熔接线的处理

熔接线的处理
熔接线的处理

熔接线的处理

是指涂装品表面涂膜剥落的现象之一。通常在涂膜性能试验时出现此现象。

关于涂装用途,

原因成型品的表面附着油腻、离型剂等污染物质时,容易造成结合不良。此外,底材和涂料的融和性(溶解性、可涂性等),或者涂装条件(稀释剂、粘度、涂膜厚度)也会造成影响。

解决方法·对成型品的表面进行去油处理(使用n-正己脘、IPA等) ·改用凝集力较弱的涂料(凝集力<附着力----不易剥落)·增加涂膜厚度

·提高注射速度(调大取向,提高稀释剂的渗透性)

熔合线(WELDLINES)

>熔合线是指2个以上的流体先端(flow-front)会合时产生的V字形缺口的丝状细线痕。

在镶嵌、方格或者多个浇口的情况下势必产生熔合线,但是目前尚没有理论性的解决办法,为此应尽可能控制在最低限度,或者必要时采取将其从商品面上移动到侧面等措施。

另外,通常不太了解的人有可能误认为是裂缝。应力集中的部位很有可能导致产生强度问题,因此从商品规格上考虑同样需要事先研究对策。

同志们,大家有没想过用进胶位移来控制呢?

其实,熔接痕的位置是可以用分段注塑时的各段位移的不同来控制长短和位置的。

大家,以后遇到这问题,不妨一试。

进胶的位置和冷却水的设计很重要。

改变注射速度和压力,将融合线移动至分型面处,再在模具上开排气槽。

做冷料静可能效果会好,只是成本会高。

其他的话就是温度,速度,压力的调整了。

完全消除结合线现在有几种方式:1,顺序进胶,2,蒸汽辅助注射,3,结合线处加热,4,超大冷料井,5,合理进胶点和进胶方式也可以改善

改动浇口,两股料流动汇合角度大于120度时熔结缝就不影响外观了!角度小了,熔洁痕就看得见,只能调浅!主要是浇口位置及产品壁厚1

产品接痕通常是由于在拼缝处温度低、压力小造成。

⑴温度问题:

①料筒温度太低;

②喷嘴温度太低;

③模温太低;

④拼缝处模温太低;

⑤塑料熔体温度不均。

⑵注塑问题:

①注射压力太低:

②注射速度太慢。

(3)模具问题:

<1>拼缝处排气不良;

<2>部件排气不良;

<3>分流道太小;

<4>浇口太小;

<5>三流道进口直径太小;

<6>喷嘴孔太小;

<7>浇口离拼缝处太远,可增加辅助浇口;

<8>制品壁厚太薄,造成过早固化;

<9>型芯偏移,造成单边薄;

<10>模子偏移,造成单边薄

<11>制件在拼缝处太薄,加厚;

<12>充模速率不等;

<13>充模料流中断。

如果还有问题的话。用一个浇口吧

2008年05月19日星期一 14:32

注射成型过程中经常会产生熔接线,熔接线是注塑成型制品最严重的成型缺陷之一,它不但影响制品的外观质量,而且熔接线对制品强度有影响,并且在涂漆等后处理时,熔接线难以处理,所以必须缩短熔接线的长度。由于熔融树脂填充互相遇合的界面显示在表面上,致使强度及外观降低。

措施:为了在需承受外力的部位或者醒目的部位不产生熔接线,将熔接线移至不影响外观及使用强度的部位,此时可(1)改善塑料本身的流动性;(2)通过放大镜观察熔接线的位置,如可测量,测量并控制熔接线长度;(3)加快注塑速度,增大注塑压力;(4)在熔接线附近加热;(相对较难操作)(5)升高模具温度;(6)增大浇口;(7)在模具上增加排气;

以上为自我总结,以下为其它一点摘抄下来的资料:

产品接痕通常是由于在拼缝处温度低、压力小造成。

⑴温度问题:

①料筒温度太低;

②喷嘴温度太低;

③模温太低;

④拼缝处模温太低;

⑤塑料熔体温度不均。

⑵注塑问题:

①注射压力太低:

②注射速度太慢。

(3)模具问题:

<1>拼缝处排气不良;

<2>部件排气不良;

<3>分流道太小;

<4>浇口太小;

<5>三流道进口直径太小;

<6>喷嘴孔太小;

<7>浇口离拼缝处太远,可增加辅助浇口;

<8>制品壁厚太薄,造成过早固化;

<9>型芯偏移,造成单边薄;

<10>模子偏移,造成单边薄

<11>制件在拼缝处太薄,加厚;

<12>充模速率不等;

<13>充模料流中断。

注射成型过程中经常会产生熔接线,熔接线是注塑成型制品最严重的成型缺陷之一,它不但影响制品的外观质量,而且熔接线对制品强度有影响,并且在涂漆等后处理时,熔接线难以处理,所以必须缩短熔接线的长度。由于熔融树脂填充互相遇合的界面显示在表面上,致使强度及外观降低,为了在需承受外力的部位或者醒目的部位不产生熔接线,将熔接线移至不影响外观及使用强度的部位,此时可通过CAE软件预测熔接线位置,再通过改变制品设计或浇口设计,在设计模具时,尽可能产生熔接线的部分移动到强度及外观质量不是重要的位置熔接线常常发生在注塑成型时熔融树脂合流的地方,提高注射压力、熔料温度和模腔温度有助于克服注塑时浇注系统对熔体的流动阻力,能有效地将注射保压压力传递到料流前端,使料流汇合处能在较高压力下融合,从而熔接痕处密度增大,强度提高;故熔体融合得较好,应该注意的是,由于制品结构本身的要求使熔接线/融合痕不可避免,但通过控制相遇的两股熔体温度差(不超过10 -C)、提高注射压力和模腔温度等工艺条件使熔体融合处的强度提高一些。

三相三线电能表正确接线的简易判别法

三相三线有功电能表计量三相三线有功电能,有两种非标准正确接线方式:(1)元件1采用线电压UBC和相电流ib,元件2采用线电压UAC和相电流iA,这种接线方式的瞬间功率表达式为P=UBCib+UACiA;(2)元件1采用线电压UCA和相电流ic,元件2采用线电压UBA和相电流ib,这种接线方式的瞬间功率表达式为P=UCAic+UBAib。在三相三线系统中,如果B相接地,则这两种非标准接线方式就可能漏计电度。比如:高压两线一地输电方式或低压三相三线供电方式,B相在电能表外的电源侧和负荷侧若同时接地运行,则三相三线有功电能表必然漏计电度,因此通常不采用这两种接线方式。而常用的标准正确接线只有一种(如图1),错误接线却有许多种。为了迅速地判别电能表接线是否正确,可采用下述简易方法: (1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下: ①对调A、B两相电压(矢量图如图2a所示)其功率为: -φA)=-U Icos(30°+φ) ②对调B、C两相电压(矢量图如图2b所示),其功率为: -φA)=UIcos(30°-φ) -UIcos(30°-φ) ③对调A、C两相电压(矢量图如图2c所示),其功率为: -UIcos(90°-φ) -φC)=UIcos(90°-φ) 三次对调电压进线后,从电能表的功率计算说明,如果原接线正确,在对调电压进线后都应停转(或有微动)。 (2)通过三次对调电压进线,如果电能表三次都停转,只能说明原电能表接线可能正确。电能表对调电压进线停转,只是电能表原接线正确的必要条件,还不是充分条件。为此还必须进一步进行判断。方法是:首先断开B相电压,此时电能表每分钟转数应为原接线电能表每分钟转数的一半。因为在原接线正确情况下,断开B相电压进线(参看图1虚线处断开),其功率为: -φA)=UIcos(30°-φ) UIcosφ 从功率计算说明,在电能表正确接线时,断开B相电压电能表正转速度应降低一半。然后再把A、C两相电压进线对调,使电能表停转,继续进行断开电压进线的试验。先断开A相电源进线,则电能表的功率为: -UIsinφ 再断开C相电源的电压进线,则电能表的功率为: -φC)=-UIcos(90°-φ)=UIsinφ 功率值P1和P2大小相等,方向相反。说明无论用户的功率因数如何,两次断线后,电能表的转数都应一样,但转向相反。

单相有功电能表的正确接线

单相有功电能表的正确接线 一单相有功电能计量装置的接线方式 (一)单相有功电能的测量原理 用于单相电路的电能计量装置一般仅有一只单相电能表,,电能表端子盒的端子直接接入被测电路,即直接接入式,当电能表的电流或电压量限不能满足被测电路要求时,则需经互感器接入。 测量有功电能的原理如图 测得的有功功率为 P=UIcos ? 而驱动力矩M Q 可由相量图得到M Q =K ψsin U I ΦΦ 驱动力矩为正值,电能表正转 若有一个线圈极性接反,例如电流线圈极性接反时,流入电能表电流线圈中的电流方向与图中相反,残生电流磁通的方向也相反,测试驱动力矩为M Q = K θsin U I ΦΦ=K =+?ΦΦ)180sin(?U I -K ?sin U I ΦΦ (二)直接接入式

直接接入式接线根据电能表端子盒内电压,电流接线端子排列方式不同可分为一进一出(单进单出)和二进二出(双进双出)两种接线方式。 相同点:两种接线方式的接线原理都是一样,因为它们所反映的功率都是P=UIcos 它们的电压电流端子同名端的连接片在表内都是连好的。 不同点:只是端子盒内电压、电流的出入端子的排列位置不同,电能表端子盒的接线端子应以“一孔一线”、“孔线对应”为原则,禁止在电能表端子盒端子孔内同时连接两根导线。 1、一进一出接线的正确接线 将电源的相线(俗称火线)接入接线盒第1孔接线端子上,其出线接在接线盒第2孔接线端子上;电源的中性线(俗称零线)接入接线盒第3个孔接线端子上,其出线接在接线盒第4孔接线端子上。 (目前我国和德国、捷克、匈牙利及原苏联等国生产的单相电能表都采用这种接线方式。) 2、二进二出接线的正确接线

三相三线电度表正确接线的简易别法

三相三线电度表正确接线的简易别法 三相三线有功电能表计量三相三线有功电能,有两种非标准正确接线方式:(1)元件1采用线电压UBC和相电流ib,元件2采用线电压UAC和相电流iA,这种接线方式的瞬间功率表达式为P=UBCib+UACiA; (2)元件1采用线电压UCA和相电流ic,元件2采用线电压UBA和相电流ib,这种接线方式的瞬间功率表达式为P=UCAic+UBAib。在三相三线系统中,如果B 相接地,则这两种非标准接线方式就可能漏计电度。 比如:高压两线一地输电方式或低压三相三线供电方式,B相在电能表外的电源侧和负荷侧若同时接地运行,则三相三线有功电能表必然漏计电度,因此通常不采用这两种接线方式。而常用的标准正确接线只有一种(如图1),错误接线却有许多种。为了迅速地判别电能表接线是否正确,可采用下述简易方法:

(1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下:

①对调A、B两相电压(矢量图如图2a所示)其功率为: P1=UBAIAcos(150-φA)=-UIcos(30+φ) P2=UCAICcos(30+φC)=UIcos(30+φ) P=P1+P2=0 ②对调B、C两相电压(矢量图如图2b所示),其功率为: P1=UACIAcos(30-φA)=UIcos(30-φ) P2=UBCICcos(150+φC)=-UIcos(30-φ) P=P1+P2=0 ③对调A、C两相电压(矢量图如图2c所示),其功率为: P1=UCBIAcos(90+φA)=-UIcos(90-φ) P2=UABICcos(90-φC)=UIcos(90-φ) P=P1+P2=0 (1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下: ①对调A、B两相电压(矢量图如图2a所示)其功率为: P1=UBAIAcos(150-φA)=-UIcos(30+φ)

功率因数表的结构与工作原理及示波图法测量功率因数

功率因数表的结构与工作原理及示波图法测量功率因数 摘要:本文主要描述测量功率因数的方法,介绍相关仪表的结构及其工作原理,在测量功率因数时产生误差的因素。现在常见的是采用单片机测量功率因数,说明它的工作原理。阐述通过示波图测量功率因数的方法。 关键字:功率因数机械式电子式 1.功率因数的定义 在交流电路中,电压(U)与电流(I)之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cos Φ=P/S。 在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以cosΦ表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。 功率因数也可以由电路中纯阻值与总阻抗的比值求得。在实际电路中由于有电机设备中(如鼓风机、抽水机、压缩机等)等感性负载,使功率因数降低即产生了无功功率.无功功率使得电能没有全部转化为人们所用(即有功功率),而有一部分损耗(即无功功率)。也就是因为感性负载的存在,造成了系统里的一个KVAR 值,视在功率、有功功率、无功功率三者是一个三角函数的关系:KVA2=KW2+KVAR2 功率因数一般用仪表测量,有机械式功率因数表,电子式功率因数表。也可以通过示波图测量,以下分别阐述他们的结构与工作原理。 2.机械式功率因数表的结构及工作原理 单项功率因数表一般用于单相交流电路或使用对称负载平衡的三相交流电路中。单相表在频率不同时会影响读数准确性。常见机械式功率因数表一般有电动式,铁磁电动式,电磁式和变换器式几种。 现在以单相功率因数表为例来介绍机械式功率因数表的原理:

三相功率表(功率因数)使用说明书

三相功率表(功率因数)使用说明书 最近更新时间:2008-8-6 11:44:10 提供商:资料大小:305KB 文件类型:DOC 格式下载次数:25 次 资料类型:浏览次数:51 次 相关产品: 详细介绍:点这里下载-> 下载地址[本地下载] 一·概述与用途 HC-503数显功率表适用于电力网、自动化控制系统的现场监测显示、控制和自动化通讯,能将电网中的电参量如电流、电压、单相或三相功率、频率等值,由CPU实时采样、转换并输出标准电流或电压信号,与远距离数据终端相连。智能通讯型产品带有RS-485通讯接口,可直接与控制中心进行数据交换,实现自动化管理。广泛应用于电力、邮电、石油、煤炭、冶金、铁道、市政、智能大厦等行业、部门的电气装置、自动控制以及调度系统。 二·主要主要技术指标 基本误差:0.2%FS±1个字 分辨力:1、0.1 显示:4个四位LED数码管显示 分别显示,电压,电流,功率因数,有功功率 过量程持续:1.2倍,瞬时:电流2倍/1秒,电压2倍/1秒 报警输出:二限报警或四限报警,每个输出根据需要可设定为上限报警、下限报警或禁止使用,继电器输出触点容量 AC220V/3A或AC220V/1A。 变送输出:4~20mA(负载电阻≤500Ω)、0~10mA(负载电阻≤1000Ω)1~5V、0~5V(负载电阻≥200KΩ)

通讯输出:接口方式——隔离串行双向通讯接口RS485/RS422/RS232/Modem 波特率——300~9600bps内部自由设定 电源:开关电源85~265V AC 功耗:4W 环境温度:0~50℃ 环境湿度:<85%RH 四、操作说明 (一)面板说明 HA指示灯亮—电压显示(三排从上依次显示AC相, AB相,BC相电压) LA指示灯亮—三排从上依次显示电流,功率因数,功率) OUT指示灯亮—上排显示HZ,中间显示电网频率。 上排显示uAH,中间显示有功电能高4位,下排显示有 功电能低4位。 COM—通讯指示灯

三相三线电度表正确接线的简易判别法(精)

三相三线电度表正确接线的简易判别法 三相三线有功电能表计量三相三线有功电能,有两种非标准正确接线方式:(1元件 1采用线电压 U BC和相电流 ib , 元件 2采用线电压 UAC 和相电流 iA , 这种接线方式的瞬间功率表达式为 P=UBC ib+UACiA; (2元件 1采用线电压 U C A 和相电流 ic , 元件 2采用线电压 U B A 和相电流 ib , 这种接线方式的瞬间功率表达式为P=UC Aic+UBAib。在三相三线系统中, 如果 B 相接地,则这两种非标准接线方式就可能漏计电度。比如:高压两线一地输电方式或低压三相三线供电方式, B 相在电能表外的电源侧和负荷侧若同时接地运行,则三相三线有功电能表必然漏计电度, 因此通常不采用这两种接线方式。而常用的标准正确接线只有一种 (如图 1 ,错误接线却有许多种。为了迅速地判别电能表接线是否正确,可采用下述简易方法: (1首先对任何正转的电能表, 如果原电能表接线正确, 通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下: ①对调 A 、 B 两相电压 (矢量图如图 2a 所示其功率为: P1=UBAIAcos(150-φA=-UIcos(30+φ P2=UCAICcos(30+φC=UIcos(30+φ P=P1+P2=0 ②对调 B 、 C 两相电压 (矢量图如图 2b 所示 ,其功率为: P1=UACIAcos(30-φA=UIcos(30-φ P2=UBCICcos(150+φC=-UIcos(30-φ P=P1+P2=0 ③对调 A 、 C 两相电压 (矢量图如图 2c 所示 ,其功率为:

功率因数表的使用及相序测量

A C B N 图 27-1 图 27-2 (c) (b)(a ) (d) 功率因数表的使用及相序测量 一.实验目的 1.掌握三相交流电路相序的测量方法; 2.熟悉功率因数表的使用方法,了解负载性质对功率因数的影响。 二.实验原理 1.相序指示器 相序指示器如图27-1所示,它是由一个电容器和两个白炽灯按星型联接的电路,用来指示三相电源的相序。 在图27-1电路中,设A U 、B U 、C U 为三相 对称电源相电压,中点电压 C C C C C R R X R U R U X U U 11j 1j -B B B A N ++-++= 设C C R R X ==B ,P P A 0U U U =?∠= 代入上式 得: P N j0.6)2.0(U U +-= 则 P N B B j1.466)3.0(U U U U --=-=' P B 49.1U U =' P N C C j0.266)3.0(U U U U +-=-=' P C 4.0U U =' 可见C B U U '?',B 相的白炽灯比C 相的亮。 综上所述,用相序指示器指示三相电源相序的方法是:如果连接电容器的一相是A 相,那么,白炽灯较亮的一相是B 相,较暗的一相是C 相。 2.负载的功率因数 在图27-2(a)电路中,负载的有功功率?cos UI P =,其中?cos 为功率因数,功率因数角 =tan arc ? 且 ≤≥?-90?当 ???C L X X ,?cos >0,感性负载; 当0???C L X X ,?cos >0,容性负载; 当0==?C L X X ,?cos =1,电阻性负载。 可见,功率因数的大小和性质由负载参数的大小和性质决定。

功率因数表的接线方法

功率因数表的接线方法 1、2、3、4、5接线柱哪两个为电流哪两个为电压呀 你用万用表测一下,电阻为0的两个端子就是电流,电阻无穷大的是电压端子,和外壳金属部分连的是接地端。 *I为电流的进线端,I为电流的出线端,此两端接A相,电源接BC两端,接错了,不准的。当线路上出现无功时,表头指针将从零刻度向滞后刻度盘摆动(向上)。当电容器过补偿时,表头指针将会向超前刻度盘摆动(向下)。如果电流端进出线接反,将出现显示不准确。 (1D1-cosφ型功率因数表的接线方法通常是:电压,接AB相,电流,接C相。 或者:任意两相的电压(线电压),和另外一相的电流。) 这个数显功率表怎么接线啊! 这个功率表接上一个开关电源测功率!你的输入电压和输入电流是什么概念?这个功率表不是串接在电路中的? 端子8、10是接电源220V;

端子1、2是接输入电压(V); 1(L)接电压负, 2(H)接电压正; 端子3、4为输入电流(I)的正,端子5、6为输入电流(I)负。 端子11、12为外部输出电流,如果用不上就不用接线。 功率表怎么接线 接两相的电流和三相电压。 电路图中的功率表两个*号端两个接线端 两个*号端两个接线端分别是怎么意思?在电路图中,测的是什么量? 如图,功率表那样接,是通过测电路什么量得到功率的?两个*号端两个接线端分别是什么意思?

测功率只有二个量电流、电压 *是电流电压线圈的一端电流线圈*号端必须接输入端,而电压线圈*号端可以接在输入输出端,只是接在输出端时测量的功率包括了电压线圈的功率,通常电压线圈都接在输入端。 功率因数表怎样接线 指针式功率因数表在设计时,是取A、B相电压和C相电流并且功率因数等于1时,指针在中间(1)位置设计的。低压供电网络的功率因数基本都是滞后。极少是等于1。(网络负荷显容性时才会超前。停电时表的指针应在中间,指1的位置。正常供电的网络,功率因数表很少在指1的位置。)

三相三线电能表正确接线的简易判别法

三相三线电能表正确接线的简易判别法 三相三线有功电能表计量三相三线有功电能,有两种非标准正确接线方式:(1)元件1采用线电压UBC和相电流ib,元件2采用线电压UAC和相电流iA,这种接线方式的瞬间功率表达式为P=UBCib+UACiA;(2)元件1采用线电压UCA和相电流ic,元件2采用线电压UBA和相电流ib,这种接线方式的瞬间功率表达式为P=UCAic+UBAib。在三相三线系统中,如果B相接地,则这两种非标准接线方式就可能漏计电度。比如:高压两线一地输电方式或低压三相三线供电方式,B相在电能表外的电源侧和负荷侧若同时接地运行,则三相三线有功电能表必然漏计电度,因此通常不采用这两种接线方式。而常用的标准正确接线只有一种(如图1),错误接线却有许多种。为了迅速地判别电能表接线是否正确,可采用下述简易方法: (1)首先对任何正转的电能表,如果原电能表接线正确,通过三次对调任意两根电压进线后,三次电能表都应停转,如不停转或有一次不停转,则证明原电能表接线肯定有错误。因为原电能表接线如果正确,对调任意两根电压进线后,其功率计算如下: ①对调A、B两相电压(矢量图如图2a所示)其功率为: P1=UBAIAcos(150°-φA)=-UIcos(30°+φ) P2=UCAICcos(30°+φC)=UIcos(30°+φ) P=P1+P2=0 ②对调B、C两相电压(矢量图如图2b所示),其功率为: P1=UACIAcos(30°-φA)=UIcos(30°-φ) P2=UBCICcos(150°+φC)=-UIcos(30°-φ) P=P1+P2=0 ③对调A、C两相电压(矢量图如图2c所示),其功率为: P1=UCBIAcos(90°+φA)=-UIcos(90°-φ) P2=UABICcos(90°-φC)=UIcos(90°-φ) P=P1+P2=0

功率因数表

功率因数表 功率因数表用于测量单相和三相负荷电路的功率因素。本功率因素表资料由厦门日华机电成套有限公司总结,我司代理CEWE功率因素表,欢迎来电咨询。功率因数英语单词Power Factor,简称PF,又称功率因子,是有功功率与视在功率的比值。功率因数在一定程度上反映了发电机容量得以利用的比例,是合理用电的重要指标。 功率因数表接线方法 指针式功率因数表在设计时,是取A、B相电压和C相电流并且功率因数等于1时,指针在中间(1)位置设计的。低压供电网络的功率因数基本都是滞后。极少是等于1。(网络负荷显容性时才会超前。停电时表的指针应在中间,指1的位置。正常供电的网络,功率因数表很少在指1的位置。) 功率因数计算方法 在任意情况下,计算功率因数是一个比较复杂的问题。需要运用较深的数学知识。这里我们只给出结论。 从功率因数的基本定义公式: η= P有/PS 在有谐波的情况下,加入谐波的参数,再通过比较复杂的数学运算,我们可以得到这样一个公式: η=(I1/I)·cosφ =λ·cosφ 其中:

λ,叫基波因子。I1 是基波电流,I是总电流。 cosφ,叫相移因子,或者叫基波功率因数。 从公式可以看出,基波因子反映了谐波对功率因数的影响。显然,在总电流I恒定时,谐波电流越大,基波I1就会越小,也就是基波因子就越小,从而功率因数也就越小。 相移因子(基波功率因数)就是基波电流相对电压的滞后情况,是我们熟悉的计算公式。以前,电网中直流设备较少,所以谐波不多,大多数情况下: 基波电流I1 ≈总电流I, 所以:基波因子λ≈1 所以有:η≈cosφ 这就是以前我们把cosφ等同为功率因数的原因。 因此,以前我们不了解谐波,或者谐波较小时,考虑无功补偿,都主要考虑移相因子的作用,长此下来,我们就把基波功率因数(移相因子)作为了电网的功率因数的来理解。 因此,在有谐波的情况下,基波因子λ小于1,移相因子就算=1,电网的功率因数也都是小于1的。也就是说,有谐波时,仅仅用电容器补偿,功率因数是很难达标的。 提高功率因数的方法 可分为提高自然功率因数和采用人工补尝两种方法: 提高自然因数的方法: 1). 恰当选择电动机容量,减少电动机无功消耗,防止"大马拉小车"。 2). 对平均负荷小于其额定容量40%左右的轻载电动机,可将线圈改为三角形接法(或自动转换)。 3). 避免电机或设备空载运行。 4). 合理配置变压器,恰当地选择其容量。 5). 调整生产班次,均衡用电负荷,提高用电负荷率。 6). 改善配电线路布局,避免曲折迂回等。 人工补偿法: 实际中可使用电路电容器或调相机,一般多采用电力电容器补尝无功,即:在感性负载上并联电容器。一下为理论解释: 在感性负载上并联电容器的方法可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载于电源之间原有的能量交换。 在交流电路中,纯电阻电路,负载中的电流与电压同相位,纯电感负载中的电流滞后于电压90 ,而纯电容的电流则超前于电压90 ,电容中的电流与电感中的电流相差180 ,能相互抵消。 电力系统中的负载大部分是感性的,因此总电流将滞后电压一个角度,如图1所示,将并联电容器与负载并联,则电容器的电流将抵消一部分电感电流,从而使总电流减小,功率因数将提高。 并联电容器的补偿方法又可分为: 1.个别补偿。即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。 适合用于低压网络,优点是补尝效果好,缺点是电容器利用率低。 2.分组补偿。即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。

功率表的原理和接线分析

功率表的原理和接线分析 阿城继电器股份有限公司高低压电器成套设备公司 李赫华 [摘 要] 本文主要介绍了电动系功率表的工作原理、使用方法和接线方式。 [关键词] 定圈 动圈 有功功率 无功功率 发电机机端 0、 前言 在电力供电系统中,测量仪表是保证电力系统安全经济运行的重要工具之一,它可以监督电气设备的运行状况,使工作人员能够正确地统计出电力负荷,处理和判断运行故障和事故,也是积累技术资料和计算生产指标基本数据的重要来源。 在我公司的各种外购产品中,各种方表、槽表、模拟型或越来越多的数字式测量仪表占有一定的数量。下面对常用有功功率表和无功功率表的原理及接线方式作以简要的介绍。 1、 结构和工作原理 在电力系统中,虽然用于测量功率的表计种类很多,但它们都同属于电动系仪表。这种仪表有两个线圈:固定线圈(又称定圈)和可动线圈(又称动圈)。定圈分为两个部分平行排列,这使得定圈两部分之间的磁场比较均匀。动圈与转轴连接,一起放置在定圈的两部分之间。 仪表工作时,定圈和动圈中都必须通以电流,假设定圈中通过的电流为I 1,动圈中通过的电流为I 2。I 1的作用是在定圈中建立磁场,磁场的方向由右手螺旋定则确定。对于一个已制成的仪表,定圈的参数是固定的。因此磁场的强弱只与I 1有关,且正比于I 1。当动圈中通以电流I 2时,磁场将对I 2产生一个电磁力F ,使可动部分获得转动力矩M 而偏转。其电磁力F 的方向可由左手定则确定。如果I 1、I 2同时改变方向,用左手定则判断可知,电磁力的方向不变,即转动力矩M 的方向不变。所以电动系仪表既能测量直流电路又可测量交流电路。 当电动系仪表用于直流电路的测量时,由电工基础可知,转动力矩M 与电流I 1和I 2的乘积成正比,即 M ∝I 1·I 2 式中 M — 动圈所受到的转动力矩 I 1、I 2 — 定圈和动圈中的电流 当用于交流电路的测量时有 M ∝I 1·I 2·COS ψ 式中 M — 动圈所受到的转动力矩的平均值 I 1、I 2 — 定圈和动圈中的电流有效值 ψ — 定圈中电流I 1与动圈中电流I 2之间的相位差角 当可动部分偏转一角度α而达到平衡位置时,其游丝产生的反作用力矩 M f = D α 式中 D — 游丝的反作用力矩系数(偏转角度α可均匀地刻度在仪表的标度尺上) 根据力矩平衡原理 M=Mf 可得下式: 当用于直流电路测量时 α∝I 1·I 2 当用于交流电路的测量时有 α∝I 1·I 2·COS ψ 当电动系仪表用于功率测量时,其定圈串联接入被测电路,而动圈与附加电阻串联后并联接入被测电路。众所周知,根据国家标准的规定,在测量线路中,用一个圆加一条水平粗实线和一条竖直细实线来表示电压与电流相乘的线圈,如图1所示。通过定圈的电流就是被测电路的电流I1,动圈支路两端的电压就是被测电路两端的电压。 下面我们就讨论电动系功率表的工作原理。 (1)当用于直流电路的功率测量时,通过定圈的电流I 1与被测电路电流相等,即I 1=I ,而动圈中的电流I 2可由欧姆定律得到,即I 2=U/R 2,由于电流线圈两端的电压降远小于负载两端的电压U ,故可以认为电压支路两端的电压与负载U 是相等的。上式中R 2是电压支路总电阻,它包括动圈电阻和附加电阻Rfj ,

三相三线有功电能表常见错误接线分析

龙源期刊网 https://www.360docs.net/doc/7714014443.html, 三相三线有功电能表常见错误接线分析 作者:张静 来源:《中国高新技术企业》2016年第04期 摘要:电能计量装置的计量准确与否直接关系到供用电双方的经济利益,影响电力企业电费的及时回收,因此预防和避免电能表故障及差错成为电能计量工作的重要内容。文章通过分析电能表的电压、电流相量图,计算功率表达式及更正系数的方法,分析了典型的错误接线情况,并介绍了退补电量的计算方法,然后提出了错误接线的防范对策。 关键词:三相三线有功电能表;相量图;错误接线;电量追补;电能计量装置文献标识码:A 中图分类号:TM933 文章编号:1009-2374(2016)04-0133-03 DOI:10.13535/https://www.360docs.net/doc/7714014443.html,ki.11-4406/n.2016.04.067 电能表是电能计量的重要器具,它的准确可靠直接关系到供用双方的利益,是供用双方关注的焦点,同时也是计量工作的重点。在日常、检测和维护工作中,经常接触到计量高电压、大容量的三相三线有功电能表错误接线。在这种错误的运行状态下,即使电能表和互感器本身的准确度很高,也达不到准确计量的目的。错误接线常常会使计量的电能值发生错误甚至无法计量,严重的还可能造成人身伤亡或仪器仪表、设备的损坏,同时也会给企业带来一定的经济损失。因此判断和分析电能计量装置接线错误类型,并对错误电量进行准确计算,是保证供用电双方利益的关键。 1 三相三线有功电能表正确接线 在电力系统和电力用户中,计量装置的错误接线是有可能发生的,若有人为窃电的话,错误的接线更是花样百出。单相电能表或直接接入式三相表,其接线较为简单,差错少,即使接线有错误也比较容易发现和改正;而高压大工业用户所使用的经互感器接入的三相三线有功电能表,则比较容易发生错误接线。因为是电流、电压二次回路两者的结合,再加上极性反接和断线等就有很多种可能的接线方式。 1.1 三相三线有功电能表的正确接线 图1是三相三线有功电能表经电流互感器和电压互感器计量系统中有功电能表的接线图:

谈功率表原理及接线方式的选择

谈功率表原理及接线方式的选择 【摘要】在电力供电系统中,测量仪表是保证电力系统安全经济运行的重要工具之一,它可以监督电气设备的运行状况,使工作人员能够正确地统计出电力负荷,处理和判断运行故障和事故,也是积累技术资料和计算生产指标基本数据的重要来源。下面对常用有功功率表和无功功率表的原理及接线方式作以简要的介绍。 【关键词】功率表;原理;接线方式选择 一、功率表的结构和工作原理 在电力系统中,虽然用于测量功率的表计种类很多,但它们都同属于电动系仪表。这种仪表有两个线圈:固定线圈(又称定圈)和可动线圈(又称动圈)。定圈分为两个部分平行排列,这使得定圈两部分之间的磁场比较均匀。动圈与转轴连接,一起放置在定圈的两部分之间。仪表工作时,定圈和动圈中都必须通以电流,假设定圈中通过的电流为I1,动圈中通过的电流为I2。I1的作用是在定圈中建立磁场,磁场的方向由右手螺旋定则确定。对于一个已制成的仪表,定圈的参数是固定的。因此磁场的强弱只与I1有关,且正比于I1。当动圈中通以电流I2时,磁场将对I2产生一个电磁力F,使可动部分获得转动力矩M而偏转。其电磁力F的方向可由左手定则确定。如果I1、I2同时改变方向,用左手定则判断可知,电磁力的方向不变,即转动力矩M的方向不变。所以电动系仪表既能测量直流电路又可测量交流电路。 二、功率表的读数 由于功率表的电压线圈量限有几个,电流线圈的量限一般也有两个,如图1所示。若实验室所设计的日光灯电路实现的功率表电流量限为0.5A-1A,电流量程换接片按图1中实线的接法,即为功率表的两个电流线圈串联,其量限为0.5A;如换接片按虚线连接,即功率表两个电流线圈并联,量限为1A。表盘上的刻度为150格。如功率表电压量限选300v,电流量限选1A时,我们用这种额定功率因素为1的功率表去测量,则每格为2W,即实数的格数乘以2为实际被测功率值。 三、功率表的一般接线方式 1.功率表一般有两种不同的接线方式 (1)第一种接线方式 第1种接线方式电路如图2(a)所示,功率表电压线圈带“*”端向前接到电流线圈带“*”端。在这种电路中,功率表电流线圈中的电流虽然等于负载电流,但功率表电压支路两端的电压却等于负载电压加上功率表电流线圈的电压降,即

相关文档
最新文档