2015年人教版28.1锐角三角函数提高练习题含答案

2015年人教版28.1锐角三角函数提高练习题含答案
2015年人教版28.1锐角三角函数提高练习题含答案

1.锐角三角函数

一、课前预习 (5分钟训练)

1.如图1所示,某斜坡AB 上有一点B′,B′C′、BC 是边AC 上的高,则图中相似的三角形是______________,则B′C′∶AB′=______________,B′C′∶AC′=______________.

2.在Rt△ABC 中,如果边长都扩大5倍,则锐角A 的正弦值、余弦值和正切值 ( )

A.没有变化

B.都扩大5倍

C.都缩小5倍

D.不能确定 3.在△ABC 中,∠C=90°,sinA=3/5,则sinB 等于( )A.2/5 B.3/5 C.4/5 D.3/4 二、课中强化(10分钟训练)

1.在Rt△ABC 中,∠C=90°,已知tanB=2

5,则cosA 等于( )A.

25 B.35 C.5

52 D.32

2.如果α是锐角,且sin α=5

4,那么cos(90°-α)的值为( )A.54 B.43 C.5

3 D.5

1

3.在△ABC 中,∠C=90°,AC=2,AB=5,则cosB 的值为( )A.2

10 B.5

10 C.

5

15 D.5153

4.在Rt△ABC 中,∠C=90°,sinA=5/13,BC=15,则AC=______________.

5.如图2,△ABC 中,AB =AC =6,BC =4,求sinB 的值.

三、课后巩固(30分钟训练)

1.如图3,已知菱形A BCD ,对角线AC=10 cm,BD=6 cm,,那么tan 2

A 等于( )

A.53

B.54

C.34

3 D.

34

5

2.如果sin 2

α+cos 2

30°=1,那么锐角α的度数是( ) A.15° B.30° C.45° D.60° 3.如图28-1-1-4,在坡度为1∶2.5的楼梯表面铺地毯,地毯长度至少是________________. 4.在Rt△ABC 中,斜边AB=22,且tanA+tanB=2

2,则Rt△ABC 的面积是___________.

5.在Rt△ABC 中,∠C=90°,a、b 、c 分别是∠A、∠B、∠C 的对边,且a=3,c=5,求∠A、∠B 的三角函数值.

6.在Rt△ABC 中,∠C=90°,a、b 、c 分别是∠A、∠B、∠C 的对边,且b=6,tanA=1,求c.

7.如图28-1-1-5,在Rt△ABC 中,∠C=90°,sinA=5

3

,D 为AC 上一点,∠BDC=45°,DC =6 cm ,求AB 、AD 的长

.

图28-1-1-5

8.如图28-1-1-6,在△ABC 中,AB=AC,AD⊥B C 于D 点,BE⊥AC 于E 点,AD=BC,BE=4.

求:(1)tanC 的值;(2)AD 的长

.

图28-1-1-6

2. 特殊角的三角函数值

1.已知:Rt△ABC中,∠C=90°,cosA=3

5

,AB=15,则AC的长是().

A.3 B.6 C.9 D.12

2.下列各式中不正确的是().A.sin260°+cos260°=1 B.sin30°+cos30°=1 C.sin35°=cos55°D.tan45°>sin45°

3.计算2sin30°-2cos60°+tan45°的结果是().A.2 B

C

D.1

4.已知∠A为锐角,且cosA≤1

2

,那么()

A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30°D.30°≤∠A<90°

5.在△ABC中,∠A、∠B都是锐角,且sinA=1

2

ABC的形状是()

A.直角三角形B.钝角三角形C.锐角三角形D.不能确定

6.Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=a,则tana的值为().

A.3

4B.4

3

C.3

5

D.4

5

7.当锐角a>60°时,cosa的值().A.小于1

2B.大于1

2

C

D.大于1

8.在△ABC中,三边之比为a:b:c=1

2,则sinA+tanA等于().

A

1

.

2

B C D

9.已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC

?则∠

CAB等于()

A.30°B.60°C.45°D.以上都不对10.sin272°+sin218°的值是().A.1 B.0 C.1

2

D

11

)2+│

=0,则△ABC().

A.是直角三角形B.是等边三角形

C.是含有60°的任意三角形D.是顶角为钝角的等腰三角形

12.设α、β均为锐角,且sinα-cosβ=0,则α+β=_______.

13.cos45sin30

1

cos60tan45

2

?-?

?+?

的值是_______.

14.已知,等腰△ABC?的腰长为

?底为30?°,?则底边上的高为______,?周长为______.15.在Rt△ABC中,∠C=90°,已知

cosA=________.

16.正方形ABCD边长为1,如果将线段BD绕点B旋转后,点D落在BC的延长线上的点D′处,那么tan∠BAD′=________.

17.在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,得AB AC

CD CD

-的值为_______.18.求下列各式的值.

(1)sin30°·cos45°+cos60°;(2)2sin60°-2cos30°·sin45°

(3)2cos60

2sin302

?

?-

; (4)sin45cos30

32cos60

?+?

-?

-sin60°(1-sin30°).(5)tan45°·sin60°-4sin30°·cos45°

tan30°

(6)sin45

tan30tan60

?

?-?

+cos45°·cos30°

参考答案

一、课前预习 (5分钟训练)

1.如图28-1-1-1所示,某斜坡AB 上有一点B ′,B ′C ′、BC 是边AC 上的高,则图中相似的三角形是______________,则B ′C ′∶AB ′=______________,B ′C ′∶AC ′

=______________.

图28-1-1-1

解析:由相似三角形的判定得△AB ′C ′∽△ABC ,由性质得B ′C ′∶AB ′=BC ∶AB ,B ′C ′∶AC ′=BC ∶AC.

答案:△AB ′C ′∽△ABC BC ∶AB BC ∶AC

2.在Rt △ABC 中,如果边长都扩大5倍,则锐角A 的正弦值、余弦值和正切值 ( )

A.没有变化

B.都扩大5倍

C.都缩小5倍

D.不能确定 解析:三角函数值的大小只与角的大小有关,当角度一定时,其三角函数值不变. 答案:A

3.在△ABC 中,∠C =90°,sinA=

5

3

,则sinB 等于( ) A.52 B.53 C.54 D.4

3

解析:sinA=5

3

,设a=3k,c=5k,∴b=4k.

∴sinB=5

4

54==

k k c b . 答案:C

二、课中强化(10分钟训练)

1.在Rt △ABC 中,∠C=90°,已知tanB=

2

5

,则cosA 等于( ) A.

25 B.35 C.5

5

2 D.

32

解析:tanB=

2

5

,设b=5k,a=2k.∴c=3k. ∴cosA=3

535==k k c b .

答案:B

2.如果α是锐角,且sin α=

5

4

,那么cos(90°-α)的值为( )

A.

5

4 B.

4

3 C.

53 D.5

1 解析:cos(90°-α)=sin α=5

4

.

答案:A

3.在△ABC 中,∠C =90°,AC=2,AB=5,则cosB 的值为( )

A.

2

10 B.

5

10 C.

515 D.5

153 解析:由勾股定理,得BC=

3,

∴cosB=

515

5

3=

=AB BC . 答案:C

4.在Rt △ABC 中,∠C=90°,sinA=

13

5

,BC=15,则AC=______________. 解析:∵sinA=13

5

=AB BC ,BC=15,∴AB=39.由勾股定理,得AC=36. 答案:36

5.如图28-1-1-2,△ABC 中,AB =AC =6,BC =4,求sinB 的值.

图28-1-1-2

分析:因为三角函数值是在直角三角形中求得,所以构造直角三角形就比较重要,对于等腰三角形首先作底边的垂线

.

解:过A 作AD ⊥BC 于D, ∵AB=AC,

∴BD=2.在Rt △ADB 中,由勾股定理,知AD=

24262

222=-=-BD AB ,

∴sinB=

3

2

2=AB AD . 三、课后巩固(30分钟训练)

1.如图28-1-1-3,已知菱形A BCD ,对角线AC=10 cm,BD=6 cm,,那么tan

2

A 等于

( )

图28-1-1-3

A.53

B.5

4

C.

34

3 D.

34

5

解析:菱形的对角线互相垂直且平分,由三角函数定义,得tan 2

A =tan ∠DAC=53.

答案:A

2.如果sin 2

α+cos 2

30°=1,那么锐角α的度数是( )

A.15°

B.30°

C.45°

D.60°

解析:由sin 2

α+cos 2

α=1,∴α=30°. 答案:B

3.如图28-1-1-4,在坡度为1∶2.5的楼梯表面铺地毯,地毯长度至少是

________________.

图28-1-1-4

解析:坡度=BC

AC

,所以BC=5,由割补法知地毯长=AC+BC =7(米).

答案:7米

4.在Rt △ABC 中,斜边AB=22

,且tanA+tanB=

2

2,则Rt △ABC 的面积是___________.

解析:∵tanA=

AC

BC

,tanB=BC

AC ,且AB 2=BC 2

+AC 2

,由tanA+tanB=

2

2,得

AC

BC +

BC

AC =

2

2,

即AC ·BC=28

.∴S

△ABC

=24.

答案:24

5.在Rt △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且a=3,c=5,求∠A 、∠B 的三角函数值.

解:根据勾股定理得b=4,sinA=

53,cosA=5

4,tanA=

4

3

;sinB=

5

4,cosB=

53,tanB=3

4.

6.在Rt △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且b=6,tanA=1,求c.

解:由三角函数定义知a=btanA ,所以a=6,根据勾股定理得c=26

.

7.如图28-1-1-5,在Rt △ABC 中,∠C =90°,sinA=5

3

,D 为AC 上一点,∠BDC =45°,DC =6 cm ,求AB 、AD 的长

.

图28-1-1-5

解:如题图,在Rt △BCD 中,∠BDC =45°, ∴BC =DC =6.在Rt △ABC 中,sinA=5

3

, ∴

AB BC =5

3

. ∴AB=10. ∴AC=

2222610-=-BC AB =8.

∴AD=AC-CD=8-6=2.

8.如图28-1-1-6,在△ABC 中,AB=AC,AD ⊥B C 于D 点,BE ⊥AC 于E 点,AD=BC,BE=4.

求:(1)tanC 的值;(2)AD 的长

.

图28-1-1-6

解:(1)∵AB=AC,AD ⊥BC, ∴AD =BC =2DC. ∴tanC=2.

(2)∵tanC=2,BE ⊥AC,BE=4,∴EC=2. ∵BC 2

=BE 2

+EC 2

, ∴BC=52.∴AD=52.

第2课时作业设计(答案)

一、1.C 2.B 3.D 4.B 5.B 6.A 7.A 8.A 9.B 10.A 11.A

二、12.90° 13

14.

15

16

17

三、

18.(1

2(2)

(3)1;(4)

4

2

4- (5

2

; (6)0

人教数学锐角三角函数的专项培优易错试卷练习题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD ⊥BC 于D ,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据 正切的定义求出CD 的长,得到答案. 试题解析:作AD ⊥BC 于D ,∵∠EAB=30°,AE ∥BF ,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD= ,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC= ,∴CD= =, ∴BC= .故该船与B 港口之间的距离CB 的长为 海里. 考点:解直角三角形的应用-方向角问题. 2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为 1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=, 2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到

1cm)? 【答案】 【解析】 于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证过A作AF CD 四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可. 3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm. (1)AE的长为 cm; (2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值; (3)求点D′到BC的距离. 【答案】(1);(2)12cm;(3)cm. 【解析】 试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案: ∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

人教版九年级数学下册锐角三角函数单元测试

锐角三角函数 单元测试 一、选择题(本题共8小题,每小题4分,共32分) 1. 60cos 的值等于( ) A . 2 1 B .22 C . 2 3 D .1 2.在Rt △ABC 中, ∠C=90?,AB=4,AC=1,则tanA 的值是( ) A .154 B .1 4 C .15 D .4 3.已知α为锐角,且2 3 )10sin(= ?-α,则α等于( ) A.?50 B.?60 C.?70 D.?80 4.已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( ) A .sin 40m B .cos 40m C .tan 40m D . tan 40 m 5.在Rt ABC △中,90C ∠=,5BC =,15AC =,则A ∠=( ) A .90 B .60 C .45 D .30 6.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)位于她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ) A .250m. B . 250.3 m. C .500.33 m. D .3250 m. 7.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A . 24 7 B . 73 C . 724 D . 13 8.因为1 s i n 302= ,1sin 2102 =-,所以s i n 210s i n (18030)s i n =+=-; 因为2s i n 452 = ,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240= ( ) 6 8 C E A B D (第7题) 第6题

数学 锐角三角函数的专项 培优练习题含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案. 试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°, ∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==, ∴BC=.故该船与B港口之间的距离CB的长为海里. 考点:解直角三角形的应用-方向角问题. 2.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s). (1)当t为何值时,点G刚好落在线段AD上?

(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围. (3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时, △CPD是等腰三角形? 【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s. 【解析】 试题分析:(1)求出ED的距离即可求出相对应的时间t. (2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积. (3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值. 试题解析:∵∠BAC=90°,∠B=60°,BC=16cm ∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm. (1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm ∴t=s=3s. (2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上, 则∠HMB=90°,∠B=60°,MH=1 ∴BM=cm.∴t=s. 当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上, 设MN=xcm,则GH=DH=x,AH=x, ∵AD=AH+DH=x+x=x=4, ∴x=3. 当≤t≤4时,S MNGN=1cm2. 当4<t≤6时,S MNGH=(t﹣3)2cm2

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

第二十八章 锐角三角函数全章测试(一)

第二十八章 锐角三角函数全章测试 一、选择题 1.Rt △ABC 中,∠C =90°,若BC =4,,3 2sin =A 则AC 的长为( ) A .6 B .52 C .53 D .132 2.⊙O 的半径为R ,若∠AOB =α ,则弦AB 的长为( ) A .2 sin 2α R B .2R sin α C .2 cos 2α R D .R sin α 3.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( ) A .312 B .12 C .324 D .348 4.若某人沿倾斜角为α 的斜坡前进100m ,则他上升的最大高度是( ) A . m sin 100 α B .100sin α m C . m cos 100 β D .100cos β m 5.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( ) A .15m B .12m C .9m D .7m 6.P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 点,若∠APB =2α ,⊙O 的半径为R ,则AB 的长为( ) A . α α tan sin R B . α α sin tan R C . α α tan sin 2R D . α α sin tan 2R 7.在Rt △ABC 中,AD 是斜边BC 上的高,若CB =a ,∠B =β ,则AD 等于( ) A .a sin 2β B .a cos 2β C .a sin β cos β D .a sin β tan β 8.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么 AB DC 的值为( ) A .sin ∠APC B .cos ∠APC C .tan ∠APC D . APC ∠tan 1 9.如图所示,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离(CE 的长度)为8m ,测得旗杆的仰角∠ECA 为30°,旗杆底部的俯角∠ECB 为45°,那么,旗杆AB 的高度是( )

求锐角三角函数值常用方法

求锐角三角函数值常用方法 求锐角三角函数值,是“锐角三角函数”一节中重要内容,也是中考中常见的题型.现将求锐角三角函数值的常用方法总结如下,供同学们在学习时参考. 一、直接用锐角三角函数的定义 例1 在△ABC 中,∠C = 900,AC =6,BC =8.则sinA = ( ). A 、 54 B 、5 3 C 、 43 D 、 3 4 分析 由定义知锐角A 的正弦等于角A 的对边比斜边,只要求出斜边AB 即可. 解:由勾股定理知,AB = 22BC AC + = 10, ∴sinA = 5 4 故选A. 二、用同角三角函数间的关系 例2 若∠A 为锐角,且sinA = 2 3 ,则cosA = ( ) A 、1 B 、 23 C 、2 2 D 、21 分析 本题可由sin 2A + cos 2A = 1直接求得. cosA = A 2sin 1- = 2)23( 1-= 2 1 故选D.(注:本题也可用三角函数的定义求解) 例3 已知 tanA = 3 2 , 则cotA = 析解:由tanA ×cotA = 1.得 cotA = 即cotA = 32 . 三、用等角来替换 例4如图1,在Rt △ABC 中,∠ACB = 900,CD ⊥AB 于D,BC=3,AC = 4,设∠BCD = a,求sina.

析解 :由题意可知,∠BCD = ∠A ,sin a =sinA = AB BC ,只要求出AB 即可.在Rt △ ABC 中,BC = 3,AC = 4,∴AB = 5. ∴sinA = 53 ∴sina = 5 3 四、构造直角三角形 例5 如图2,已知 △ABC 中,D 是AB 的中点,DC ⊥AC,且cotA = 2 3 ,求∠BCD 的四个三角函数值. 分析 为了求出∠BCD 的三角函数值,必须构造一个以∠BCD 为锐角的直角三角形,可作DE ⊥CD,接下来的关键是求出Rt △CDE 的三边长或三边之比.在Rt △CDE 中,由cotA = 23,可设AC = 3a, CD = 2a,而DE= 21AC = 2 3 a .在Rt △CDE 中,利用勾股定理可求出CE,故∠BCD 的四个三角函数值可求出. 解:过D 点作DE ⊥CD 交BC 于点E. ∵∠ACD = ∠CDE = 900 ∴AC ∥DE 又∵D 为AB 的中点,∴DE 为△ABC 的中位线. 在Rt △ACD 中,由cotA = 23,可设AC = 3a ,CD = 2a , ∴ DE = 2 3a . 在Rt △CDE 中,由勾股定理CE = 22DE CD += 2 2)2 3( )2(a a += 2 5a , ∴sin ∠BCD = CE DE = 53,cos ∠BCD =CE CD =5 4

人教版 九下册《锐角三角函数》单元测试及答案

人教版 九下数学《锐角三角函数》单元测试卷及答案【3】 一、填空题:(30分) 1、在Rt △ABC 中,∠C =90°,a =2,b =3,则cosA = ,sinB = ,tanB = 。 2、直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = 。 3、已知tan α= 12 5,α是锐角,则sin α= 。 4、cos 2(50°+α)+co s 2(40°-α)-tan(30°-α)tan(60°+α)= ; 5、如图1,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 .(结果保留根号). (1) (2) (3) 6、等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 . 7、某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高。 8、如图2,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。 9、在△ABC 中,∠ACB=90°,cosA=3 3,AB =8cm ,则△ABC 的面积为______ 。 10、如图3,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 _米。 二、选择题:(30分) 11、sin 2θ+sin 2(90°-θ) (0°<θ<90°)等于( )A.0 B.1 C.2 D.2sin 2θ x O A y B

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

锐角三角函数的解题技巧

锐角三角函数的解题技巧 一、知识点回忆 (一)锐角的三角函数的意义 1、正切 在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比,叫做∠A的正切,记作tanA. 2、正弦和余弦 如图,在Rt△ABC中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即 3、三角函数:在直角三角形中,锐角A的正切(tanA)、正弦(sinA)、余弦(cosA),都叫做∠A的三角函数. (二)同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)商数关系: (三)两角的关系 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.

(四)特殊锐角的三角函数值 (五)锐角三角函数值解法 1、用计算器 求整数度数的锐角三角函数值. 在计算器的面板上涉及三角函数的键有和键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按,则屏幕上就会显示出结果. 例如:计算sin44°. 解: 按键,再依次按键. 则屏幕上显示结果为0.69465837. 求非整数度数的锐角三角函数值. 若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按 和三个键之一,然后再依次按度分秒键,然后按键,则屏幕上就会显示出结果. 2、已知三角函数值,用计算器求角度

已知三角函数值求角度,要用到、键的第二功能“sin-1,cos-1,tan-1”和键.具体操作步骤是:先按键,再按键之一,再依次按三角函数值,最后按键,则屏幕上就会显示出结果. 值得注意的是:型号不同的计算器的用法可能不同。 (六)直角三角形的解法 解直角三角形既是初中几何的重要内容,又是今后学习解斜三角形,三角函数等知识的基础,同时,解直角三角形的知识又广泛应用于测量、工程技术和物理之中,解直角三角形的应用题还有利于培养学生空间想象的能力。因此,通过复习应注意领会以下几个方面的问题: 解直角三角形的重点是锐角三角函数的概念和直角三角形的解法。前者又是复习解直角三角形的难点,更是复习本部分内容的关键。 掌握锐角三角函数和解直角三角形是进行三角运算解决应用问题和进一步研究任意角三角函数的重要基础。因此,解直角三角形既是各地中考的必考内容,更是热点内容。题量一般在4%~10%。分值约在8%~12%题型多以中、低档的填空题和选择题为主。个别省市也有小型综合题和创新题。几乎每份试卷都有一道实际应用题出现。 二、重点难点疑点突破 1、(1)sinA和cosA都是一个整体符号,不能看成sin·A或cos·A. (2)是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关. (3)sinA+sinB≠sin(A+B)sinA·sinB≠sin(AB) (4)sin2A表示(sinA)2,cos2A=(cosA)2 (5)0<sinA<1,0<cosA<1 2、同名三角函数值的变化规律 当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大; 余弦三角函数值随着角度的增大而减少. 三、解题方法技巧点拨 1、求锐角三角函数的值 例1、(1)在Rt△ABC中,∠C=90°,若,求cosB,tanB的值.

人教版九年级下《第二十八章锐角三角函数》单元测试题(含答案)

2021-2022人教版九年级数学下册 第二十八章锐角三角函数 一、选择题(本大题共7小题,每小题4分,共28分) 1.如图1,在Rt△ABC中,∠C=90°,BC=1,tan A=,则下列判断正确的是( ) 图1 A.∠A=30° B.AC= C.AB=2 D.AC=2 2.在△ABC中,∠A,∠C都是锐角,且sin A=,tan C=,则△ABC的形状是( ) A.直角三角形 B.钝角三角形 C.等边三角形 D.不能确定 3.如图2,直线y=x+3分别与x轴、y轴交于A,B两点,则cos∠BAO的值是( ) 图2 A. B. C. D. 4.如图3,一河坝的横断面为梯形ABCD,AD∥BC,AB=CD,坝顶BC宽10米,坝高BE为12米,斜坡AB的坡度i=1∶1.5,则坝底AD的长度为( ) 图3 A.26米 B.28米 C.30米 D.46米 5.如图4,某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/时的速度沿北偏西60°方向航行小时到达B处,那么tan∠ABP的值为( ) 图4

A. B.2 C. D. 6.如图5,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A,D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是( ) 图5 A. B. C. D. 7.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔是本市现存最古老的建筑.如图6,测绘师在离铁塔10米处的点C处测得塔顶A的仰角为α,他又在离铁塔25米处的点D处测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,则测绘师测得铁塔的高度约为(参考数据:≈3.162)( ) 图6 A.15.81米 B.16.81米 C.30.62米 D.31.62米 二、填空题(本大题共7小题,每小题4分,共28分) 8.计算:cos30°+sin30°=________. 9.若α为锐角,且tan(α+20°)=,则α=__________. 10.如图7,方格纸中每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点.△ABC的顶点都在方格纸的格点上,则cos A=________. 图7

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

锐角三角函数》单元测试题

第四章《锐角三角函数》单元测试题 一.选择题(共10小题) 1.利用计算器求sin30°时,依次按键,则计算器上显示的结果是 () A.0.5 B.0.707 C.0.866 D.1 2.Rt△ABC中,∠C=90°,已知cosA=,那么tanA等于() A.B.C.D. 3.已知sinα?cosα=,45°<α<90°,则cosα﹣sinα=() A.B.﹣C.D.± 4.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为() A.B.C.D. 5.在Rt△ABC中,∠C=90°,sinA=,则cosB等于() A.B.C.D. 6.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是() A.bcosB=c B.csinA=a C.atanA=b D. 7.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是() A.b=atanB B.a=ccosB C.D.a=bcosA 8.如果∠A为锐角,且sinA=0.6,那么() A.0°<A≤30°B.30°<A<45°C.45°<A<60°D.60°<A≤90° 9.若锐角α满足cosα<且tanα<,则α的范围是() A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°

10.下面四个数中,最大的是( ) A . B .sin88° C .tan46° D . 二.填空题(共8小题) 11.用“>”或“<”号填空: 0. 12.已知∠A 为锐角,且,那么∠A 的范围是 . 13.在Rt △ABC 中,∠C=90°,sinA=,则tanA= . 14.如上图,∠AOB 是放置在正方形网格中的一个角,则cos ∠AOB 的值 是 . 15.如图,当小杰沿坡度i=1:5的坡面由B 到A 行走了26米时,小杰实际上升高度 AC= 米.(可以用根号表示) 16.如图,在菱形ABCD 中,AE ⊥BC ,E 为垂足,若cosB=,EC=2,P 是AB 边上的一个动点,则线段PE 的长度的最小值 是 . 17.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm ,∠CBD=40°,则点B 到CD 的距离为 cm (参考数据 sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm ,可用科学计算器). 18.如图,为了测量楼的高度,自楼的顶部A 看地面上的一点B ,俯角 为30°,已知地面上的这点与楼的水平距离BC 为30m ,那么楼的高度AC 为 m (结果保留根号). 三.解答题(共8小题) 19.在△ABC 中,∠B 、∠C 均为锐角,其对边分别为b 、c , 求证:=. 第16题 第17题

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

锐角三角函数单元测试及答案

第28章 锐角三角函数 单元测试 一、选择题(每题3分,共30分) 1.在Rt △ABC 中,∠C=90°,下列式子不一定成立的是( ) A .sinA=sin B B .cosA=sinB C .sinA=cosB D .∠A+∠B=90° 2.在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( ) A 扩大3倍 B 缩小3倍 C 都不变 D 有的扩大,有的缩小 3.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( ) A .c = sin a A B .c =cos a A C .c =a ·tanA D .c =a ·cotA 4、若tan(α +10°)=3,则锐角α的度数是 ( ) A 、20° B 、30° C 、35° D 、50° 5.已知△ABC 中,∠C=90°,设sinA=m ,当∠A 是最小的内角时,m 的取值范围是( ) A .0<m <12 B .0<m <22 C .0<m <33 D .0<m <32 6.小明沿着坡角为30°的坡面向下走了2米,那么他下降( ) A .1米 B . 3 米 C .2 3 米 D .23 3 米 7.已知Rt △ABC 中,∠C=90°,tanA=4 3 ,BC=8,则AC 等于( ) A .6 B . 32 3 C .10 D .12 8.sin 2θ+sin 2 (90°-θ) (0°<θ<90°)等于( ) A 0 B 1 C 2 D 2sin 2 θ 9.如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC= 35 ,则BC 的长是( ) A 、4 cm B 、6 cm C 、8 cm D 、10 cm 10.以直角坐标系的原点O 为圆心,以1为半径作圆。若点P 是该圆上第一象限内的一 点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为( ) A (cos α ,1) B (1 , sin α) C (sin α , cos α) D (cos α , sin α) (附加)小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30o角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .9米 B .28米 C .(7+3)米 D .(14+23)米 二、填空题:(每题3分,共30分) 1.已知∠A 是锐角,且sinA= 3 2 ,那么∠A = . 2.已知α为锐角,且sin α =cos500 ,则α = . 3.已知3tan A -3=0,则∠A = . (第9题) (附加题)

特殊锐角三角函数值

《特殊锐角三角函数值》教学反思 芦庙中心中学刘红伟 在前一段我讲了30度、45度、60度特殊角的三角函数值,它是北师大版九年级数学下册的一节课,在前一节刚讲过正弦、余弦、正切三角函数的定义和求法。现把我对本节课的做法和想法与大家交流一下,希望能得到同行和专家的指点,以期取得更大的进步。 教学目标的设计我是以大纲为指导,要求同学们 1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义;能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小. 2.发展学生观察、分析、发现的能力;培养学生把实际问题转化为数学问题的能力. 3.积极参与数学活动,对数学产生好奇心.培养学生独立思考问题的习惯. 教学重点定为:探索特殊锐角三角函数值的过程,进行这些三角函数值的计算并会比较不同锐角三角函数值大小

在引入时我采用创设情境法,“为了测量一棵大树的高度,准备了如下测量工具:(1)含30、60度角的直角三角尺(2)皮尺。请你设计一个方案,来测量一棵大树的高度。这样会增强学生的学习欲望,使学生对本节内容更感兴趣。 在讲课中我采用这几种方法: 1、让学生自主研习,独立探究。 (1)观察一副三角尺,其中有几个锐角?他们分别等于多少度? (2)sin30度等于多少呢?你是怎样得到的?cos30度呢,tan30度呢? 2、让学生合作学习、生生互动 (1)请同学们完成下表:30°、45°、60°角的三角函数值(表格略) (2)观察表格中函数值的特点.先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?第二列、第三列呢? (3)同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况.

初中数学锐角三角函数全章测试

锐角三角函数全章测试 一、选择题 1.Rt △ABC 中,∠C =90°,若BC =4,,3 2 sin =A 则AC 的长为( ) A .6 B .52 C .53 D .132 2.⊙O 的半径为R ,若∠AOB =α ,则弦AB 的长为( ) A .2sin 2α R B .2R sin α C .2 cos 2α R D .R sin α 3.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( ) A .312 B .12 C .324 D .348 4.若某人沿倾斜角为α 的斜坡前进100m ,则他上升的最大高度是( ) A . m sin 100 α B .100sin α m C . m cos 100 β D .100cos β m 5.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( ) A .15m B .12m C .9m D .7m 6.P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 点,若∠APB =2α ,⊙O 的半径为R ,则AB 的长为( ) A . ααtan sin R B .α αsin tan R C .ααtan sin 2R D .αα sin tan 2R 7.在Rt △ABC 中,AD 是斜边BC 上的高,若CB =a ,∠B =β ,则AD 等于( ) A .a sin 2β B .a cos 2β C .a sin β cos β D .a sin β tan β 8.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么 AB DC 的值为( ) A .sin ∠APC B .cos ∠APC C .tan ∠APC D . APC ∠tan 1 9.如图所示,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离(CE 的长度)为8m ,测得旗杆的仰角∠ECA 为30°,旗杆底部的俯角∠ECB 为45°,那么,旗杆AB 的高度是( ) 第9题图 A .m )3828(+ B .m )388(+

相关文档
最新文档