起重机抗倾覆稳定性分析

起重机抗倾覆稳定性分析
起重机抗倾覆稳定性分析

起重机抗倾覆稳定性分析

【摘要】起重机是一种广泛运用于工业与建筑业中的机械设备,对社会经济的发展起着非常大的作用。同时,起重机也是一种常见的特种设备,具有较大的危险性,一旦发生事故会造成较大的经济损失甚至人员伤亡。因此,起重机的安全性、可靠性一直是各个起重机设计制造和使用管理单位关注的焦点,也是特种设备监督检验机构监察的重点。对于起重机械的事故来说,倾覆事故是最危险且造成损失最大的一种事故,抗倾覆稳定性是衡量起重机械安全性能的最关键参数。本文简要介绍了国内外起重机的发展现状,重点介绍了在起重机抗倾覆稳定性方面的研究情况。针对不同起重机结构特点及作业环境,分析了典型起重机的抗倾覆稳定性,提出了计算起重机械抗倾覆稳定性的方法。

【关键词】起重机;抗倾覆稳定性;倾覆

引言

起重机作为工业、物流运输业以及建筑业中使用最广泛的特种设备,其安全性和可靠性决定了其在使用过程中发生事故的风险大小,因此需要对起重机的安全性能和事故风险进行重点关注。根据国家质检总局的统计,2013年全年,全国共发生特种设备事故227起、死亡289人、受伤274人,其中起重机械事故61起,所占比重达26.87%,死亡人数占29.07%。在发生的起重机械事故中,人员伤亡大部分是由倾覆事故造成。从2013年特种设备事故统计可见,起重机械事故数量多、损失大,倾覆事故较为突出。因此,需要我们对起重机械进行科学严谨的安全评价,重点研究倾覆事故这种损失较大的事故,从而降低乃至杜绝起重机械倾覆事故的发生,避免经济损失及人身伤亡。

1.起重机的发展现状

我国从上个世纪五十年代引进苏联技术生产出第一台起重机以来,起重机的自主生产已有五十多年的历史。从发展阶段来看,前三十年属于缓慢起步阶段,近二十年为快速发展阶段,未来十年将会是起重机行业的技术革命阶段。在上个世纪八十年代初,我国成立了起重机械行业协会,做了切合实际的发展规划,编写了国家标准及行业标准,使起重机械的研发有章可循,这是我国起重机械发展的转折点,从此进入了高速发展时期。截止到2014年底,我国已有了上千家起重机械生产厂家,年生产各类起重机械几十万台,年产值两千多亿,从业人员已达三十多万人,生产各种规模起重机械达上百种。在今后的一段时期里,起重机械仍将处于稳健发展时期。产品将向着超大型化、智能化、高可靠性发展,在安全性方面将最大程度的降低起重机事故率,降低事故造成的经济损失和死亡率。

2.国内外起重机抗倾覆稳定性研究简介

国内的起重机抗倾覆稳定性研究开展较晚,早起的起重机械一般凭借引进的苏联经验,按照一定的经验公式来选取安全系数进行设计。进入二十世纪八十年

抗倾覆稳定性验算

*作品编号:DG13485201600078972981* 创作者: 玫霸* 五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11.0米左右,此处的土为粘性土,可以采用“等值梁 法”进行强度验算。 首先进行最小入土深度的确定: 首先确定土压力强度等于零的点离挖土面的距离y ,因为在此处的被动 土压力等于墙后的主动土压力即: ()a p b K K P y -=γ 式中:P b 挖土面处挡土结构的主动土压力强度值,按郎肯土压力理论进 行计算即 a a b K cH K H P 22 12-=γ γ 土的重力密度 此处取18KN/m 3 p K 修正过后的被动土压力系数(挡土结构变形后,挡土结构 后的土破坏棱柱体向下移动,使挡土结构对土产生向上的摩擦力,从而使 挡土结构后的被动土压力有所减小,因此在计算中考虑支撑结构与土的摩 擦作用,将支撑结构的被动土压力乘以修正系数,此处φ=28°则K=1.78 93.42452=??? ? ?+?=? tg K K p

a K 主动土压力系数 361.02452=??? ? ?-=? tg K a 经计算y=1.5m 挡土结构的最小入土深度t 0: x y t +=0 x 可以根据P 0和墙前被动土压力对挡土结构底端的力矩相等来进行计算 ()m K K P y t a p 9.2600=-+=γ 挡土结构下端的实际埋深应位于x 之下,所以挡土结构的实际埋深应为 m t K t 5.302=?=(k 2 经验系数此处取1.2) 经计算:根据抗倾覆稳定的验算,36号工字钢需入土深度为3.5米,实际入土深度为3.7米,故:能满足滑动稳定性的要求 2、支撑结构内力验算 主动土压力:a a a K cH K H P 22 12-=γ 被动土压力:p p p cK K H P 22 12+=γ 最后一部支撑支在距管顶0.5m 的地方,36b 工字钢所承受的最大剪应力 d I Q d I Q S S z x x z ???? ??==*max max *max max max τ ,3.30* max cm I S z x = d=12mm,经计算 []ττ<=a MP 6.26max 36b 工字钢所承受的最大正应力 []σσ<==a MP W M 9.78max 经过计算可知此支撑结构是安全的 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口的位置,可降低

塔吊的稳定性验算

塔吊的稳定性验算 塔吊抗倾覆稳定性校核应遵照GB3811—83“起重机设计规范”中的有关规定进行。 1.无风、静载稳定性校核 验算工况是:起重臂处于最大幅度位置(对于小车变幅起重臂小车位于最大幅度),起重臂指向下坡方向,无风,起重机静置并负有额定载荷, 塔式起重机无风静载工况下抗倾覆稳定性按下式验算: 0.95M K——K L M L——M D≥0 式中M K——由塔吊自重及压重产生的稳定力矩; M L——塔吊负载对倾覆边的力矩; K L——载荷系数,查GB3811—83,取为1.4; M D——由坡度因素而产生的倾覆力矩。 2.有风、动载稳定性校核 验算工况是,起重臂处于最大幅度位置(对于小车变幅臂架,小车位于最大幅度),风从平衡臂吹向起重臂,塔式起重机负有额定荷载并正在工作中。 塔吊有风动载工况下的抗倾覆稳定性按下式验算: 0.95M K——K L M L——M W——M D≥0 式中M K——由塔吊重及压重产生的稳定力矩;

K L——载荷系数,查GB3811—83,取为1.15; M L——由起重机额定载荷产生的倾覆力矩; M W——由作用于塔吊各部的风荷及作用于荷载迎风面的风荷所产生的倾覆力矩; M D——由工作机构工作、起、制动以及风荷动力作用、坡度因素而产生的倾覆力矩。 3.突然卸载(或吊具脱落)稳定性校核 验算工况是,起重臂仰起处于最小幅度(对于小车变幅起重臂,小车位于臂根处),风从起重臂吹向平衡臂,塔式起重机突然卸载或吊具突然脱落。 在此工况下,塔吊抗倾覆稳定性按下式验算 0.95M K——M O——M W——M D≥0 式中M K——由塔吊自重及压重产生的稳定力矩; M O——由于突然卸载而造成的倾覆力矩,查GB3811-83,可大 致取为0.2Q H L(Q H为额定载荷,L为幅度); M W——由作用于塔吊各部的风荷所产生的倾覆力矩; M D——由于坡度等因素而造成的倾覆力矩。 4.安装状态时稳定性校核 上回转塔吊在塔身立起后的稳定性按下式验算 P w1h≤0.95CP G 式中P w1——工作状态最大风力(N);

体育馆工程中的起重机整机倾覆事故

体育馆工程中的起重机整机倾覆事故 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

某体育馆工程中的起重机整机倾覆事故事故经过: 2001年3月8日晚8时35分,某体育馆工程中的QTZ60型塔式起重机在起吊混凝土料斗时,塔身根部朝平衡臂方向的两根地脚螺栓断裂,塔式起重机朝起重臂方向发生倾覆,司机未及逃生而受伤,塔式起重机大部分钢结构变形,运行机构破损,整机几乎报废;起重臂在坠落过程中砸塌二层项目部临时活动房局部,并插入楼下车库中,所幸夜间值班人员不在该房间内,而原停放在车库内的红旗轿车出车在外,未造成更大的伤亡与经济损失,但该事故是一起人为的严重的机械设备事故。 专家点评: 1.现场使用塔式起重机应严守规章 (1)选位适当 塔式起重机是建设工程中最常用的起重机械设备,在施工现场平面内选择位置时应考虑以下条件:a.起重机进场、安装、拆除、退场方便;b.起重机能最大程度地覆盖施工工作区域;c.起重机定位后在各

种工作幅度下均能满足施工中需要的起吊重量:d.起重机距离高压线5~10m,回转无障碍。 (2)塔式起重机安全保护装置的状况应保持良好 塔式起重机的安全保护装置分载荷安保护装置、运动安全保护装置两类。载荷安保护装置含起重力矩限制器、起重量限制器,前者对塔式起重机在任何幅度工作时幅度与起重量乘积作出定量限位,以保证整机抗倾翻稳定性与钢结构强度,后者对起重机的最大起重量作出定量限位,以保证起重机的起升机构与钢结构强度。运动安全保护装置含起升高度限制器、工作幅度限制器、回转限制器,分别对塔式起重机的起升高度、工作幅度、回转圈数作出定量限位,以保证工作机构在预定的范围内运行而不至脱轨或损坏构件。GB5144一94《塔式起重机安全规程》要求塔式起重机在使用期间,以上各种安全保护装置在塔式起重机均应调试到位、使用正常。当起重机某种载荷参数或运动参数超出预设范围时,以上对应的安全保护装置内部的推杆可顶触行程开关触点,并能报警、断电,待故障排除后功能方可恢复工作。在上述5种安全保护装置中,起重力矩限制器位居首要,被列为整机合格与否的否决项。 2.事故原因 (1)事故直接原因

抗倾覆验算

一、便桥墩身抗倾覆检算 说明:1#墩为已完成墩身,且新建线路中线与1#墩身中线偏移0.19m,详见平面图所示。1#墩为最不利墩身,故以1#墩来检验墩身的抗倾覆安全性。 1、竖向力 竖向恒载: N1=95.75+39.2ⅹ9.2=456.39KN(桥跨上部结构自重) N2=562.5KN(墩身自重) N3=687.5KN(基础自重) 竖向活载: N4=1045.884KN(支点反力)Mx=18.068KN·m(支点反力对基底长边中心轴x-x轴力之矩) 2、水平力 制动力的大小均按竖向静活载(不包括冲击力)的10%计算,作用点在轨顶2m;离心力等于离心力率乘以支座的静活载反力N4,作用点在轨顶2m。 制动力T1: T1=(N1+N2+N3+N4)ⅹ10%=275.227KN 离心力T2: T2=CⅹN4 离心力率通过C=V2/(127R)计算,其中V为设计行车速度5Km/h,R为曲线半径400m,代入可得:C=52/(127ⅹ400)=0.0005 T2=0.0005ⅹ1045.884=0.523KN 3、风荷载(作用在墩身上的风力T墩、作用在列车上的风力T列车): 作用在桥梁受风面上的静压力,按《桥规》规定的标准求出最大风速后,通过风速与风压 1

关系公式Wo=γv2/(2q)求出基本风压值, 式中Wo为基本风压值(Pa) q为重力加速度(m/s2) γ为空气重度(N/m3) v为平均最大风速(m/s) 取标准大气压下,常温为15摄氏度时的空气重度12.255N/m3、纬度45度处重力加速度为9.8m/s2, 代入公式可以得出Wo=v2/1.6,查表v取12m/s计算得出Wo=90Pa 作用于桥梁上的风荷载强度W(Pa)按下式计算W=K1·K2·K3·Wo,查表取K1=1.0,K2=1.0,K3=0.8代入公式 可得W=72Pa 墩风压计算取横向迎风面积S=aⅹh,其中1#墩的a值为1.8m,h为墩高度5m代入可得墩迎风面积为9m2,T墩=9ⅹ72=0.65KN。 计算风力时,标准规矩列车横向受风面积等于受风面积按3m搞的长方带计算,作用点在轨面上2m高度处。 桥上有车时:W=K1·K2·800=800Pa≮1250Pa,列车迎风面积为3ⅹ(12.5+9.5+9+10)=96m2。T列车=96ⅹ800=76.8KN。 设基底截面重心至压力最大一边的边缘的距离为y(荷载作用在重心轴上的矩形基础且y=b/2),外力合力偏心距为e0,则两者的比值Ko可反映基础倾覆稳定性的安全度,Ko 称为抗倾覆稳定系数。 即Ko=y/ e0e0=(ΣPiei十ΣTihi)/ΣPi y=b/2=5/2=2.5m e=0.19m 2

塔吊计算书

附塔机基础及平衡重和塔吊计算书 ○1基础计算书 一、参数信息 塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m, 自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400, 基础底面配筋直径:25mm 二、塔吊对交叉梁中心作用力的计算 1、塔吊竖向力计算 塔吊自重:G=600kN; 塔吊最大起重荷载:Q=60kN; 作用于塔吊的竖向力:F k =G+Q=600+60=660kN; 2、塔吊弯矩计算 风荷载对塔吊基础产生的弯矩计算: M kmax =960kN·m; 三、塔吊抗倾覆稳定验算 基础抗倾覆稳定性按下式计算: e=M k /(F k +G k )≤Bc/3 式中 e──偏心距,即地面反力的合力至基础中心的距离; M k ──作用在基础上的弯矩; F k ──作用在基础上的垂直载荷; G k ──混凝土基础重力,G k =25×5.5×5.5×1=756.25kN; Bc──为基础的底面宽度; 计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!

四、地基承载力验算 依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。 计算简图: 混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W 式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ; M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值: P k =(660+756.25)/5.52=46.818kPa P kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ; 地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!

起重机计算说明书

2/1615) 8.06.0(1328762101501.296267cm N x =+?=τ 主梁在水平面内受水平惯性力和风力引起的剪应力一般较小,可略去不计 对于单主梁箱形门式起重机,其主梁截面除承受自由弯曲应力 外,还了在受约束弯曲应力、约束扭转正应力(以增大15%的自由弯曲应力计入)和剪应力。此外,主梁截面还了在受纯扭转剪应力,现验算如下: ①弯心的位置发中图8-32所示,主梁截面弯心位置: cm b Q Q Q e 87.387.906 .08.06.00212=?+=?+= 图8-32 主梁截面弯心计算简图 小车各部分重量如下: G 1=4509kg ——小车上机械部分重量; G 2=16322kg ——吊重及吊钩组重量; G 3=2490kg ——小车架及防雨罩重量。 ②外扭矩 Mn=G 1l 1+G 2l 2+G 3l 3 =[(4509×122)+(16322×130)+(2490×155)]×9.8=299674.98N ·m ③ 主腹板上的剪应力 e=38.87cm Mn=299674.98N ·m τ1=1369.37N/c ㎡ τ2=1641N/c ㎡

2)支腿平面内的支腿内力计算τ1= 1 2Q Mn π 式中π=b0h0=90.7×150.8=13677.56c㎡ τ1= 8.0 56 . 13677 2 29967498 ? ? =1369.37N/c㎡≤[τ] 盖板厚度与主腹板厚度相同 ④副腹板上剪应力 τ2= 6.0 56 . 13677 2 26933999 2 2 ? ? = Ωδ Mn =1641N/c㎡≤[τ] 计算支腿内力时,可分别取门架平面和支腿平面的门架作为平面刚架进行计算,门架平面的刚架为一次超静定结构,支腿平面的刚架为静定结构。 ①由主梁均布自重产生的内力(图8-33)由[1]表11-4可知, 有县臂时的侧推力为: ② 图8-33 支腿由自重引起的内力图

汽车起重机事故(二)实用版

YF-ED-J3350 可按资料类型定义编号 汽车起重机事故(二)实 用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

汽车起重机事故(二)实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 事故发生时间:1987年10月27日18时20分 鞍山市立山区运输公司第五汽车队(地址:鞍山市立山区工业街)出一台半挂汽车,一台解放牌五吨液压汽车起重机去鞍钢灵山钢材库为鞍山市内燃机厂往厂风钢材库拉运11吨钢筋。用汽车起重机卸货时天已渐黑,前二吊钢筋,分别吊二捆、三捆,而且起重机运行也都正常。当吊第三吊时,起重工却给挂十捆,当起重臂吊的钢筋离开半挂车车体后,其钢筋成了弓形,钢筋吊点虽然离地已三米多高,但

两端却接近地面。由于作业现场地面横七竖八钢材堆放物较多,当起重臂回转时,又使钢筋的两端插入钢材垛夹空中。为使钢筋吊卸到位,起重机司机操作进行变幅将起重臂伸长,导致起重机倾斜,使起重臂与所吊钢筋下落,将站在起重臂端头二米以外准备摘钩的装卸工张素华、朱爱莲当场砸伤死亡。 事故原因提要 违章操作。汽车起重机的名义起重重量,是指用基本臂处于最小额定幅度,用支腿进行起吊的额定总起重量。所以,解放牌五吨液压汽车起重机的起重量五吨,仅限于基本臂处于最小额定幅度。而该起事故所吊十捆钢筋,经检斤核实,实际上重量为4.8吨。又因钢筋一端插入钢材垛夹空中,致使起重机起升时使钢

塔吊基础承载力验算

塔吊天然基础计算书 一、参数信息 塔吊型号:JL5613,塔吊起升高度H=80.00m, 塔吊倾覆力矩M=1930kN.m,混凝土强度等级:C35, 塔身宽度B=1.5m,起重:6T 自重F1=800kN,基础承台厚度h=1.6m, 最大起重荷载F2=60kN,基础承台宽度Bc=5.00m, 钢筋级别:三级钢。 二、塔吊基础承载力计算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。 计算简图:

当不考虑附着时的基础设计值计算公式: 当考虑附着时的基础设计值计算公式: 当考虑偏心矩较大时的基础设计值计算公式: 式中F──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F=860.00kN; G──基础自重 G=25.0×5×5×1.6=1000.00kN; Bc──基础底面的宽度,取Bc=5.000m; W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.833m3; M──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1930.00kN.m; e──偏心矩,e=M / (F + G)=1.0376 m,故e>承台宽度/6=0.833 m; a──合力作用点至基础底面最大压力边缘距离(m),按下式计算: a= Bc / 2 - M / (F + G)=1.4624m。 经过计算得到: 有附着的压力设计值P=(860.000+1000.00)/5.0002=74.4kPa; 偏心矩较大时压力设计值Pkmax=2×(860.000+1000.00)/(3×5.000×1.462 4)=169.584kPa。 三、地基承载力验算 依据设计强风化泥质粉砂岩地基承载力特征值fak=500kPa.

脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。而现行的国家标准中没有倾覆验算和稳定性验算内容。根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。 [关键词]脚手架;倾覆;稳定性;验算 结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。《建筑结构可靠度设计统一标准》gb50068-2001第条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。④结构或结构构件丧失稳定(如压屈等)”。可见它们同属于承载能力极限状态,但应分别考虑。《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。施工现场的起重机械在起吊重物时也要做倾覆验算。对于脚手架,由于浮搁在地基上,更应该做倾覆验算。 《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有

倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。如果需要,还可进行正常使用极限状态计算。 1脚手架的倾覆验算 通用的验算公式推导 无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。当风荷载与一个以上的其它可变荷载组合时采用;当风荷载仅与永久荷载组合时采用。 对于平、立面无突出凹凸不平的脚手架,以下简称为规整脚手架,其倾覆验算应按如下表达式进行: (2)式中:为起有利作用的永久荷载的荷载分顶系数;cw、wk为风荷载的效应系数、风荷载的标准值。 对于规整脚手架,其上作用的永久荷载、可变荷载是抗倾覆的,

浅谈起重机抗倾覆稳定性分析

浅谈起重机抗倾覆稳定性分析 【摘要】起重机械是现代工业、农业等领域不可缺少的设备,而起重机抗倾覆稳定性是起重机安全工作的重要条件之一,因此要提高起重机的抗倾覆稳定性,保证其安全运行。本文通过力矩不等式法和安全系数法对其进行分析,为起重机的抗倾覆稳定性贡献一份力量。 【关键词】起重机抗倾覆;稳定性;不等式;安全系数 前言 在起重机使用的几十年里,起重机倾覆事故时有发生,起重机抗倾覆问题作为起重机基本性能的安全要求突显其重要性,为了更大程度地确保起重机作业时的安全性,防止事故的发生,必须要求起重机有足够的抗倾覆稳定性,这也是起重机设计的基本要求。 1起重机的发展现状 我国从上个世纪五十年代引进苏联技术生产出第一台起重机以来,起重机的自主生产已有五十多年的历史。从发展阶段来看,前三十年属于缓慢起步阶段,近二十年为快速发展阶段,未来十年将会是起重机行业的技术革命阶段。在上个世纪八十年代初,我国成立了起重机械行业协会,做了切合实际的发展规划,编写了国家标准及行业标准,使起重机械的研发有章可循,这是我国起重机械发展的转折点,从此进入了高速发展时期。截止到2014年底,我国已有了上千家起重机械生产厂家,年生产各类起重机械几十万台,年产值两千多亿,从业人员已达三十多万人,生产各种规模起重机械达上百种。在今后的一段时期里,起重机械仍将处于稳健发展时期。产品将向着超大型化、智能化、高可靠性发展,在安全性方面将最大程度的降低起重机事故率,降低事故造成的经济损失和死亡率。 2起重机抗倾覆稳定性简介 起重机的抗倾覆稳定性指起重机在自重和外载荷作用下抵抗翻倒的能力,它是影响起重机安全性能最重要的参数,也是起重机安全运行的基础。起重机抗倾覆稳定性能始终贯穿起重机的设计生产安装试验的全过程,它决定着起重机的倾覆风险,控制着起重机的安全性能。起重机抗倾覆稳定性不足,会发生倾覆事故,造成重大的人身和设备事故,所以保证起重机具有足够的抗倾覆稳定性,是设计和制造工作中最基本的要求之一。影响起重机抗倾覆稳定性的因素主要包括载荷的作用性质和现场作业条件。 3起重机抗倾覆稳定性分析的必要性 起重机抗倾覆稳定性是起重机安全工作的重要条件之一,通过刚性稳定性承载能力设计计算可以保证其整体抗稳定性,对于室外工作的起重机,还需要计算

塔吊基础承载力及稳定性计算书

塔吊基础承载力及稳定性计算书 一、工程概况 嘉兴市清华长三角研究院创业大厦工地拟采用QTZ63型塔吊。工地南侧塔吊高度为120M,北侧塔吊高度为40M。 根据使用说明书中提供的数据:QTZ63型塔吊最大起重矩为630KNM,塔机自重38T。当采用5×5M×1.350M基础时,基础顶面所受弯矩M=1252.4KNM,基础所受垂直荷载N1=473KN,基础砼重N2=800KN,受力情况见图(A)、(B) 根据对基础地耐力要求,若采用浅基大板基础(即5×5M×1.350M 砼基础),地耐力应不低于140KPa,而本工程塔基所处土层③层提供的地耐力为70KPa,不满足,因此考虑采用桩基础。为此需对桩基支承的大板基础进行桩基强度验算及抗倾覆稳定性计算。 计算依据:《建筑桩基技术规范》(JGJ94-94国标) 《建筑地基基础设计规范》(DB33/1001-2003省标)二、塔吊基础设计参数: 塔吊基础剖面见图(C) 塔吊桩基础采用直径600㎜的钻孔灌注桩的有效长度为16.55M,桩穿越如下土层(按J7钻孔):③a(厚1.18M)、③(厚6.80)、 ③b(厚4.50)和⑤2-1(厚4.7M)。钻孔桩配筋:主筋Ф14Ф16, 箍筋Ф10@300,采用C30砼。 根据地质报告(浙江省工程勘察院《浙江清华长三角研究院院区北区创业大厦岩土工程勘察报告》),桩基所穿越土层的力学参数, Ra=U∑ψsia q sia L i+A q pa =0.6×3.14(1×12×1.18+1×7×6.80+1×14×4.50+1×27×4.07)+3.14×0.32×2000 =442.08+565.2 =1007.28KN

抗倾覆稳定性验算

五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11、0米左右,此处得土为粘性土,可以采用“等值梁法”进行强度验算。 首先进行最小入土深度得确定: 首先确定土压力强度等于零得点离挖土面得距离y,因为在此处得被动土压 式中:P 挖土面处挡土结构得主动土压力强度值,按郎肯土压力理论进行计 b 算即 土得重力密度此处取18KN/m3 修正过后得被动土压力系数(挡土结构变形后,挡土结构后得土破坏棱柱体向下移动,使挡土结构对土产生向上得摩擦力,从而使挡土结构后得被动土压力有所减小,因此在计算中考虑支撑结构与土得摩擦作用,将支撑结构得被动土压力乘以修正系数,此处φ=28°则K=1、78 主动土压力系数 经计算y=1、5m : 挡土结构得最小入土深度t 与墙前被动土压力对挡土结构底端得力矩相等来进行计算x可以根据P 0 挡土结构下端得实际埋深应位于x之下,所以挡土结构得实际埋深应为(k 经验系数此处取1、2) 2 经计算:根据抗倾覆稳定得验算,36号工字钢需入土深度为3、5米,实际入土深度为3、7米,故:能满足滑动稳定性得要求

2、支撑结构内力验算 主动土压力: 被动土压力: 最后一部支撑支在距管顶0、5m得地方,36b工字钢所承受得最大剪应力 d=12mm,经计算 36b工字钢所承受得最大正应力 经过计算可知此支撑结构就是安全得 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口得位置,可降低 经计算 因此此处不会发生管涌现象 4、顶力得计算 工程采取注浆减阻得方式来降低顶力. φ1800注浆后总顶力为: F=fo、S*0、3=25*667/10*0、3*1、1=550t fo—土得摩擦阻力,一般为25KN/m2 S-土与管外皮得摩擦面积 0。3-注浆减阻系数 1。1—顶力系数 5、后背得计算 E=1、5×0、5×Υ×H2×tg2(45+φ/2)+2chtg(45+φ/2) (式中Υ土得重度(18KN/m3)c土得粘聚力10kpa,φ摩擦角28o)计算得每米588吨,后背工作宽度为4米,后背承载力为2354吨。(参照最

塔吊基础计算书

天然基础计算书 123工程;工程建设地点:;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》 (GB50010-2002)等编制。 一、参数信息 塔吊型号:QTZ50,塔吊起升高度H:32.00m, 塔身宽度B:1.6m,基础埋深d:4.45m, 自重G:357.7kN,基础承台厚度hc:1.35m, 最大起重荷载Q:50kN,基础承台宽度Bc:5.50m, 混凝土强度等级:C35,钢筋级别:HRB335, 基础底面配筋直径:18mm 地基承载力特征值f ak:140kPa, 基础宽度修正系数ηb:0.15,基础埋深修正系数ηd:1.4, 基础底面以下土重度γ:20kN/m3,基础底面以上土加权平均重度γm:20kN/m3。 二、塔吊对交叉梁中心作用力的计算

1、塔吊竖向力计算 塔吊自重:G=357.7kN; 塔吊最大起重荷载:Q=50kN; 作用于塔吊的竖向力:F k=G+Q=357.7+50=407.7kN; 2、塔吊弯矩计算 风荷载对塔吊基础产生的弯矩计算: M kmax=1335kN·m; 三、塔吊抗倾覆稳定验算 基础抗倾覆稳定性按下式计算: e=M k/(F k+G k)≤Bc/3 式中 e──偏心距,即地面反力的合力至基础中心的距离; M k──作用在基础上的弯矩; F k──作用在基础上的垂直载荷; G k──混凝土基础重力,G k=25×5.5×5.5×1.35=1020.938kN; Bc──为基础的底面宽度; 计算得:e=1335/(407.7+1020.938)=0.934m < 5.5/3=1.833m; 基础抗倾覆稳定性满足要求! 四、地基承载力验算 依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。计算简图:

起重机杆长计算

起重机得选择 起重机得选择包括起重机类型得选择、起重机型号得选择与起重机数量得确定。?1,起重机类型得选择 起重机类型应综合考虑下列诸点进行选择:?(1)结构得跨度、高度、构件重量与吊装工程量等; (2)施工现场条件;?(3)本企业与本地区现有起重设备状况; (4)工期要求; (5)施工成本要求。?一般情况下,吊装工程量较大得普通单层装配式结构宜选用履带式起重机,因履带式起重机对路面要求不太高,变幅、行驶方便,可以负荷行驶。汽车式起重机对路面得破坏性小,开赴吊装地点迅速、方便,适宜选用于吊装位于市区或工程量较小得装配式结构。位于偏僻地区得吊装工程,或路途遥远,或道路状况不佳,则选用独脚拔杆或人字拔杆、桅杆式起重机等简易起重机械,往往可提早开工,能满足进度要求,且成本低。?对于多层装配式结构由于上层构件安装高度高,常选用大起重量履带起重机或普通塔式起重机(轨道式或固定式)。对于高层或超高层装配式结构,则需选用附着式塔式起重机或内爬升式塔式起重机。内爬升式塔式起重机得优点就是自重轻,不随建筑物高度得增加而接高塔身,机械多安装在结构中央,需吊装得构件距塔身近,因而可选用较小规格得起重机;其缺点就是施工荷载(含塔机自重、风荷载、起吊构件重等)需建造中得结构负担,工程结束后,需另设机械设备进行拆除,立塔部位得构件须在塔机爬升或拆除后补装。附着式塔式起重机安装在建筑物外侧,可避免内爬升式塔式起重机得上述缺点,但起吊作业中需安装许多距塔身较远得构件,工作幅度大,要求选用较大规格得起重机,同时占用场地多,需随建筑物得升高安装附着杆,且起重机得塔身接高也较复杂。 2.起重机型号得选择?选择起重机得原则就是:所选起重机得三个工作参数,即起重量Q、起重高度H与工作幅度(回转半径)R均必须满足结构吊装要求。 当前,塔式起重机多采用水平臂小车变幅装置,故根据上述须满足结构吊装要求得三个工作参数与各种塔式起重机得起重性能很容易确定其型号。 下面,以履带起重机为例(汽车起重机、轮胎起重机类似)叙述起重机型号得选择方法: (1)起重量计算?1)单机吊装起重量按下列公式计算: Q≥Q1+Q2 (14-45) 式中 Q——起重机得起重量(T);Q1——构件重量(T);Q2——索具重量(T)。?2) 双机抬吊起重量按公式(14-46)计算:?K(Q 主+Q 副 )≥Q1+ Q2(14-46)?式中 Q主——主机起重量;Q副——副机起重量;K——起重量降低系数,一般取0、8;?Q 1 、Q2——含义与公式(14-45)相同。 (2)起重高度计算(图14-125)?起重机得起重高度按公式(14-47)计算:? H≥H1+H2+H3+H4 (14-47)?式中 H——起重机得起重高度(M),停机面至吊钩得距离; H1——安装支座表面高度(M),停机面至安装支座表面得距离; H2——安装间隙,视具体情况而定,一般取0、3~0.5M;?H3——绑扎点至构件起吊后底面得距离(M); H4——索具高度(M),绑扎点至吊钩得距离,视具体情况而定。 ?起重高度计算图?(3)起重臂(吊杆)长度计算 1)起重臂不跨越其她构件得长度计算 起重机吊装单层厂房得柱子与屋架时,起重臂一般不跨越其她构件,此时,起重臂长度按公式(14-48)计算(图14-12

附:塔吊基础地基承载力及抗倾覆计算

附:塔吊基础地基承载力及抗倾覆计算。 1、基础外型: 基础边长(b)为5000×5000,基础厚度h值1350mm 。 2、荷载: a:砼体积及自重F G(KN)。 F G=1.2×γ×v=1.2×25×(5×5×1.35)=1012.5KN b:F v作用于基础顶面的竖向力设计值F v(KN)。 按TC5013说明书: F v=1.2×113.2=135.8t=1358KN c:F h作用于基础顶面的水平力设计值F h(KN), 根据TC5013说明书:P2=7.74t,F h=1.2×P2=9.3t=93KN d:M作用于基础顶面的力矩设计值(KN·m) 根据TC5013说明书:M1=216.5t·m, 所以设计值M=1.2×216.5=259.8t·m=2598KN·m 3、基础地基承载力验算: 整体式基础承受基础底面压力应符合:P≤f P——基础底面处的平均压力设计值 f——基础承载力设计值,由于塔吊基础底位于-7.8m处,根据工程地质勘察报告f=150kpa P=(F v+F G)/A=(1012.5+1358)/(5×5)=94.82 KN/m2=94.82 kpa ∴P1.4 ∴抗倾覆验算满足要求。

门式起重机倾覆事故

较大起重机械倾覆事故 2017 年5 月30 日上午11 时36 分,石济客专SJZ-8 标工程位于济南市天桥区桑梓店街道办事处邓营村施工现场1 台通用门式起重机,在拆除过程中发生一起较大起重机械倾覆事故,造成6 人死亡、 1 人重伤,直接经济损失789 万元。 一、基本情况 (一)建设项目工程概况石济铁路客运专线起自河北省石家庄市,经衡水市、沧州市、德州市,至济南市,线路全长315.7km,其中河北省境内185.4km, 山东省境内130.3km。全线共设11 个车站,线路速度目标值250 公里/小时,项目总投资为424.6 亿元,由中国铁路总公司、河北省、山东省合资建设。项目建设工期为4 年,计划2017 年底竣工开通至济南西站。石济铁路客运专线站前工程分为9 个标段,其中8 标段即石济客专SJZ-8标站前工程沿线途经山东省齐河县表白寺镇和晏城街道办事处、济南市天桥区桑梓店街道办事处和大桥街道办事处,工程包括正线18.947km 和济南西联络线7.579km。施工总承包单位为中铁十局集团有限公司。合同工期为2014 年1 月1 日至2017 年12 月31 日,总工期48 个月。事故地点济南西黄河北特大桥95 号墩(XLDK406+603.97 处)位于济南市天桥区桑梓店街道办事处境内,由中铁十局石济客专项目经理部五分部负责施工,五分部主要负责石济客运专线正线DK395+949.41 ~DK414+876.31 和济南西联络线XLDK403+433.28~XLDK409+846.6范围内555孔箱梁的提、运、架任务。555 孔箱梁

具体的提运架工作由天津世纪力恒实业有限公司承担。事故发生地济南西黄河北特大桥箱梁架设工程已于2017 年5 月10 日完工。 (二)事故设备概况 事故设备为通用门式起重机,型号规格为DGM 型450t,额定起重量450t,跨度38m,净高28m,工作级别A3,主机重量343t,小车及起升装置重量63t。该设备由苏州大方特种车股份有限公司于2009 年8 月31 日生产,出厂编号为2009-MG04,产权单位为郑州市大方实业有限公司,使用单位为天津世纪力恒实业有限公司,在济南市天桥区市场监督管理局办理了设备使用登记,注册登记号为42103701052016040431,2016 年 5 月13 日经济南市特种设备检验研究院进行安装监督检验,检验结论为合格,检验有效期至2018 年5 月。事故设备用于济南西黄河北特大桥箱梁预制场内转移及提升上桥装车作业,两台同规格型号通用门式起重机协同作业,大车沿南北方向地面轨道行走,小车沿东西方向主梁行走,被吊物为新建铁路箱梁,每个箱梁重714t,实际提升高度18m。 (三)相关单位情况 1.事故发生单位:天津世纪力恒实业有限公司主要经营范围:机械设备租赁服务,路桥工程施工,机械零配件加工,工程机械设计技术服务等。统一社会信用代码为91120103679431228C。2016 年 2 月,中铁十局集团第四工程有限公司通过竞争性谈判方式,确定天津世纪力恒实业有限公司提供 2 台450T 通用门式起重机(轮轨式提梁

起重机抗倾覆稳定性分析

【摘要】进入21世纪以来,在经济和技术发展的推动下,为我国相关行业的发展带来了极大的推动作用,在很多施工建设中离不开起重机设备的支撑。如何确保起重机装置的稳定运行,就需要高度关注起重机的抗倾覆性。在工程施工中,起重机装置发挥着重要的作用,在不断提升了建筑施工机械化水平之后,将越来越高的要求抛向了起重机的安全性和稳定性。所以,必须要对其抗倾覆稳定进行着重的分析与谈探究。 【关键词】起重机抗颠覆稳定性 1 分析稳定性的重要性 在吊装时,明确的给出起重机的额定载荷:通常在坚实的支撑表面上设置所列额定值,在要求的范围之内控制起重机的水平偏差,这样起重机不会因为支撑物不稳定而歪斜和摇晃。为了确保起重机在施工的时候可靠、安全,需要认真的分析其支撑面的受力情况。 2 起重机的构成与参数分析 2.1 机械构成 以履带式起重机为例进行论述。首先,动臂结构。多节的组装桁结构即动臂,对节数进行调节后,臂的长度可以被改变,在转台前部设置安装其端部,通过钢丝变幅滑轮组支撑悬挂其顶端,这样其倾斜角就可以被改变。可以将副臂加在动臂的顶端,动臂和副臂会构成一个夹角。主、幅卷扬系统是起升机结构的主要构成,在动臂吊重时主要会应用到主卷扬系统,副臂吊重主要由副卷扬系统完成。其次,底盘。行走机构与行走装置是底盘的主要构成部分,起重机的左右转弯和向前行走主要是由前者来进行掌控的,由导向轮、支撑轮、履带轮、托链轮、履带架和驱动轮一同构成了行走装置,通过水平轴、链条传动和垂直轴来带动动力装置运行,从而将支撑轮与导向轮带动起来,确保机器主体可以顺着履带行走。 2.2 分析技术参数 起重力矩和起重量是履带式起重机的主要技术参数。其中在进行选择的时候,工作半径、起吊高度和起重量在其中发挥着重要的作用。而且经常被称之为可以进行起重的三个重要因素。这三个要素彼此间也是互相牵制、互相影响的。 2.3 分析及计算受力情况 {gb+lbcosa)+qr-gbxo}cosp=mf 总垂直荷载: gb+c1+q=p 侧向力矩: sinp{gb(a+lbcosa)―g1xo}=ms 履带下面的压力在垂直很在下可以这样计算: 前方力矩的压力影响可以用一根横梁来模拟:能够将此式子得出来: 这样在履带中心的前方力矩上会作用这样的压力: 叠加p1和p2,一旦p1比p2要大,这样叠加到一起的压力就会构成梯形,一旦p1比p2小,这样叠加到一起的压力就会构成三角形, 当呈现出梯形的压力图时,这样p1+p2为履带前面的压力,p1-p2为后面的压力。当呈现出三角形的压力图时,pmax为最大压力,并且,顺着履带底部长度l压力三角形不断的发挥着自己的作用。这样力矩mf和垂直荷载p必然会出现在其中。 3 计算与分析稳定性 很多起重机的纵向稳定性要比横向强,因此,一般只按照纵向对起重机的稳定性进行计算分析。当具备k≥1.4的稳定系数条件时,就可以说具备稳定的吊装。 ro{f1+n/2+m/2}/m1+m2+m3+m4≥1.4 其中,作用倾覆边缘的力矩用m1表示,因为惯性力所生成过的倾覆力矩由m2表示,离

2021年塔吊抗倾覆验算

一,工程概况 欧阳光明(2021.03.07) 夏威夷·碧水春城工程位于长沙天心区桂花坪。为地下二层,主楼12层,框剪力墙结构,长约180米,宽约65米,建筑面积约1040平方米。 二、塔吊选型: 该工程面积大,作业面宽,给塔吊选型定位带来了一定难度。根椐生产厂家产品规格、型号以及工程的特点和现场的实际情况,本工程采用QTZ63系列D5610型塔吊3台,负责施工现场材料、设备的垂直和水平运输,此型号的塔吊性能可靠、安全且操作方便,系建设部长沙建机研究设计院设计,湖南南方建筑机械总厂制造。本标段布置三台。基本能覆盖整个施工面,满足高度、幅度。 三、塔吊平面位置的确定 塔吊位置确定原则:塔吊能旋转3600;覆盖最大使用面积;施工现场尽量无盲区;不影响周边建筑;与塔吊间无碰触、安全。 1、布置要求: 确保安全生产、质量可靠、运行方便,垂直运输用料,成品和半成品在起吊幅度和旋转半径范围内覆盖最大工作面,并略有余地,达到最佳的使用效率和最好的经济效益,经方案比较、研究决定。2、基座位置: 2#塔吊D5610塔吊基座中心点设置在(2-A)轴南3.6m交(2-21)轴东 3.3m,南 3.6m。基座平行于(2-A)轴线。(详见平面位置

附图)。中心点坐标位置:X=88055.728,Y=49579.670。塔吊基座置于已剥露的地质为强风化岩,承载力特征值fak为400Kpa。 3#塔吊T5610塔吊设置在(I-21)轴东 4.0m交(I-X)轴北4.0m。塔吊中心坐标X=88126.581,Y=49660.627。(详见平面位置附图)。基座地质为粘土,承载力特征值fak为240Kpa(原始土)。 1#塔吊T5610塔吊设置基坑北边边坡台阶上,位于(I-Y3)轴线北 5.5m交(I—13)轴线东 4.0m。原始地质为粉质粘土,fak为240Kpa。塔吊工作时本设计不考虑其地耐力。 3、按以上位置安装,可利用1#栋与2#栋之间地下室外顶场地做地上主楼施工用场,配合1#栋材料加工场吊运材料。但必须对如下内容进行施工处理: 12#、3#塔吊须安装在地下室,其塔吊需穿过地下室顶板及地下室底板,必将增加地下室底板和顶板预留洞口防水和第二次处理预留楼板洞口施工增加费用。具体施工措施:防水采用镀锌4㎜厚铁板作止水带,砼按后浇带方法要求施工,底板筋加密一倍并焊接。22#、3#塔吊基础与地下室底板防水有影响,塔基顶面标高比钢筋砼底板下置0.45m,不与地下室底板相碰。底板施工时四边伸进塔吊基座 1.0米,做止水带,塔吊基座台面四周铺4㎜厚油膏1米宽,其他均按地下室底板防水要求施工。 3增加塔吊安装临时道路,从基坑南向基坑中挖斜向坡道至2台塔吊位置。基坑场内采用干铺狗头石300mm厚,上铺150mm厚碎砖碴,机械辗压实压平,坑底临时道路宽度5m,总长度190m。

相关文档
最新文档