:分组密码流密码轻量级硬件效率设计分析 1.引言 随着信息技术、计算机技术以及微电子技术的高速发展,RFID技术开始被大量应用于生产自动化、门禁、公路收费、停车场管理、身份识别、货物跟踪等领域,而由RFID技术与互联网结合实现的物联网作为新一代信息化浪潮的典型代表正逐步深入到人们生活的各个领域中,例如环境监测、现代物流、智能交通等。2009年我们国家提出建立“感知中国”中心,这一举措极大地促进了国内RFID技术和物联网应用的发展。 作为信息传递和处理的网络,全面感知、可靠传送和智能处理是物联网的核心功能。要实现可靠数据传送必须以密码算法为基础提供相应的安全服务,所以相应的密码算法研究是保障物联网安全运行的关键技术之一。而与物联网关系密切,也需要密码算法作为基础支撑的无线传感器网络也是近年来发展迅猛的领域之一。作为密码算法的使用环境,无线传感器和物联网具有共同的特征:首先,它们的应用组件不同于传统的台式机和高性能计算机,而是计算能力相对较弱的嵌入式处理器;其次,由于应用环境的关系,计算可使用存储往往较小;最后,考虑到各种设备的功能需求,能耗必须限制在某个范围之内。因此传统密码算法无法很好地适用于这种环境,这就使得受限环境中密码算法的研究成为一个热点问题。适宜资源受限环境使用的密码算法就是所谓的轻量级密码。源于应用的推动,近几年,轻量级密码的研究非常热,取得了丰富的研究成果。国际标准化组织正在制定轻量级密码的相关标准,其中包括轻量级的分组密码、流密码、数字签名等。本文介绍轻量级密码的研究进展,包括轻量级密码的设计要求及设计特点、典型的轻量级密码算法,以及典型的轻量级密码算法的实现效率和安全性分析。

信息安全技术 分组密码算法的工作模式 编制说明

国家标准《信息安全技术分组密码算法的工作模式》 (征求意见稿)编制说明 一、工作简况 1、任务来源 本标准由国家标准化管理委员会下达的国家标准编制计划,项目名称为《信息安全技术分组密码算法的工作模式》(国标计划号:),项目类型为标准修订,项目所属工作组为WG3工作组,项目牵头单位为成都卫士通信息产业股份有限公司。 2、主要起草单位和工作组成员 该标准由成都卫士通信息产业股份有限公司主要负责起草,中国科学院软件研究所、中国科学院数据与通信保护研究教育中心、国家密码管理局商用密码检测中心、格尔软件股份有限公司、西安西电捷通无线网络通信股份有限公司、上海信息安全工程技术研究中心、……共同参与了该标准的起草工作。主要起草人有:张立廷,眭晗,涂彬彬,王鹏,毛颖颖,郑强,张国强,徐明翼,罗俊。 3、主要工作过程 2019年4月之前,编制团队分析GB/T 17964-2008标准文本及理论研究、行业应用情况,认为有必要修订该标准,原因如下: 1)学术界持续分析研究工作模式,产生了新的成果;产业界广泛应用工作模式,积攒了新的应用经验;有必要收集归纳。 2)现有标准文本未列举国家标准分组密码算法对应的测试向量,数据加密厂商、相关管理部门缺乏具体的参考数据。 3)产业界对现有标准之外的部分工作模式存在着强烈的应用需求,如磁盘加密模式XTS等,有必要评估引进的可行性。 4)国家标准化推进过程中,产生了与本标准相关的一些标准,如GB/T 36624-2018 《信息技术安全技术可鉴别的加密机制》,有必要在修订版本中做出协调性说明。 2019年4月,全国信息安全标准化技术委员会(以下简称“信安标委”)2019年第一次工作组会议周,在WG3工作组会议上,编制团队向专家和工作组成员单位汇报了《信息安全技术分组密码算法的工作模式》(投票草案稿)修订情况,

对称加密算法的设计与实现 精品

延 边 大 学 ( 二 〇 一 三 年 五 月 摘 要 本 科 毕 业 论 文 本科毕业设计 题 目:基于D E S 的对称加密算法的 设计与实现 学生姓名:周莹冰 学 院:工学院 专 业:数字媒体技术 班 级:2009级 指导教师:李永珍 副教授

随着信息时代的来临,信息的安全性变得尤为重要,而对数据进行加密是行之有效的能保证信息安全性的方法。DES算法是众多数据加密算法中的一种,在过去的几十年中在数据加密领域有着举足轻重的地位,然而随着计算机技术的发展,DES算法的安全性也被大大地降低,针对DES的暴力破解所用的时间在逐年减少,为了能使DES这种优秀的加密算法能够重新使用,本文将针对就DES的暴力破解提供一种有效的解决方案:基于DES算法迭代算法的改进,对DES的密钥长度进行了扩展。使DES的安全性得到了增强,同时相较于DES算法的改进算法3DES算法,效率上会比3DES高,安全性上也不会逊色于3DES。 关键词:DES;密钥扩展;迭代算法; Abstract

With the coming of information age, information security has become especially important, and to encrypt data is effective to ensure the security of the information. DES algorithm is one of data encryption algorithms, in the past few decades has a pivotal position in the field of data encryption. however, with the development of computer technology, the security of DES algorithm also has been greatly reduced, the time of brute force of DES has been reducing year by year, in order to make this good encryption algorithm can be used again, this article will focus on the DES of brute force to provide an effective solution: based on iterative algorithm of DES algorithm, and extended the length of DES key. To make the security of DES more enhanced, at the same time, compared with the 3 DES algorithm, the efficiency will be higher than 3 DES, and security will not inferior to 3 DES. Key word: DES; key expansion;iterative algorithm

SM4算法、AES算法、DES算法三种分组密码的基础分析

SM4算法、AES算法、DES算法三种分组密码的基础分析  分组密码当中代表性的SM4算法、AES算法、DES算法在计算机和通信系统中起着重要的实际作用,每一种的算法都会有其独有的一份结构,讲解起来其实每一种都有很大的一个篇幅。在这里主要是把这几种密码算法放在一起做一个简单的分析,也可以通过了解每一种算法来比较一下三者之间的差别。 那么,我们就通过了解SM4算法、AES算法、DES算法这几种有代表性的近代分组密码来讨论一下分组密码的基本理论及其在计算机和通信系统中的实际应用。 1、SM4算法 SM4密码算法是一个分组算法,其算法设计简沽,结构有特点,安全高效。数据分组长度为128比特,密钥长度为128比特。加密算法与密钥扩展算法均采取32轮迭代结构。SM4密码算法以字节8位和字节32位作为单位进行数据处理。SM4密码算法是对合运算,因此解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。 SM4密码算法结构 SM4算法的基本内容有以下几方面: 基本运算:SM4密码算法使用模2加和循环移位作为基本运算。 基本密码部件:SM4密码算法使用了S盒、非线性变换τ、线性变换部件L、合成变换T基本密码部件。 轮函数:SM4密码算法采用对基本轮函数进行迭代的结构。利用上述基本密码部件,便可构成轮函数。SM4密码算法的轮函数是一种以字为处理单位的密码函数。 加密算法:SM4密码算法是一个分组算法。数据分组长度为128比特,密钥长度为128比特。加密算法采用32轮迭代结构,每轮使用一个轮密钥。 解密算法:SM4密码算法是对合运算,因此解密算法与加密算法的结构相同,只是轮密铝的使用顺序相反,解密轮密钥是加密轮密钥的逆序。 密钥扩展算法:SM4密码算法使用128位的加密密钥,并采用32轮法代加密结构,每一轮加密使用一个32位的轮密钥,共使用32个轮密钥。因此需要使用密钥扩展算法,从加密密钥产生出32个轮密钥。 SM4的安全性:SM4密码算法经过我国专业密码机构的充分分析测试,可以抵抗差分攻击、线性攻击等现有攻击,因此是安全的。 2、AES算法 2000年10月2日美国政府正式宣布选中比利时密码学家JoanDaemen和VincentRijmen提出的一种密码算法RJNDAEL作为AES,目前AES己经被一些国际标准化组织ISO,IETF,IEEE802.11等采纳作为标准。RIJNDAEL算法之所以能够最终被选为AES的原因是其安全、性能好、效率高、实用、灵活。RIJNDAEL算法是一个数据块长度和密钥长度都可变的分组加密算法,其数据块长度和密钥长度都可独立地选定为大于等于128位且小于等于256位的32位的任意倍数。 RIJNDAEL算法结构图 AES算法的基本内容有以下几方面: 状态:在RIJNDAEL算法中,加解密要经过多次数据变换操作,每一次变换操作产生一个中间结果,称这个中间结果叫做状态。各种不向的密码变换都是对状态进行的。 轮函数:RIJNDAEL加密算法的轮函数采用代替置换网络结构SP结构,由S盒变换ByteSub、行移位变换ShiftRow、列混合变换MixColumn、圈密钥加变换AddRoundKey组成。 圈密钥产生算法:圈密钥根据圈密钥产生算法由用户密钥产生得到,圈密钥产生分两步进行:密钥扩展和圈密钥选择。 加密算法:RIJNDAEL加密算法由一个初始圈密钥加、Nr-l圈的标准轮函数、最后一圈的非标准轮函数组成。 解密算法:RIJNDAEL算法不是对合运算,因此RIJNDAEL的解密算法与加密算法不同。由于RIJNDAEL设计得非常巧妙,使得我们只要略稍改变一下密钥扩展策略,便可以得到等价的解密算法,等价解密算法的结构与加密算法的结构相同,从而方便了工程实现。等价解密算法中的变换为加密算法中相应变换的逆变换。 RIJNDEAEL的安全性:RIJNDEAEL算法的安全设计策略是宽轨迹策略WideTrai1Strategy,具有很高的安全性,能有效抵抗自前己知的攻击,如线性攻击、插值攻击、差分攻击和相关密钥攻击等。RIJNDEAEL的数据块长度和密钥长度都可变,因此能够适应不同的安全应用环境。 3、DES算法

两种基本古典密码设计与实现

实验二两种基本古典密码设计与实现 091234 谢锦仪一、实验目的: 该实验为验证性实验。 通过本实验,使学生对于两种基本的古典密码编码方法(“代替”与“移位”)产生深刻的感性认识,体验清楚二者之间的本质差异,为理解和掌握现代密码的相应知识打下良好基础。 二、实验内容: 1.设计一个周期3的多表代换并予以实现,要求:第一个表有密钥字法产生(密钥字自拟),第二个表由洗牌法产生(注意,字母a~z与数字0~25一一对应,洗牌法即相当于实验一的方法1(n=25)),第三个表由公式法产生(数学公式自拟,注意它须是Z26上的一个一一变换)。 2.设计一个周期5的16-置换移位密码并予以实现,要求:5个16-置换至少有一个是由实验一(n=15)提供的两个方法以为、自行设计的其它方法产生。 三、实验要求: 1. 上述两个古典密码的编程实现,须能对下面一段明文进行正确加密(对代 替密码,空格和标点符号保持不动;对移位密码,空格和标点符号也移位): Q is a symmetric block cipher. It is defined for a block size of 128 bits. It allows arbitrary length passwords. The design is fairly conservative. It consists of a simple substitution-permutation network. In this paper we present the cipher, its design criteria and our analysis. The design is based on both Rjindael and Serpent. It uses an 8-bit s-box from Rjindael with the linear mixing layers replaced with two Serpent style bit-slice s-boxes and a linear permutation. The combination of methods eliminates the high level structure inherent in Rjindaelwhile having better speed and avalanche characteristics than Serpent. Speedis improved over Serpent. This version 2.00 contains better analysis, editorialchanges, and an improved key scheduling algorithm. The number ofrecommended rounds is also increased. 2. 抓图显示密文(附页),不能出现明显错误。 四、实验步骤: 1、实验思路 对于代替密码,难点是大小写的转化和保持加密后大小写的不变。这里利用了专门的字符处理函数库ctype。用Tolower函数将大写转化为小写,然后转化为数字。这样才能容易的实现代替加密的过程。在密钥字算法的实现中,利用字符串处理函数的功能,在拼接比较后,录入到choicewords中,最后进入keytab,作为密钥的一部分。洗牌法我用的是实验一自己设计的方法,很简单就融入了这个程序之中。 移位密码:由于老师要求用一种全新的产生全排列的方法,我于是想到了RSA公钥体制。这里面RSA算法是密码学三大算法之一(RSA、MD5、DES),是一种不对称密码算法。

(完整版)密码学期末考试复习

填空题 1、密码学的主要任务是实现机密性、鉴别、数据完整性、抗抵赖性。 1、机密性是一种允许特定用户访问和阅读信息,而非授权用户对信息内容不可理解的安全属性。在密码学中,信息的机密性通过加密技术实现。 2、完整性数据完整性即用以确保数据在存储和传输过程中不被非授权修改的的安全属性。密码学可通过采用数据加密、报文鉴别或数字签名等技术来实现数据的完整性保护。 3、鉴别是一种与数据来源和身份鉴别有关的安全服务。鉴别服务包括对身份的鉴别和对数据源的鉴别。对于一次通信,必须确信通信的对端是预期的实体,这就涉及到身份的鉴别。 4、抗抵赖性 是一种用于阻止通信实体抵赖先前的通信行为及相关内容的安全特性。密码学通过对称加密或非对称加密,以及数字签名等技术,并借助可信机构或证书机构的辅助来提供这种服务。 5、密码编码学的主要任务是寻求有效密码算法和协议,以保证信息的机密性或认证性的方法。它主要研究密码算法的构造与设计,也就是密码体制的构造。它是密码理论的基础,也是保密系统设计的基础。 6、密码分析学的主要任务是研究加密信息的破译或认证信息的伪造。它主要是对密码信息的解析方法进行研究。 7、明文(Plaintext)是待伪装或加密的消息(Message)。在通信系统中它可能是比特流,如文本、位图、数字化的语音流或数字化的视频图像等。 8、密文(Ciphertext)是对明文施加某种伪装或变换后的输出,也可认为是不可直接理的字符或比特集,密文常用c表示。 9、加密(Encrypt )是把原始的信息(明文)转换为密文的信息变换过程。 10、解密(Decrypt)是把己加密的信息(密文)恢复成原始信息明文的过程。 11、密码算法(Cryptography Algorithm)也简称密码(Cipher),通常是指加、解密过程所使用的信息变换规则,是用于信息加密和解密的数学函数。对明文进行加密时所采用的规则称作加密算法,而对密文进行解密时所采用的规则称作解密算法。加密算法和解密算法的操作通常都是在一组密钥的控制下进行的。 11、密钥(Secret Key )密码算法中的一个可变参数,通常是一组满足一定条件的随机序列 12、替代密码是指先建立一个替换表,加密时将需要加密的明文依次通过查表,替换为相应的字符,明文字符被逐个替换后,生成无任何意义的字符串,即密文,替代密码的密钥就是其替换表。 13、根据密码算法加解密时使用替换表多少的不同,替代密码又可分为单表替代密码和多

对轻量级分组密码I-PRESENT-80和I-PRESENT-128的biclique攻击

2017年11月 Journal on Communications November 2017 2017214-1 第38卷第11期 通 信 学 报 V ol.38 No.11对轻量级分组密码I-PRESENT-80和 I-PRESENT-128的biclique 攻击 崔杰,左海风,仲红 (安徽大学计算机科学与技术学院,安徽 合肥 230039) 摘 要:I-PRESENT 是一种适用于RFID 、无线传感节点等资源受限环境的代换——置换型分组密码。利用中间 筛选技术来构造I-PRESENT 的biclique 结构,首次对全轮I-PRESENT-80和I-PRESENT-128算法进行了biclique 攻击。结果表明,biclique 对I-PRESENT-80和I-PRESENT-128攻击的数据复杂度分别为262和362个选择密文; 攻击的时间复杂度分别为79.482和127.332次加密。攻击在时间复杂度和数据复杂度上均优于穷举。利用提出的 I-PRESENT 的密钥相关性技术,攻击的时间复杂度可以进一步降低到78.612和126.482。 关键词:轻量级分组密码;PRESENT ;预计算匹配;biclique 攻击 中图分类号:TN918.1 文献标识码:A Biclique cryptanalysis on lightweight block ciphers I-PRESENT-80 and I- PRESENT-128 CUI Jie, ZUO Hai-feng, ZHONG Hong (College of Computer Science and Technology, Anhui University, Hefei 230039, China) Abstract: I-PRESENT was a lightweight SPN block cipher for resource-constraint environments such as RFID tags and sensor networks. The biclique structures of I-PRESENT with sieve-in-the-middle technique was an constracted. The bic- lique cryptanalysis schemes on full-round I-PRESENT-80 and I-PRESENT-128 were proposed for the first time. The re- sults show that the data complexity of the biclique cryptanalysis on I-PRESENT-80 and I-PRESENT-128 is 262and 362chosen ciphertexts respectively ,and the time complexity on them is 79.482and 127.332encryptions respectively. The time and data complexity are better than that of the exhaustive attack. In addition, the time complexity on them can be reduced to 78.612and 126.482encryptions by using related-key technology of I-PRESENT. Key words: lightweight block cipher, PRESENT, matching-with-precomputations, biclique cryptanalysis 1 引言 随着射频识别标签(RFID tags)、物联网(Internet of Things)和无线传感节点(wireless sensor node)等 低资源设备的发展,使轻量级密码技术逐渐成为一 种热门研究领域,在该领域中寻找满足不同低资源 设备安全目的的解决方案就显得尤为重要。迄今为 止,有许多的轻量级分组密码都满足低资源设备的 要求,比如PRESENT [1]、the KATAN and KTANTAN families [2]、LBLOCK [3]、LED [4]、PRINCE [5]和the Simon and the Speck families [6]。 I-PRESENT [7]算法是一种代换——置换网络型对合的轻量级分组密码,是对PRESENT 算法的改进。I-PRESENT 的主要优点是使用了对合函数,使加密电路和解密电路完全相同,以及密码的混淆扩散速度更迅速。这对于需要实现2种电路的密码环境来说是一个比较大的优势。 biclique 攻击方法首次是由Khovratovich 等[8]在收稿日期:2017-05-18;修回日期:2017-08-10 基金项目:国家自然科学基金资助项目(No.61502008, No.61572001);安徽省自然科学基金资助项目(No.1508085QF132)Foundation Items: The National Natural Science Foundation of China (No.61502008, No.61572001), The Natural Science Founda-tion of Anhui Province (No.1508085QF132) doi:10.11959/j.issn.1000-436x.2017214

密码学试题

选择题 1、如果发送方用私钥加密消息,则可以实现() A、保密性 B、保密与鉴别 C、保密而非鉴别 D、鉴别 2、在混合加密方式下,真正用来加解密通信过程中所传输数据(明文)的密钥是() A、非对称算法的公钥 B、对称算法的密钥 C、非对称算法的私钥 D、CA中心的公钥 3、以下关于加密说法,不正确的是() A、加密包括对称加密和非对称加密两种 B、信息隐蔽是加密的一种方法 C、如果没有信息加密的密钥,只要知道加密程序的细节就可以对信息进行解密 D、密钥的位数越多,信息的安全性就越高 4、以下关于混合加密方式说法不正确的是:() A、采用公开密钥体制进行通信过程中的加解密处理 B、采用公开密钥体制对对称密钥体制的密钥进行加密后的通信 C、采用对称密钥体制对对称密钥体制的密钥进行加密后的通信 D、采用混合加密方式,利用了对称密钥体制的密钥容易管理和非对称密钥体制的加解密处理速度快的双重优点 5、两个不同的消息摘要具有相同的值时,称为() A、攻击 B、冲突 C、散列 D、都不是

6、()用于验证消息完整性。 A、消息摘要 B、加密算法 C、数字信封 D、都不是 7、HASH函数可应用于()。 A、数字签名 B、生成程序或文档的“数字指纹” C、安全存储口令 D、数据的抗抵赖性 8、数字证书采用公钥体制,每个用户设定一把公钥,由本人公开,用它进行: A、加密和验证签名 B、解密和签名 C、加密 D、解密 9、数字签名为保证其不可更改性,双方约定使用() A、HASH算法 B、RSA算法 C、CAP算法 D、ACR算法 10、1是网络通信中标志通信各方身份信息的一系列数据,提供一种在Internet上验证身份的方式 A、数字认证 B、数字证书 C、电子证书 D、电子认证 11、以下关于CA认证中心说法正确的是

AES加密解密算法的设计与实现

目录 1.引言 (1) 2.AES加密解密原理 (2) 3.AES加密解密算法的组成部分 (6) 3.1密钥部分 (6) 3.1.1 AES的S盒 (6) 3.1.2 AES的逆S盒 (7) 3.1.3 轮常量 (8) 3.1.4密钥移位函数 (8) 3.1.5密钥字代换函数 (8) 3.1.6密钥扩展算法 (9) 3.2加密的部分 (10) 3.2.1轮密钥加变换AddRoundKey(与密钥扩展的异或运算) (10) 3.2.2字节代换SubBytes(即S盒变换) (11) 3.2.3行移位变换ShiftRows (13) 3.2.4列混淆变换MixColumns (14) 3.3解密的部分 (15) 3.3.1逆行移位变换InvShiftRows (15) 3.3.2逆向字节代换(即逆S盒变换) (16) 3.3.3轮密钥加变换 (17) 3.3.4逆列混淆变换 (17) 4.AES加密解密算法的改进 (18) 5.结束语 (19)

1.引言 对称密码算法主要用于保证数据的机密性,通信双方在加密/解密过程中使用它们共享的单一密钥。对称密码算法的使用相当广泛,密码学界已经对它们进行了深入的研究[1]。最常用的对称密码算法是数据加密标准(DES) 算法,它是由IBM在美国国家安全局(NSA) 授意之下研制的一种使用56 位密钥的分组密码算法[2]。该算法从1977 年公布成为美国政府的商用加密标准后,使用了30 多年。 随着社会的发展,科学技术日新月异,密码分析水平、芯片处理能力和计算技术也不断地进步,二十世纪七十年代到现在应用广泛的DES数据加密标准算法因为其密钥长度较小(仅有56位),已经越来越难适应当今社会的加密技术和安全要求,其实现速度、代码大小和跨平台性也不足以适应新的各种应用要求。 1997年,RSA安全赞助了一系列的竞赛,奖励第一个成功破解以DES加密的信息的队伍1万美元,洛克·韦尔谢什(Rocke Verser),马特·柯廷(Matt Curtin)和贾斯廷·多尔斯基(Justin Dolske)领导的DESCHALL计划获胜,该计划使用了数千台连接到互联网的计算机的闲置计算能力[3]。证明了DES的密钥长度(56位),能被当前社会加密解密技术破解,其安全性有待提高。1998年,电子前哨基金会(EFF,一个信息人权组织)制造了一台DES破解器[4]。虽然其制造价格约$250,000,但是它用两天多一点儿的时间就暴力破解了一个密钥,显示出迅速破解DES的可能性,说明了DES的安全性已经开始降低。 DES 的主要问题是其密钥长度较短(仅56位),已经不适应当今分布式开放网络对数据加密安全性的要求。随着计算机能力的突飞猛进,已经超期服役的DES终于显得力不从心。在这种形势下,迫切需要设计一种强有力的算法作为新的一代分组加密标准,所以在DES 每隔五年的评估会议中, 1997年美国国家标准技术研究院(NIST,National Institute of Standards and Technology)公开征集新的数据加密标准,最后一次美国政府终于决定不再继续延用DES作为联邦加密标准,也就表明了DES 将退出加密标准的舞台,而新的标准:高级加密标准AES(Advanced Encryption Standard) 走上了历史的舞台[5]。该算法作为新一代的数据加密标准汇聚了安全性、效率、密钥灵活性、多样性、简单性和对称性等优点。 因此1997年美国国家标准技术研究院(NIST,National Institute of Standards and Technology)公开征集新的数据加密标准,即AES[6]。该算法作为新一代的数据加密标准 1

(完整版)密码学复习题

一、选择 1.若一个单向函数存在一个附加信息,当不知道该附加信息时从函数值求原像是困难的,但是知道 该附加信息时从函数求原像是容易的,则该单向函数是 A.陷门单向函数 B.门陷单向函数 C.完全单向函数D容量单向函数 2.标志着公钥密码学诞生的事件是 A. C.Shannon发表的保密系统的通信理论 B.W.Diffle和M.Hellman发表“密码学的新方向”一文 C. C.RSA加密公钥的提出 D.维吉利亚密码体制的提出。 3.下列密码体制中,被认为无条件安全的是 A.一次一密乱码本(one-time pad) B.ElGamal C.RSA D.Cramer-Shop 4.下列密码体制中,不属该分组密码的是 A.IDEA B.AES C.ElGamal D.DES 5.目前通称的AES算法指的是 A.Terpent算法 B.RCG算法 C.Rijndael算法 D.Tuofish算法 二、填空 1.按照一个明文字母是否总是被一个固定的字母代换进行划分,代换密码可分为单表代换密码和 多表代换密码。 2.经典密码学的2个分支:密码编码学和密码分析学。 3.根据攻击者所拥有的信息不同,对数字签名方案的攻击主要有惟密钥攻击,已知消息攻击,选 择消息攻击,适应性选择消息攻击四种常见的类型。 4.分组密码主要有电子密码本模式(ECB) ,密码分组链接模式(CBC) ,密码反馈模式(CFB) , 输出反馈模式(OFB) 。 5.根据密码分析者破译时已具备的条件,把对密码系统的常见攻击分为惟密文攻击,已知明文攻 击,选择明文攻击,选择密文攻击。 三、问答 1.Feistel 密码结构主要部件是哪些?它在迭代运算中起到什么作用? ANS:Feistel密码是通过代替和置换(S-P网络)交替的方式来构造分组密码,其实就是基于混乱和扩散原理实现加解密运算。 S盒变换:它把输入的一个n长的比特串转化为另一个m长的比特串输出。 P盒变换:通过把一个比特串中各比特的位置次序重新排列而得到新的比特串的变换。 2.数字签名的四个特征? ANS:数字签名具有以下特征: (1) 收方能够确认或证实发方的签名,但不能伪造。 (2) 发方发出签名的消息给收方后,就不能再否认他所签发的消息。 (3) 收方对已收到的签名消息不能否认。 (4) 第三者可以确认收发双方之间的消息传送,但不能伪造这一过程。 3.分组密码主要优点是什么?其设计原则应考虑哪些问题? ANS:分组密码的优点是:明文信息良好的扩展性,对插入的敏感性,不需要密钥同步,较强的适用性,适合作为加密标准。在分组密码具体设计中,还需重点考虑的有:S盒的设计、P盒的设计、轮函数F的设计、迭代轮数以及密钥扩展算法等。

相关文档
最新文档