1312排列组合概率统计--近年各学校考试题分类汇编 教师版

1312排列组合概率统计--近年各学校考试题分类汇编 教师版
1312排列组合概率统计--近年各学校考试题分类汇编 教师版

1312排列组合、二项式定理、概率综合

一、填空题

1 .平面内有7个点,其中有5个点在一条直线上,此外无三点共线,经过这7个点可连成不同直线的条数是

____.12

2 .平面上有相异10个点,

任意四点共线,则这10个点的连线中有且只有三点共线的直线的条数为__________条. 3

3 .从甲乙等人中选出名代表,那么(1)甲一定当选,共有___________种选法.(2)甲一定不入选,共有

_______种选法.(3)甲、乙二人至少有一人当选,共有________种选法. (1);(2) ;(3)

n n

4 .如图所示的数阵叫“莱布尼兹调和三角形”,他们是由整数的倒数组成的,第行有个

数且两端的数均为

,每个数是它下一行左右相邻两数的和,如:…,则第行第3个数字

是 .

5 .

______________ ; -32

6 .二项式

的展开式中,含

项的系数为____________.

7 .当A ,B ∈{1,2,3}时,在构成的不同直线Ax -By =0中,任取一条,其倾斜角小于45?的概率是

___________ .3

7

8 .已知一颗骰子的两面刻有数字1,两面刻有数字2,另两面刻有数字3,现将骰子连续抛掷3次,则三

次的点数和为3的倍数的概率为______.

1

(2)n n

≥111111111,,1222363412=+=+=+(3)n n

≥1

3

9 .若以连续掷两次骰子分别得到的点数作为点的横、纵坐标,则点在直线上的概率

为 .

19

10.设数列{a n }满足:()()*3118220()n n n n a a a a a n ++=---=∈N ,,则a 1的值大于20的概率为 .

11.有一个底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P

到点O 的距离大于1 的概率为________;

n m ,P P 5=+y

x 5

9

12.从0,1,2,3这四个数字中一次随机取两个数字,若用这两个数字组成无重复数字的两位数,则所得两位数

为偶数的概率是_____.

13.已知二项分布满足

2

P(X=2)=___________. 2014.有20张卡片,每张卡片上分别标有两个连续的自然数,1k k +,其中,0,1,k =2,,19.从这20张卡片

中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不.

小于14”为A ,则()P A =__________0.25

15.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则)1(=ξP =______

3

16.连续抛掷一个骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)两次,则出现向上点数之和大于

9的概率是___________.

6

1 5

9

17.将一枚骰子抛掷两次,若先后出现的点数分别为,则方程有实根的概率为

___________.

18.现有在外观上没有区别的5件产品,其中3件合格,2件不合格,从中任意抽检2件,则一件合格,另一件不

合格的概率为________.

19.投掷两颗骰子,得到其向上的点数分别为m ,n ,设),(n m a =→,则满足5<→

a 的概率为__________.

36

13 20.某日用品按行业质量标准分成五个等级,等级系数依次为

.现从一批该日用品中抽取200件,

对其等级系数进行统计分析,得到频率的分布表如下:

1

f

0.2

0.45

0.15

0.1

则在所抽取的200件日用品中,等级系数的件数为 ________.

c b ,02

=++c bx x 36

19

21.从中随机抽取一个数记为,从中随机抽取一个数记为,则函数

的图象经过第三象限的概率是_____________

22.从集合

中随机选取一个数记为

,从集合

中随机选取一个数记为,则直线

不经过第三象限的概率为 _________.

23.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则两次点

数之和为偶数的概率是_____. 1

2

24.若4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为

奇数的概率为____. 2

3

25.甲盒子里装有分别标有数字1、2、4、7的4张卡片,乙盒子里装有分别标有数字1、4的2张卡片,若

从两个盒子中各随机地取出1张卡片,则2张卡片上的数字之和为奇数的概率是______.

26

.设,(0,1)a b ∈,则关于2

2

20x x ax b ++=的方程在(,)-∞∞上有两个不同的零点的概率为___

___________.

1

2

27.从含有2件正品和1件次品的3件产品中每次任取1件,每次取出后再放回,连续取两次,则两次取出的

产品中恰好有一件次品的概率是28.从集合中任取两数,其乘积大于的概率为_________.(结果用最简分数表示)

二、解答题

29.如图,已知面积为1的正三角形ABC 三边的中点分别为

D 、

E 、

F ,从A ,B,C,D ,

E ,

F 六个点中任取三个不同的点,所构成的三角形的面积为X (三点共线时,规定X=0)(1)求;(2)求E (X ) 1.解:⑴从六点中任取三个不同的点共有个基本事件,

事件“”所含基本事件有,从而.

⑵的分布列为:

12

1

()2

P X ≥

36

C 20=12X ≥2317?+=17

()220

P X =≥X X 01412

P 3201020620

1

20

C

B

则. 答:,.…………………………………………10分 30.如图,60AOB ∠=,2OA =,5OB =,在线段OB 上任取一点C ,

试求:(1)AOC ?为钝角三角形的概率; (2)AOC ?为锐角三角形的概率.

2. (1) AOC ?为钝角三角形的概率为0.4(2) AOC ?为锐角三角形的概率为0.6

如图,由平面几何知识:

当AD OB ⊥时,1OD =;

当OA AE ⊥时,4OE =,1BE =.

(1)当且仅当点C 在线段OD 或BE 上时,AOC ?为钝角三角形, 记"AOC ?为钝角三角形"为事件M ,则11

()0.45

OD EB P M OB ++=

==,

即AOC ?为钝角三角形的概率为0.4.

(2)当且仅当点C 在线段DE 上时,AOC ?为锐角三角, 记"AOC ?为锐角三角"为事件N ,则3

()0.65

DE P N OB =

==, 即AOC ?为锐角三角形的概率为0.6.

31.一袋中有同样大小的球10个,其中有8个标有1元钱,2个标有5元钱,交5元钱,可以参加一次摸奖,摸

奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人获利的数学期望.

解:

设Y 为抽到的2球钱数之和,则Y 的可能取值如下:Y=2(抽到2个1元),Y=6(抽到1个1元,1个5元),Y=10(抽到2个5元),由题意

又设ξ为抽奖者获利可能值,则ξ=Y-5,所以抽奖者获利的期望为32.某中学预备从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:

(I)若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率; (II)若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.

311016113

()01204202202040

E X =?

+?+?+?=

17

()220

P X =≥13

()40

E X =

解:(I)设“他们中恰好有1人是高一年级学生”为事件A ,则()38153

20

210110==C C C A P 答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为38

15

(II)解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为

3

1

.所以 ()8116323104

004=??

? ????? ??==C P ξ; ()8132323113

114=??? ????? ??==C P ξ; ()2788124323122

2

2

4

==??? ????? ??==C P ξ;()81

8323131

3

34=??? ????? ??==C P ξ;

()811323140

444=??

? ????? ??==C P ξ. 随机变量ξ的分布列为:

所以3

481148183812428132181160=?+?+?+?+?=ξE 解法2: 随机变量ξ服从参数为4,31的二项分布,即ξ~)3

1

,4(B .

随机变量ξ的分布列为

:

所以3

34=?==np E ξ

33.在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.评分标准规

定:“每题只选一个选项,选对得5分,不选或选错得0分”.某考生已确定有4道题答案是正确的,其余题中:有两道只能分别判断2个选项是错误的,有一道仅能判断1个选项是错误的,还有一道因不理解题意只好乱猜,求:

(1)该考生得40分的概率; (2)该考生得多少分的可能性最大?

解:(1)设选对一道“可判断2个选项是错误的”题目为事件A,“可判断1个选项是

错误的”该题选对为事件B,“不能理解题意的”该题选对为事件C.则

---

所以得40分的概率

(2) 该考生得20分的概率=

该考生得25分的概率:

=

该考生得30分的概率:

==

该考生得35分的概率:

=

∵∴该考生得25分或30分的可能性最大.

34.有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从

这些小正方体中随机地任取1个,

(1);

(2).

(1)60个1×1×1的小正方体中,没有涂上颜色的有6个,

Eξ=0×

概率统计 排列组合

概率统计 排列统计 班级: 姓名: 学号: 成绩: 一 、选择题:本大题共15小题,每小题4分,共60分。在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。 1.以下条件可以确定一个平面的是( )。 .A 空间三点 .B 一直线和一个点 .C 两条直线 .D 两平行直线 2.两条直线不平行是这两直线异面的( )。 .A 充分条件 .B 必要条件 .C 充要条件 .D 既不充分又不必要条件 3.由数字1,2,3,4,5组成没有重复数字,且数字1和2不相邻的五位数,那么这种五位数的个数是( )。 .A 72 .B 60 .C 48 .D 50 4.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有( )。 .A 24个 .B 30个 .C 40个 .D 60个 5.将12人分成两组,一组8人,一组4人的分法数为( )。 .A 812A .B 812C .C 841212+C C .D 841212 C C 6.抛掷两枚硬币的试验中,设事件M 表示“两个都是反面”,则事件M 表示( )。 .A 两个都是正面 .B 至少出现一个正面 .C 一个是正面一个是反面 .D 以上答案都不对 7.同时抛掷两颗骰子,总数出现9点的概率是( )。 . A 14 . B 15 . C 16 . D 1 9 8.样本:6,7,8,8,9,10的标准差是( )。 .A 2 . B . C 3 . D 9.下列变量中,不是随机变量的是( )。 .A 一射击手射击一次的环数 .B 水在一个标准大气压下100C 时会沸腾

.C 某城市夏季出现的暴雨次数 .D 某操作系统在某时间发生故障的次数 10.某射击手击中目标的概率是0.84,则目标没有被击中的概率是( )。 .A 0.16 .B 0.36 .C 0.06 .D 0.42 11.在12件产品中,有8件正品,4件次品,从中任取2件,2件都是次品的概率是( )。 . A 19 . B 1 10 .C 111 .D 112 12. 在10(x 的展开式中,6x 的系数为( )。 .A 61027C - .B 41027C .C 6109C .D 6 109C - 13.二项式8(1)x -的展开式中的第5项是( )。 .A 3 56x .B 3 2 56x - .C 470x .D 270x 14.设()6 26012631+…x a a x a x a x -=+++,则0126+=…a a a a +++( )。 .A 32 .B 64 .C 729 .D 56 15.已知某种奖券的中奖概率是50%,现买5张奖券,恰有2张中奖的概率是( )。 . A 25 . B 58 . C 516 . D 5 32 二、填空题:本大题共5小题,每小题4分,共20分。把答案填在题中横线上。 16.56101054 99 4P P P P -=- 。 17.甲、乙两射手彼此独立地射击同一目标,甲击中目标的概率为0.8,乙击中目标的概率为0.9,则恰好有一人击中目标的概率为 。 18.已知互斥事件,A B 的概率3()4P A = ,1()6 P B =,则()P A B ?= 。 19.若把英语单词“bookkeeper ”的字母顺序写错了,则可能出现的错误共有 种。 20.若23 1818 x x C C -=,则x = 。 三、解答题:本大题共6小题,共70分。解答应写出推理、演算步骤。 21.5人排成一排,如果甲必须站在排头或排尾,而乙不能站排头或排尾,那么不同的排法总数是多少?(10分)

排列组合基本题型方法

排列组合方法汇总 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有3 4A 由分步计数原理得 113434 288 C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480 A A A =种不同的排 法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素 中间包含首尾两个空位共有种4 6 A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 4 4 3

高中数学排列组合与概率统计习题

高中数学必修排列组合和概率练习题 一、选择题(每小题5分,共60分) (1)已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作 为点的坐标,在同一直角坐标系中所确定的不同点的个数是C (A)32(B)33(C)34(D)36 解分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标,不同点的个数为1163P P g 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标,不同点的个数为1163P P g 不同点的个数总数是1111636336P P P P +=g g ,其中重复的数据有(1,7),(7,1),所以只有34个 (2)从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真 数,则可以得到不同的对数值的个数为 (A)64(B)56(C)53(D)51 解①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为292P ; ②1不能为底数,以1为底数的“对数式”个数有8个,而应减去; ③1为真数时,对数为0,以1为真数的“对数式”个数有8个,应减去7个; ④2324log 4log 92log 3log 9 ===,49241log 2log 32log 3log 9 == =,应减去4个 所示求不同的对数值的个数为29287453()C ---=个 (3)四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生 不能全排在一起,则不同的排法数有 (A )3600(B )3200(C )3080(D )2880 解①三名女生中有两名站在一起的站法种数是23P ; ②将站在一起的二名女生看作1人与其他5人排列的排列种数是66P ,其中的 三名女生排在一起的站法应减去。站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为55P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1525P P 。 符合题设的排列数为: 26153625665432254322454322880P P P P -=?????-????=????=种()()() 我的做法用插空法,先将4个男生全排再用插空743342274534522880A A C A A C A --= (4 )由100+展开所得x 多项式中,系数为有理项的共有 (A )50项(B )17项(C )16项(D )15项 解1000100110011r 100r r 100100100100100100=C )+C )++C )++C --L L

在概率的计算中的排列组合

预备知识 在概率的计算中经常要用到一些排列组合知识,也常常用到牛顿二项式定理。 这里罗列一些同学们在中学里已学过的有关公式,并适当作一点推广。 一. 两个原理 1. 乘法原理: 完成一项工作有m 个步骤,第一步有1n 种方法,第二步有2n 种方法,…, 第m 步有m n 种方法,且完成该项工作必须依次通过这m 个步骤, 则完成该项工作一共有 1n 2n …m n 种方法,这一原理称为乘法原理。 2. 加法原理: 完成一项工作有m 种方式,第一种方式有1n 种方法,第二种 方式有2n 种方法,…,第m 种方式有m n 种方法,且完成该项工作只需 选择这m 种方式中的一种,则完成这项工作一共有 1n +2n +…+m n 种方法,这一原理称为加法原理。 二. 排列: 从n 个元素里每次取出r 个元素,按一定顺序排成一列,称为 从n 个元素里每次取r 个元素的排列,这里n 和Z 。均为正整数(以 下同)。 当这n 个元素全不相同时,上述的排列称为无重复排列,我 们关心的是可以做成多少个排列,即排列数。 对于无重复排列,要求当 时 r n 称为选排列,而当 r =n 时称为全排列。我们记排列数分别为 即将全排列看成选排列的特例。 利用乘法原理不难得到 由阶乘的定义

由阶乘的定义 将上面的n个不同的元素改为n类不同的元素,每一类元素 都有无数多个。今从这n类元素中取出r个元素,这r个元素可 以有从同一类元素中的两个或两个以上,将取出的这r个元素dl 成一列,称为从n类元素中取出r个元素的可重复排列,排列数记 作,由乘法原理得 显然,此处r可以大于n 例3 将三封信投入4个信箱,问在下列两种情形下各有几 种投法? 1)每个信箱至多只许投入一封信; 2)每个信箱允许投入的信的数量不受限制。 解1)显然是无重复排列问题,投法的种数为 2)是可重复排列问题,投法的种数为 三、组合 从“个元素中每次取出r个元素,构成的一组,称为从n个元 素里每次取出r个元素的组合。 设这n个元素全不相同,即得所谓无重复组合,我们来求组合数,记作 将一个组合中的r个元素作全排列,全排列数为 , 所有组合中的元素作全排列,共有 个排列,这相当于从n个元素里每次取r个元素的选排列,排列总数为 故有

2020年高考理科数学易错题《排列组合》题型归纳与训练

2020年高考理科数学《排列组合》题型归纳与训练 【题型归纳】 题型一 计数原理的基本应用 例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有 A .3种 B .6种 C .9种 D .18种 【答案】 C . 【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有 62312=?C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=?C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C 【易错点】注意先分类再分步 【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置 例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答) 【答案】 480 【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。先排F E D ,,三个字母,有12036 =A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=?种. 【易错点】注意特殊元素的考虑 【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高. 题型三 捆绑型问题以及不相邻问题 例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.

高中数学-排列组合概率综合复习

高中数学 排列组合二项式定理与概率统计

其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。 例4、设88 018(1),x a a x a x +=+++L 则0,18,,a a a L 中奇数的个数为( ) A .2 B .3 C .4 D .5 例5、组合数C r n (n >r ≥1,n 、r ∈Z )恒等于( ) A .r +1n +1C r -1n -1 B .(n +1)(r +1) C r -1n -1 C .nr C r -1 n -1 D .n r C r -1n -1 . 例6、在的展开式中,含的项的系数是 (A )-15 (B )85 (C )-120 (D )274 例7、若(x +12x )n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6 (B)7 (C)8 (D)9 考点三:概率 【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。 【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。 (2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。 例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率 为 。 例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (A) 1 84 (B) 121 (C) 25 (D) 35 例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…, 18的18名 火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 )5)(4)(3)(2)(1(-----x x x x x 4 x

排列组合题型总结

排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 一.直接法、 1. 特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A , 共有14A 1 4A 24A =192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因 而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ??个,其中0在百位的有 2242?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-2242?C ?22A =432 (个) 三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方 法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ?=100中插 入方法。 四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×4 4A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校

(最新经营)排列组合二项式定理与概率及统计

主讲人:黄冈中学高级教师汤彩仙 一、复习策略 排列与组合是高中数学中从内容到方法均比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题均有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,且且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内于联系和区别,科学周全的思考、分析问题. 二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点. 概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律. 纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点均于两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也于高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年均有一道解答题,占12分左右. 排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)

以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.(4)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;(5)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 于求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 二、典例剖析 题型一:排列组合应用题 解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件. 例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.

排列组合常见题型及解答

排列组合常见题型 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个是底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、 3 8 A D、 3 8 C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排

法种数有 【解析】:把A,B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432,其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法数是52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(数字作答) 【解析】: 1 11789A A A =504 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【解析】:不同排法的种数为5256A A =3600 【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 【解析】:依题,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有25A =20种不同排法。

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计 重点知识回顾 1. 排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关, 分类计数原理与分类有关 ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合, ⑶排列与组合的主要公式 _ r — r+1 项是 T r+1 =C n a n r b r . ⑵二项展开式的通项公式 二项展开式的第r+1项T r+1=c n a n —r b r (r=0,1,…叫)做二项展开式的通项公式。 ⑶二项式系数的性质 ① 在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即 c n = c n r (r=0,1,2,…,n ). 项和第n 3项)的二项式系数相等,并且最大,其值为 2 A n = n! =n(n — 1)(n — 2) ....... 2 ? 1. ②组合数公式: c m n! n(n 1) (n m 1) (m < n) m!( n m)! m (m 1) 2 1 ③组合数性质: ①c m ㈡ m (m < n) ② c 0 c ; c n 2 c ; 2n ③ Cn Cn c 4 C n c 1 c 3 C n C n 2n 1 2.二项式定理 ⑴二项式定理 (a +b)n =C 0a n +c n a n — 1 r b+ …+C n a n r b r +… + c n b n ,其中各项系数就是组合数c n ,展开式共有n+1项,第 问题?区别排列问题与组合问题要看是否与顺序有关, 与顺序有关的属于排列问题, 与顺序无关的属于组合问题 求共有多少种方法的 ①排列数公式: A m n! (n m)! n(n 1) (n m 1) (m

完整版排列组合题型归纳

排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3. 学会应用数学思想和方法解决排列组合问题. 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有 m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有口种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

基本公式排列组合二项式定理及概率统计

基本公式·排列组合二项式定理及概率统计 151排列数公式 : m n A =)1()1(+--m n n n ! ! )(m n -(n ,m ∈N * ,且m n ≤).规定1!0= 154组合数的两个性质:(1)m n C =m n n C - ;(2) m n C +1-m n C =m n C +规定0 =n C 155组合恒等式 (3)11m m n n n C C m --=; (4)∑=n r r n C 0=n 2; (5)121++++=++++r n r n r r r r r r C C C C C (6)n n r n n n n C C C C C 2210 =++++++ (7)420531 2-=+++=+++n n n n n n n C C C C C C (8)321 232-=++++n n n n n n n nC C C C (9)r m r n r m n r m n r m C C C C C C C +-=+++0110 (10)n n n n n n n C C C C C 2222212 0)()()() (=++++ 156排列数与组合数的关系:m m n n A m C =?! 157.单条件排列(以下各条的大前提是从n 个元素中取m 个元素的排列) (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1 111---=m n n A A (着眼位 置)1 1111----+= m n m m n A A A (着眼元素)种 (2)紧贴与插空(即相邻与不相邻) ①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种 ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 1 1+-+-种 注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ) ,把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有 k h h h A A 1+种 (3)两组元素各相同的插空 m 个大球n 个小球排成一列,小球必分开,问有多少种排法? 当1+>m n 时,无解;当1+≤m n 时,有 n m n n n m C A A 11 ++=种排法 (4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n n m C + 158.分配问题 (1)(平均分组有归属问题)将相异的 mn 个物件等分给m 个人,各得n 件,其分配方法数共有m n n n n n n mn n n mn n mn n C C C C C N ) !(22=?????=-- (2)(平均分组无归属问题)将相异的mn 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 m n n n n n n mn n n mn n mn n m m C C C C C N ) !(!!...22=????=-- (3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得

排列组合概率专题讲解

专题五: 排列、组合、二项式定理、概率与统计 【考点分析】 1. 突出运算能力的考查。高考中无论是排列、组合、二项式定理和概率题目,均是用数 值给出的选择支或要求用数值作答,这就要求平时要重视用有关公式进行具体的计算。 2. 有关排列、组合的综合应用问题。这种问题重点考查逻辑思维能力,它一般有一至两 3. 个附加条件,此附加条件有鲜明的特色,是解题的关键所在;而且此类问题一般都有 多种解法,平时注意训练一题多解;它一般以一道选择题或填空题的形式出现,属于中等偏难(理科)的题目。 4. 有关二项式定理的通项式和二项式系数性质的问题。这种问题重点考查运算能力,特 别是有关指数运算法则的运用,同时还要注意理解其基本概念,它一般以一道选择题或填空题的形式出现,属于基础题。 5. 有关概率的实际应用问题。这种问题既考察逻辑思维能力,又考查运算能力;它要求 对四个概率公式的实质深刻理解并准确运用;文科仅要求计算概率,理科则要求计算分布列和期望;它一般以一小一大(既一道选择题或填空题、一道解答题)的形式出现,属于中等偏难的题目。 6. 有关统计的实际应用问题。这种问题主要考查对一些基本概念、基本方法的理解和掌 握,它一般以一道选择题或填空题的形式出现,属于基础题。 【疑难点拨】 1. 知识体系: 2.知识重点: (1) 分类计数原理与分步计数原理。它是本章知识的灵魂和核心,贯穿于本章的始终。 (2) 排列、组合的定义,排列数公式、组合数公式的定义以及推导过程。排列数公式 的推导过程就是位置分析法的应用,而组合数公式的推导过程则对应着先选(元素)后排(顺序)这一通法。 (3) 二项式定理及其推导过程、二项展开式系数的性质及其推导过程。二项式定理的 推导过程体现了二项式定理的实质,反映了两个基本计数原理及组合思想的具体应用,二项展开式系数性质的推导过程就对应着解决此类问题的通法——赋值法(令1±=x )的应用。 (4) 等可能事件的定义及其概率公式,互斥事件的定义及其概率的加法公式,相互独 立事件的定义及其概率的乘法公式,独立重复试验的定义及其概率公式。互斥事件的概率加法公式对应着分类相加计数原理的应用,相互独立事件的概率乘法公式对应着分步相乘计数原理的应用。 (5) (理科)离散型随机变量的定义,离散型随机变量的分布列、期望和方差。 (6) 简单随机抽样、系统抽样、分层抽样,总体分布,正态分布,线性回归。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

最新高考数学总复习------ 排列组合与概率统计

高考数学总复习------排列组合与概率统计 【重点知识回顾】 1.排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关. ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题. ⑶ 排列与组合的主要公式 ①排列数公式:)1()1()! (! +-???-=-= m n n n m n n A m n (m≤n) A n n =n! =n(n―1)(n―2) ...2·1. ②组合数公式:1 2)1() 1()1()!(!!??????-?+-???-=-= m m m n n n m n m n C m n (m≤n). ③组合数性质:①m n n m n C C -=(m≤n). ②n n n n n n C C C C 2210=+???+++ ③1 314202-=???++=???++n n n n n n C C C C C 2.二项式定理 ⑴ 二项式定理 (a +b)n =C 0n a n +C 1n a n - 1b+…+C r n a n - r b r +…+C n n b n ,其中各项系数就是组合数C r n ,展开式共有n+1项,第r+1项是T r+1 =C r n a n - r b r . ⑵ 二项展开式的通项公式 二项展开式的第r+1项T r+1=C r n a n - r b r (r=0,1,…n)叫做二项展开式的通项公式。 ⑶ 二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即C r n = C r n n - (r=0,1,2,…,n). ②若n 是偶数,则中间项(第12+n 项)的二项公式系数最大,其值为C 2 n n ;若n 是奇数, 则中间两项(第21+n 项和第2 3 +n 项)的二项式系数相等,并且最大,其值为C 21 -n n = C 21 +n n . ③所有二项式系数和等于2n ,即C 0n +C 1n +C 2n +…+C n n =2n . ④奇数项的二项式系数和等于偶数项的二项式系数和,

高中数学排列组合题型总结与易错点提示25587汇编

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1 m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1 m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合 要求的元素占了这两个位置. 先排末位共有13 C C 1 4 A 3 4 C 1 3 然后排首位共有14 C 最后排其它位置共有34 A 由分步计数原理得113434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花

不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素, 同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5225 2 2 480A A A 种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈 节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55 A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46 A 不同的方法,由分步计数原理,节目的不同顺序共有5456 A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单, 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列 ,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端

算法流程图、排列组合、统计

概率流程图的数学计算 授课对象:高二 授课内容:算法流程图、排列组合、统计 一、知识回顾 算法流程图的组成元素、画法、代码、秦九韶算法 例1 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。 例2 用二分法设计一个求议程x2–2=0的近似根的算法。 已知x=4,y=2,画出计算w=3x+4y的值的程序框图。 解:程序框如下图所示: 2 4和2分别是x和y的值 分类加法计数原理、分步乘法计数原理 分类加法计数原理,是什么?怎么用? 核心:每法皆可完成,方法可分类 分步乘法计数原理,是什么?怎么用? 核心:每法皆分步,每步皆未完 排列 排头与非排头 二、课堂讲解 1.排列组合 组合的定义,组合数公式 例:从10个不同颜色的球里面选2个,有多少种情况 二者的区别与关系 2.统计学 简单随机抽样 (1)简单随机抽样要求被抽取的样本的总体个数N是有限的。 (2)简单随机样本数n小于等于样本总体的个数N。 (3)简单随机样本是从总体中逐个抽取的。 (4)简单随机抽样是一种不放回的抽样。 (5)简单随机抽样的每个个体入样的可能性均为n/N。

为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是 A.总体是240 B、个体是每一个学生 C、样本是40名学生 D、样本容量是40 分层抽样 (1)分层需遵循不重复、不遗漏的原则。 (2)抽取比例由每层个体占总体的比例确定。 (3)各层抽样按简单随机抽样进行。 某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采 用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为 A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20 某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每 个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n= 。 系统抽样 下列抽样中不是系统抽样的是() A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到 大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样 B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验 C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定 的调查人数为止 D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下 来座谈 从忆编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验, 若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是 A.5,10,15,20,25 B、3,13,23,33,43 C.1,2,3,4,5 D、2,4,6,16,32 统计图表:条形图,折线图,饼图,茎叶图 频率分布直方图 为了了解高一学生的体能情况,某校抽取部分学 生进行一分钟跳绳次数次测试,将所得数据整理 后,画出频率分布直方图(如图),图中从左到右 各小长方形面积之比为2:4:17:15:9:3, 第二小组频数为12. (1)第二小组的频率是多少?样本容量是多 少? (2)若次数在110以上(含110次)为达标,试 估计该学校全体高一学生的达标率是多 少?

相关文档
最新文档