数据挖掘——决策树分类算法 (1)

数据挖掘——决策树分类算法 (1)
数据挖掘——决策树分类算法 (1)

决策树分类算法

学号:20120311139 学生所在学院:软件工程学院学生姓名:葛强强

任课教师:汤亮

教师所在学院:软件工程学院2015年11月

12软件1班

决策树分类算法

葛强强

12软件1班

摘要:决策树方法是数据挖掘中一种重要的分类方法,决策树是一个类似流程图的树型结构,其中树的每个内部结点代表对一个属性的测试,其分支代表测试的结果,而树的每个

叶结点代表一个类别。通过决策树模型对一条记录进行分类,就是通过按照模型中属

性测试结果从根到叶找到一条路径,最后叶节点的属性值就是该记录的分类结果。

关键词:数据挖掘,分类,决策树

近年来,随着数据库和数据仓库技术的广泛应用以及计算机技术的快速发展,人们利用信息技术搜集数据的能力大幅度提高,大量数据库被用于商业管理、政府办公、科学研究和工程开发等。面对海量的存储数据,如何从中有效地发现有价值的信息或知识,是一项非常艰巨的任务。数据挖掘就是为了应对这种要求而产生并迅速发展起来的。数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用的信息,提取的知识表示为概念、规则、规律、模式等形式。

分类在数据挖掘中是一项非常重要的任务。

分类的目的是学会一个分类函数或分类模型,把数据库中的数据项映射到给定类别中的某个类别。分类可用于预测,预测的目的是从历史数据记录中自动推导出对给定数据的趋势描述,从而能对未来数据进行预测。分类算法最知名的是决策树方法,决策树是用于分类的一种树结构。

1决策树介绍

决策树(decisiontree)技术是用于分类和预测

的主要技术,决策树学习是一种典型的以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性判断从该节点向下的分支,在决策树的叶节点得到结论。所以从根到叶节点就对应着一条合取规则,整棵树就对应着一组析取表达式规则。

把决策树当成一个布尔函数。函数的输入为物体或情况的一切属性(property),输出为”是”或“否”的决策值。在决策树中,每个树枝节点对应着一个有关某项属性的测试,每个树叶节点对应着一个布尔函数值,树中的每个分支,代表测试属性其中一个可能的值。

最为典型的决策树学习系统是ID3,它起源于概念学习系统CLS,最后又演化为能处理连续属性的C4.5(C5.0)等。它是一种指导的学习方法,该方法先根据训练子集形成决策树。如果该树不能对所有给出的训练子集正确分类,那么选择一些其它的训练子集加入到原来的子集中,重复该过程一直到时形成正确的决策集。当经过一批训练实例集的训练产生一棵决策树,决策树可以根据属性的取值对一个未知实例集进行分类。使用决策树对实例进行分类的时候,由树根开始对该对象的属性逐渐测试其值,并且顺着分支向下走,直至到达某个叶结点,此叶结点代表的类即为该对象所处的类。

决策树是应用非常广泛的分类方法,目前有多种决策树方法,如ID3,C4.5,PUBLIC,

CART,CN2,SLIQ,SPRINT等。大多数已开发的决策树是一种核心算法的变体,下面先介绍一下决策树分类的基本思想决策树构造与剪枝,然后详细介绍ID3和C4.5算法及决策树算法的分析及改进等。

2决策树构造与剪枝

决策树分类算法通常分为两个步骤,决策树生成和决策树剪枝。

2.1决策树构造

决策树构造算法的输入是一组带有类别标记的例子,构造的结果是一棵二叉树或多叉树。二叉树的内部结点(非叶子结点)一般表示为一个逻辑判断,如形式为(ai=vi)的逻辑判断,其中ai是属性,vi是该属性的某个值。树的边是逻辑判断的分支结果。多叉树的内部结点是属性,边是该属性的所有取值,有几个属性值,就有几条边。树的叶子结点都是类别标记。

构造决策树的方法是采用自上而下的递归构造。以多叉树为例,它的构造思路是,以代表训练样本的单个结点开始建树,如果样本都在同一个类,则将其作为叶子结点,节点内容即是该类别标记。否则,根据某种策略选择一个属性,按照属性和各个取值,把例子集合划分为若干子集合,使得每个子集上的所有例子在该属性上具有同样的属性值。然后再依次递归处理各个子集。这种思路实际上就是“分而治之”的道理。二叉树同理,差别仅在于要如何选择好的逻辑判断。

构造好的决策树的关键在于如何选择好的逻辑判断或属性。对于同样的一组例子,可以有很多决策树符合这组例子。研究结果表明,一般情况下,树越小则树的预测能力越强。要构造尽可能小的决策树,关键在于选择合适的产生分支的属性。属性选择依赖于对各种例子子集的不纯度(Impurity)度量方法。不纯度度量方法包括信息增益(InformationGain)、信息增益比(GainRa-tio)、Gini-index、距离度量、x2统计、证据权重、最小描述长度等。不同的度量由不同的效果,特别是对于多值属性,选择合适的度量方法对于结果的影响是很大的。ID3,C4.5,C5.0算法使用信息增益的概念来构造决策树,而CART算法x则使用Gini-in-dex,其中每个分类的决定都与前面所选择的目标分类相关。

2.2决策树的剪枝

数据挖掘的对象是现实世界的数据,这些数据一般不可能是完美的,可能某些属性字段上缺值;可能缺少必须的数据而造成数据不完整;可能数据不准确、含有噪声甚至是错误的,所以要讨论噪声问题。基本的决策树构造算法没有考虑噪声,生成的决策树完全与训练例子拟合。有噪声情况下,完全拟合将导致过分拟合,即对训练数据的完全拟合反而不具有很好的预测性能。剪枝是一种克服噪声的技术,同时它也能使树得到简化而变得更容易理解。

1)两种基本的剪枝策略。

①前期剪枝(Forward-Pruning)是在树的生长过程完成前就进行剪枝。在树的生长过程中,决定是继续对不纯的训练子集进行划分还是停机。

例如某些有效统计量达到某个预先设定的阈值时,节点不再继续分裂,内部节点成为一个叶子节点。叶子节点取子集中频率最大的类作为自己的标识,或者可能仅仅存储这些实例的概率分布函数。前期剪枝会引起树在不完全成熟之前停止工作,即树可能在不应停止的时候而停止扩展,或称之为horizon效应,而且,选取一个适当的阈值是困难的。较高的阈值可能导致过分简化的树,而较低的阈值可能使树简化的太少。即使这样,预先修剪对大规模的实际应用还是值得研究的,因为它相当高效。人们有望在未来的算法中解决horizon效应。

②后期剪枝(Post-Pruning)是当决策树的生长过程完成之后再进行剪枝。它是一

种拟合-化简(Fitting-and-simplifying)的两阶段方法。首先生成与训练数据完全

拟合的一棵决策树,然后由下向上从树的叶子开始剪枝,逐步向根的方向剪。剪枝时要用到一个测试数据集合,如果存在某个叶子剪去后测试集上的准确度或其它测度不降低(不变得更坏),则剪去该叶子,否则停机。

如果节点的子树不应按某种规则被修剪,则由下向上的评价规则将使该节点避免被按同一规则修剪。与此相对的是自上向下的策略,即从根开始依次修剪节点,直到无法修剪为止。这样作的风险在于,按某种规则剪掉了某个节点,但其子类是不应按这一规则被剪掉的。

2)对树进行修剪优化时应遵循的原则。

①最小描述长度原则(MDL)。它的思想是最简单的解释是期望的,做法是对决策树进行二进位编码。编码所需二进位最少的树即为“最佳剪枝树”。

②期望错误率最小原则。它的思想是选择期望错误率最小的子树剪枝,即对树中的内部节点计算其剪枝/不剪枝可能出现的期望错误率,比较后加以取舍。

③奥卡姆剃刀原则。如无必要,勿增实体。即“在与观察相容的理论中,应当选择最简单的一个”,决策树越小就越容易被理解,其存储与传输的代价也就越小。

3 ID3算法

ID3算法是1986年Quinlan提出的一个著名决策树生成方法,是目前引用率很高的一种算法。ID3算法是运用信息熵理论,选择当前样本集中最大信息增益的属性值作为测试属性;样本集的划分则依据测试属性值进行,测试属性有多少不同取值就将样本集划分为多少子样本集,同时,决策树上相应于该样本集的节点长出新的叶子节点。由于决策树的结构越简单越能从本质的层次上概括事物的规律,期望非叶节点到达后代节点的平均路径总是最短,即生成的决策树的平均深度最小,这就要求在每个节点选择好的划分。系统的不确定性越小,信息的传递就越充分。ID3算法根据信息理论,采用划分后样本集的不确定性作为衡量划分好坏的标准,用信息增益值度量:信息增益值越大,不确定性越小。因此,算法在每个非叶节点选择信息增益最大的属性作为测试属性。

ID3算法将对挖掘样本集分为训练样本集和测试样本集,决策树的构建是在对训练样本集的学习上产生的,决策树生成之后,再运用测试样本集对树进行后剪技,将分类预测准确率不符合条件的叶节点剪去。

1)信息理论(Informaitontheory)和熵(Entro-py)。信息论是C.EShannon为解决信息传递(通信)过程问题而建立的理论,一个传递信息的系统是由发送端和接收端以及连接两者的通道三者组成。熵是对事件对应的属性的不确定性的度量。一个属性的熵值越小、子集划分的纯度越高,熵值熵越大,它蕴含的不确定信息越大,约有利于数据的分类。

2)信息增益(InformmationGain)。信息增益基于信息论中熵(Entropy)的概念,是指期望信息或者信息熵的有效减少量(通常用“字节”衡量),根据它能够确定在什么样的层次上选择什么样的变量来分类。ID3总是选择具有最高信息增益(或最大熵)的属性作为当前结点的测试属性。该属性使得对结果划分中的样本分类所需的信息量最小,并反映划分的最小随机性或“不纯性”。信息增益计算如下:

设S是s个训练样本数据集,S中类标识属性具有m个不同值,定义m个不同类Ci (i=1,2,3…,m)。设si是类Ci中的样本数。对一个给定的样本分类所需的期望信息由下式得出:

I(s1,s2,…,sm)=-m∑i=1 pilb(pi)

其中pi是任意样本属于Ci的概率,一般可用si/s来估计。

设属性A具有n个不同值{a1,a2,…,an},可以用属性A将S划分为n个子集{S1,

S2,…,Sn},其中Sj包含S中这样一些样本,它们在A上具有值aj。如果A作为测试属性,则这些子集对应于由包含集合S的结点生长出来的分支。

设sij是子集Sj中类Ci的样本数。根据由A划分成子集的熵由下式给出:E(A)=-n∑j=1 s1j+s2j+…+smjsI(s1j,s2j,…,smj)

根据上面的期望信息计算公式,对于给定的子集Sj,其期望信息由下式计算:I(s1j,s2j,…,smj)=-m∑i=1 pijlb(pij)

其中(pij=sij|sj|)对属性A作为决策分类属性的度量值即信息增益可以由下面的公式得到:

Gain(A)=I(s1,s2,…,sm)-E(A)

3)ID3算法的分析。

ID3通过不断的循环处理,逐步求精决策树,直至找到一个完全正确的决策树。ID3算法构造的决策树是从顶向下归纳形成了一组类似If…Then的规则。其最原始的程序只是用来区分象棋中的走步,所以区分的类别只有两种,即真或假,其属性值也是一些离散有限的值,页今ID3算法已发展到允许多于两个类别,而其属性值可以是整数或实数。其优缺点总结如下:

①优点。ID3在选择重要特征时利用了信息增益的概念,算法的基础理论清晰,使得算法较简单,该算法的计算时间是例子个数、特征个数、结点个数之积的线性函数。而且搜索空间是完全假设空间,目标函数必在搜索空间中,不存在无解的危险。全盘使用训练数据,而不像候选剪除算法一个一个地考虑训练例。这样做的优点是可以利用全部训练例的统计性质进行决策,从而抵抗噪音。

②缺点。信息增益的计算依赖于特征值数目较多的特征,这样不太合理,一个简单的办法对特征进行分解,可以把特征值统统化为二值特征。ID3对噪声较为敏感。Quinlan 定义训练例子中的错误就是噪声。它包括两个方面,一是特征值取错,二是类别给错。当训练集增加时,ID3的决策树也会随之变化。在建树过程中各特征的信息增益随例子的增加而变化,这对渐近学习不够方便。

4 C4.5算法

C4.5(Classsification4.5)算法是Quinlan在1993年提出的,它既是ID3算法的后继,也成为以后诸多算法的基础。除了拥有ID3算法的功能外,C4.5算法引用了新的方法并增加了新的功能。在应用于单机的决策树算法中,C4.5算法不仅分类准确率高而且速度快。

C4.5算法在ID3的基础上增加了信息增益比例的概念和连续型属性,属性值空缺情况的处理,对树剪枝也有了较成熟的方法,通过使用不同的修剪技术以避免树的过度拟合,它克服了ID3在应用中的不足。首先用信息增益率来选择属性,克服了用信息增益选择属性时偏向于选择取值多的属性的不足。其次,能够完成对连续属性的离散化处理,还能够对不完整的数据进行处理。C4.5算法采用的知识表示形式为决策机构树,并最终可以形成产生式规则。

1)信息增益比例的概念。信息增益比例是在信息增益概念基础上发展起来的,一个属性的信息增益比例用下面的公式给出:

GainRatio(A)=Gain(A)/SplitI(A),其中SplitI(A)=-V∑j=1 pjlog2(pj)这里设属性A具有v个不同值{a1,a2,…,av}。可以用属性A将S划分为v个子集{S1,S2,S3},其中Sj包含S中这样一些样本,它们在A上具有值aj。假如我们以属性A的值为基准对样本进行分割,SplitI(A)就是前面熵的概念。

2)合并具有连续值的属性。ID3算法最初假定属性离散值,但在实际应用中,很多属性值是连续的。针对连续属性值,C4.5首先根据属性的值,对数据集排序,用不同

的阈值将数据集动态地进行划分,当输入改变时,取两个实际值中的中点作为一个阈值,取两个划分,所有样本都在这两个划分中,得到所有可能的阈值、增益及增益比,在每一个属性会变为俩个取值,即小于阈值或大于等于阈值。

针对属性有连续数值的情况,比如说A有连续的属性值,则在训练集中可以按升序方式排列a1,a2,…,am。如果A共有n种取值,则对每个取值vj(j=1,2,…,n)将所有的记录进行划分。这些记录被划分成为两个部分:一部分在vj的范围内,而

另一部分则大于vj。针对每个划分分别计算增益比率,选择增益最大的划分来对相应的属性进行离散化。

3)规则的产生。一旦树被建立,就可把树转化成If-Then规则。规则存储于一个二维数组中,每一行代表树中的一个规则,即从根到叶之间的一个路径,表中的每列存放着树中的结点。

5 ID3算法应用案例

样本数据集

因为初始时刻属于p类和n类的实例均为12个所以初始时刻的熵值为H(x)=-12/24lb12/24-12/24lb12/24=1

如果outlook属性作为测试属性,根据式(4.10),此时的条件熵为H(x|outlook)

=19/24(-4/9lb4/9-5/9lb5/9)+8/24(-1/8lb1/8-7/8lb7/8)+7/24(7/7lb7/7-0)=0.4643 如果temperature属性作为测试属性H(x|temperature)=8/24(-4/8lb4/8-4/8lb4/8)+11/24(-4/11lb4/11-7/11lb7/11)+5/24(-4/5lb4/5-1/5lb1/5 )=0.6739

如果humidity属性作为测试属性H(x|humidity)=12/24(-4/12lb4/12-8/12lb8/12)+12/24(-4/12lb4/12-8/12lb8/12)=0.8183

如果windy属性作为测试属性H(x|windy)=8/24(-4/8lb4/8-4/8lb4/8)+6/24(-3/6lb3/6-3/6lb3/6)+10/24(5/10lb5/10-5/10lb5/10)=1

6决策树分类算法的分析

基于决策树的分类算法自提出至今,种类不下几十种。各种算法在执行速度、可扩展性、输出结果的可理解性及分类预测的准确性等方面各有千秋。决策树分类算法的发展可分为这样几个阶段:首先,最早出现的ID3算法采用信息熵原理选择测试属性分割样本集,只能处理具有离散型属性和属性值齐全的样本,生成形如多叉树的决策树。后来出现的C4.5算法经过改进,能够直接处理连续型属性,能够处理属性值空缺的训练样本。ID3系列算法和C4.5系列算法在对训练样本集的学习中尽可能多地挖掘信息,但其生成决策树分枝较多,规模较大。为了简化决策树算法,提高生成的决策树的效率,又出现了一些其它决策树算法。

决策树分类算法的优点主要是能生成可以理解的规则,计算量相对来说不是很大,可以处理多种数据类型,决策树可以清晰的显示哪些属性比较重要。与此同时它也存在一些缺点如对连续性的字段比较难预测,对有时间顺序的数据,需要很多预处理的工作,当类别太多时,错误可能就会增加的比较快。

7决策树分类算法的改进

针对决策树分类算法的缺点,下面将从属性的选择,如何对连续性属性进行离散化等算法改进方面进行介绍。

1)属性选择。为了避免噪声和干扰属性对数据分类的影响,在建立决策树之前先进行对属性重要性排序,再用神经网络技术对其中最重要的若干属性进行训练并检验其预测精度,然后属性重要性次序向两端分别加减一个邻近的属性再进行训练及检验并和原检验结果比较,这样反复多次直到找到分类效果最佳的n个属性为止,这样得到n个分类效果最好的属性。

2)连续属性离散化。离散化是分类过程中处理连续性的一种有效方法。离散化的效率和有效性直接影响到后续机器学习算法的效率和性能。很多分类规则只能处理离散属性,如ID3算法,对连续属性进行离散化是一个必要的步骤。C4.5虽能够处理连续属性,但离散化也是系统集成的一个重要步骤。离散化不仅可以缩短推导分类器的时间,而且有助于提高数据的可理解性,得到解精度更高的分类规则。从优化的角度可以将离散化方法分为两类:局部方法和全局方法。局部方法每次只对一个属性进行离散,而全局方法同时对所有属性进行离散。局部离散方法相对简单,全局方法因为考虑了属性间的相互作用往往可以得到比局部化方法更好的结果,但全局方法计算代价很高。

8结束语

通过以上研究和分析,可以得出构造好的决策树关键在于如何选择好的逻辑判断和属性。随着数据库和数据仓库技术的广泛应用,数据的海量增加,决策树技术的效率有待提高,针对实际问题时,需要对决策树数据挖掘方法在适应性、容噪性等方面进行适当的改进。

参考文献

[1]但小容,陈轩恕,刘飞,柳德伟.2009.数据挖掘中决策树分类算法的研究与改进[J].软件导刊,8(2):41-43.

[2] 董贺,荣光怡.2008.数据挖掘中数据分类算法的比较分析[J].吉林师范大学学报(自然科学版),4:107-108.姜灵敏,马于涛.2007.信息资源聚合与数据挖掘[M].广州:华南理工大学出版社,12-18.

[3] 马丽,陈桂芬.2008.基于数据挖掘的决策树算法应用研究[J].农业网络信息11:45-47.毛国君,段立娟,王实,石云.2007.数据挖掘原理与算法(第二版)[M].北京:清华大学出版社,120-131.

[4] 张桂杰.2005.数据挖掘决策树分类算法的研究与应用[D].长春:长春理工大学.

[5] 赵翔.2005.数据挖掘中决策树分类算法的研究[D].镇江:江苏科技大学.

[6] 朱明.2008.数据挖掘(第2版)[M].合肥:中国科学技术大学出版社,63-102.

决策树算法研究及应用概要

决策树算法研究及应用? 王桂芹黄道 华东理工大学实验十五楼206室 摘要:信息论是数据挖掘技术的重要指导理论之一,是决策树算法实现的理论依据。决 策树算法是一种逼近离散值目标函数的方法,其实质是在学习的基础上,得到分类规则。本文简要介绍了信息论的基本原理,重点阐述基于信息论的决策树算法,分析了它们目前 主要的代表理论以及存在的问题,并用具体的事例来验证。 关键词:决策树算法分类应用 Study and Application in Decision Tree Algorithm WANG Guiqin HUANG Dao College of Information Science and Engineering, East China University of Science and Technology Abstract:The information theory is one of the basic theories of Data Mining,and also is the theoretical foundation of the Decision Tree Algorithm.Decision Tree Algorithm is a method to approach the discrete-valued objective function.The essential of the method is to obtain a clas-sification rule on the basis of example-based learning.An example is used to sustain the theory. Keywords:Decision Tree; Algorithm; Classification; Application 1 引言 决策树分类算法起源于概念学习系统CLS(Concept Learning System,然后发展 到ID3

决策树算法介绍(DOC)

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,

数据挖掘-决策树

创建Analysis Services 项目 更改存储数据挖掘对象的实例 创建数据源视图 创建用于目标邮件方案的挖掘结构 创建目标邮件方案的第一步是使用Business Intelligence Development Studio 中的数据挖掘向导创建新的挖掘结构和决策树挖掘模型。 在本任务中,您将基于Microsoft 决策树算法创建初始挖掘结构。若要创建此结构,需要首先选择表和视图,然后标识将用于定型的列和将用于测试的列 1.在解决方案资源管理器中,右键单击“挖掘结构”并选择“新建挖掘 结构”启动数据挖掘向导。 2.在“欢迎使用数据挖掘向导”页上,单击“下一步”。 3.在“选择定义方法”页上,确保已选中“从现有关系数据库或数据仓 库”,再单击“下一步”。 4.在“创建数据挖掘结构”页的“您要使用何种数据挖掘技术?”下, 选择“Microsoft 决策树”。 5.单击“下一步”。 6.在“选择数据源视图”页上的“可用数据源视图”窗格中,选择 Targeted Mailing。可单击“浏览”查看数据源视图中的各表,然后单击“关闭”返回该向导。 7.单击“下一步”。

8.在“指定表类型”页上,选中vTargetMail 的“事例”列中的复选 框以将其用作事例表,然后单击“下一步”。稍后您将使用 ProspectiveBuyer 表进行测试,不过现在可以忽略它。 9.在“指定定型数据”页上,您将为模型至少标识一个可预测列、一 个键列以及一个输入列。选中BikeBuyer行中的“可预测”列中的复选框。 10.单击“建议”打开“提供相关列建议”对话框。 只要选中至少一个可预测属性,即可启用“建议”按钮。“提供相关列建议”对话框将列出与可预测列关联最密切的列,并按照与可预测属性的相互关系对属性进行排序。显著相关的列(置信度高于95%)将被自动选中以添加到模型中。 查看建议,然后单击“取消”忽略建议。 11.确认在CustomerKey行中已选中“键”列中的复选框。 12.选中以下行中“输入”列中的复选框。可通过下面的方法来同 时选中多个列:突出显示一系列单元格,然后在按住Ctrl 的同时选中一个复选框。 1.Age https://www.360docs.net/doc/7814519035.html,muteDistance 3.EnglishEducation 4.EnglishOccupation 5.Gender 6.GeographyKey

数据挖掘试卷一

数据挖掘整理(熊熊整理-----献给梦中的天涯) 单选题 1.下面哪种分类方法是属于神经网络学习算法?() A. 判定树归纳 B. 贝叶斯分类 C. 后向传播分类 D. 基于案例的推理 2.置信度(confidence)是衡量兴趣度度量( A )的指标。 A、简洁性 B、确定性 C.、实用性 D、新颖性 3.用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 4.数据归约的目的是() A、填补数据种的空缺值 B、集成多个数据源的数据 C、得到数据集的压缩表示 D、规范化数据 5.下面哪种数据预处理技术可以用来平滑数据,消除数据噪声? A.数据清理 B.数据集成 C.数据变换 D.数据归约 6.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内?(B) A 第一个 B 第二个 C 第三个 D 第四个 7.下面的数据操作中,()操作不是多维数据模型上的OLAP操作。 A、上卷(roll-up) B、选择(select) C、切片(slice) D、转轴(pivot) 8.关于OLAP和OLTP的区别描述,不正确的是: (C) A. OLAP主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同. B. 与OLAP应用程序不同,OLTP应用程序包含大量相对简单的事务. C. OLAP的特点在于事务量大,但事务内容比较简单且重复率高. D. OLAP是以数据仓库为基础的,但其最终数据来源与OLTP一样均来自底层的数据库系统,两者面对的用户是相同的 9.下列哪个描述是正确的?() A、分类和聚类都是有指导的学习 B、分类和聚类都是无指导的学习

(完整版)生物数据挖掘-决策树实验报告

实验四决策树 一、实验目的 1.了解典型决策树算法 2.熟悉决策树算法的思路与步骤 3.掌握运用Matlab对数据集做决策树分析的方法 二、实验内容 1.运用Matlab对数据集做决策树分析 三、实验步骤 1.写出对决策树算法的理解 决策树方法是数据挖掘的重要方法之一,它是利用树形结构的特性来对数据进行分类的一种方法。决策树学习从一组无规则、无次序的事例中推理出有用的分类规则,是一种实例为基础的归纳学习算法。决策树首先利用训练数据集合生成一个测试函数,根据不同的权值建立树的分支,即叶子结点,在每个叶子节点下又建立层次结点和分支,如此重利生成决策树,然后对决策树进行剪树处理,最后把决策树转换成规则。决策树的最大优点是直观,以树状图的形式表现预测结果,而且这个结果可以进行解释。决策树主要用于聚类和分类方面的应用。 决策树是一树状结构,它的每一个叶子节点对应着一个分类,非叶子节点对应着在某个属性上的划分,根据样本在该属性上的不同取值将其划分成若干个子集。构造决策树的核心问题是在每一步如何选择适当的属性对样本进行拆分。对一个分类问题,从已知类标记的训练样本中学习并构造出决策树是一个自上而下分而治之的过程。 2.启动Matlab,运用Matlab对数据集进行决策树分析,写出算法名称、数据集名称、关键代码,记录实验过程,实验结果,并分析实验结果 (1)算法名称: ID3算法 ID3算法是最经典的决策树分类算法。ID3算法基于信息熵来选择最佳的测试属性,它选择当前样本集中具有最大信息增益值的属性作为测试属性;样本集的划分则依据测试属性的取值进行,测试属性有多少个不同的取值就将样本集划分为多少个子样本集,同时决策树上相应于该样本集的节点长出新的叶子节点。ID3算法根据信息论的理论,采用划分后样本集的不确定性作为衡量划分好坏的标准,用信息增益值度量不确定性:信息增益值越大,不确定性越小。因此,ID3算法在每个非叶节点选择信息增益最大的属性作为测试属性,这样可以得到当前情况下最纯的划分,从而得到较小的决策树。 ID3算法的具体流程如下: 1)对当前样本集合,计算所有属性的信息增益; 2)选择信息增益最大的属性作为测试属性,把测试属性取值相同的样本划为同一个子样本集; 3)若子样本集的类别属性只含有单个属性,则分支为叶子节点,判断其属性值并标上相应的符号,然后返回调用处;否则对子样本集递归调用本算法。 (2)数据集名称:鸢尾花卉Iris数据集 选择了部分数据集来区分Iris Setosa(山鸢尾)及Iris Versicolour(杂色鸢尾)两个种类。

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

决策树分类算法与应用

机器学习算法day04_决策树分类算法及应用课程大纲 决策树分类算法原理决策树算法概述 决策树算法思想 决策树构造 算法要点 决策树分类算法案例案例需求 Python实现 决策树的持久化保存 课程目标: 1、理解决策树算法的核心思想 2、理解决策树算法的代码实现 3、掌握决策树算法的应用步骤:数据处理、建模、运算和结果判定

1. 决策树分类算法原理 1.1 概述 决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用 1.2 算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅? 母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。 女儿:是公务员不? 母亲:是,在税务局上班呢。 女儿:那好,我去见见。 这个女孩的决策过程就是典型的分类树决策。 实质:通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见 假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中: ◆绿色节点表示判断条件 ◆橙色节点表示决策结果 ◆箭头表示在一个判断条件在不同情况下的决策路径 图中红色箭头表示了上面例子中女孩的决策过程。 这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。 决策树分类算法的关键就是根据“先验数据”构造一棵最佳的决策树,用以预测未知数据的类别 决策树:是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

全面解析数据挖掘的分类及各种分析方法

全面解析数据挖掘的分类及各种分析方法 1.数据挖掘能做以下六种不同事情(分析方法): ?分类(Classification) ?估值(Estimation) ?预言(Prediction) ?相关性分组或关联规则(Affinitygroupingorassociationrules) ?聚集(Clustering) ?描述和可视化(DescriptionandVisualization) ?复杂数据类型挖掘(Text,Web,图形图像,视频,音频等) 2.数据挖掘分类 以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘?直接数据挖掘 目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。 ?间接数据挖掘 目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。 ?分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘 3.各种分析方法的简介 ?分类(Classification) 首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。 例子: a.信用卡申请者,分类为低、中、高风险 b.分配客户到预先定义的客户分片 注意:类的个数是确定的,预先定义好的 ?估值(Estimation) 估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类的类别是确定数目的,估值的量是不确定的。 例子: a.根据购买模式,估计一个家庭的孩子个数 b.根据购买模式,估计一个家庭的收入 c.估计realestate的价值

数据挖掘常用的方法

数据挖掘常用的方法 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪 声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知 识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统 计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正 确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可 以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖 掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。 可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情 况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的 研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的 回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的 相似性很小,跨类的数据关联性很低。 (4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶 段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各 银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。 (5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知 识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神 经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络 模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组

数据挖掘决策树算法Java实现

import java.util.HashMap; import java.util.HashSet; import java.util.LinkedHashSet; import java.util.Iterator; //调试过程中发现4个错误,感谢宇宙无敌的调试工具——print //1、selectAtrribute中的一个数组下标出错 2、两个字符串相等的判断 //3、输入的数据有一个错误 4、selectAtrribute中最后一个循环忘记了i++ //决策树的树结点类 class TreeNode { String element; //该值为数据的属性名称 String value; //上一个分裂属性在此结点的值 LinkedHashSet childs; //结点的子结点,以有顺序的链式哈希集存储 public TreeNode() { this.element = null; this.value = null; this.childs = null; } public TreeNode(String value) { this.element = null; this.value = value; this.childs = null; } public String getElement() { return this.element; } public void setElement(String e) { this.element = e; } public String getValue() { return this.value; } public void setValue(String v) { this.value = v; } public LinkedHashSet getChilds() { return this.childs;

数据挖掘及决策树

理工大学信息工程与自动化学院学生实验报告 ( 2016 — 2017 学年第学期) 信自楼444 一、上机目的及容 目的: 1.理解数据挖掘的基本概念及其过程; 2.理解数据挖掘与数据仓库、OLAP之间的关系 3.理解基本的数据挖掘技术与方法的工作原理与过程,掌握数据挖掘相关工具的使用。 容: 给定AdventureWorksDW数据仓库,构建“Microsoft 决策树”模型,分析客户群中购买自行车的模式。 要求: 利用实验室和指导教师提供的实验软件,认真完成规定的实验容,真实地记录实验中遇到的 二、实验原理及基本技术路线图(方框原理图或程序流程图) 请描述数据挖掘及决策树的相关基本概念、模型等。 1.数据挖掘:从大量的、不完全的、有噪音的、模糊的、随机的数据中,提取隐含在其中的、 人们事先不知道的、但又潜在有用的信息和知识的过程。

项集的频繁模式 分类与预测分类:提出一个分类函数或者分类模型,该模型能把数据库中的数据项 映射到给定类别中的一个; 预测:利用历史数据建立模型,再运用最新数据作为输入值,获得未来 变化趋势或者评估给定样本可能具有的属性值或值的围 聚类分析根据数据的不同特征,将其划分为不同数据类 偏差分析对差异和极端特例的描述,揭示事物偏离常规的异常现象,其基本思想 是寻找观测结果与参照值之间有意义的差别 3.决策树:是一种预测模型,它代表的是对象属性与对象值之间的一种映射关系。树中每个 节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从 根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输 出,可以建立独立的决策树以处理不同输出。 算法概念 ID3 在实体世界中,每个实体用多个特征来描述。每个特征限于在一 个离散集中取互斥的值 C4.5 对ID3算法进行了改进: 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选 择取值多的属性的不足;在树构造过程中进行剪枝;能够完成对 连续属性的离散化处理;能够对不完整数据进行处理。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及Microsoft SQL Server套件 四、实验方法、步骤(或:程序代码或操作过程) (一)准备 Analysis Services 数据库 1.Analysis Services 项目创建成功

决策树算法介绍

3.1分类与决策树概述 3.1.1分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病 症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是E—个离散属性,它的取值是一个类别值,这种问题在数 据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这 里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种 问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2决策树的基本原理 1. 构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是 “差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3 个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={ “优”,

数据挖掘主要算法

朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。 2. 计算公式如下: 其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。 3. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace 光滑, 分母加k的原因是使之满足全概率公式)。 朴素贝叶斯的优点: 对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点: 对输入数据的表达形式很敏感。 决策树: 决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。 信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。 现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。 决策树的优点: 计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征; 缺点: 容易过拟合(后续出现了随机森林,减小了过拟合现象); Logistic回归: Logistic是用来分类的,是一种线性分类器,需要注意的地方有: 1. logistic函数表达式为: 其导数形式为: 2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为: 到整个样本的后验概率:

基于决策树的分类算法

1 分类的概念及分类器的评判 分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。 分类可描述如下:输入数据,或称训练集(training set)是一条条记录组成的。每一条记录包含若干条属性(attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(类标签)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…,…vn:c)。在这里vi表示字段值,c表示类别。 分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不能肯定。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 对分类器的好坏有三种评价或比较尺度: 预测准确度:预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10番分层交叉验证法。 计算复杂度:计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据库,因此空间和时间的复杂度问题将是非常重要的一个环节。 模型描述的简洁度:对于描述型的分类任务,模型描述越简洁越受欢迎;例如,采用规则表示的分类器构造法就更有用。 分类技术有很多,如决策树、贝叶斯网络、神经网络、遗传算法、关联规则等。本文重点是详细讨论决策树中相关算法。

数据挖掘算法摘要

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了

数据挖掘——决策树分类算法 (1)

决策树分类算法 学号:20120311139 学生所在学院:软件工程学院学生姓名:葛强强 任课教师:汤亮 教师所在学院:软件工程学院2015年11月

12软件1班 决策树分类算法 葛强强 12软件1班 摘要:决策树方法是数据挖掘中一种重要的分类方法,决策树是一个类似流程图的树型结构,其中树的每个内部结点代表对一个属性的测试,其分支代表测试的结果,而树的每个 叶结点代表一个类别。通过决策树模型对一条记录进行分类,就是通过按照模型中属 性测试结果从根到叶找到一条路径,最后叶节点的属性值就是该记录的分类结果。 关键词:数据挖掘,分类,决策树 近年来,随着数据库和数据仓库技术的广泛应用以及计算机技术的快速发展,人们利用信息技术搜集数据的能力大幅度提高,大量数据库被用于商业管理、政府办公、科学研究和工程开发等。面对海量的存储数据,如何从中有效地发现有价值的信息或知识,是一项非常艰巨的任务。数据挖掘就是为了应对这种要求而产生并迅速发展起来的。数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用的信息,提取的知识表示为概念、规则、规律、模式等形式。 分类在数据挖掘中是一项非常重要的任务。 分类的目的是学会一个分类函数或分类模型,把数据库中的数据项映射到给定类别中的某个类别。分类可用于预测,预测的目的是从历史数据记录中自动推导出对给定数据的趋势描述,从而能对未来数据进行预测。分类算法最知名的是决策树方法,决策树是用于分类的一种树结构。 1决策树介绍 决策树(decisiontree)技术是用于分类和预测 的主要技术,决策树学习是一种典型的以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性判断从该节点向下的分支,在决策树的叶节点得到结论。所以从根到叶节点就对应着一条合取规则,整棵树就对应着一组析取表达式规则。 把决策树当成一个布尔函数。函数的输入为物体或情况的一切属性(property),输出为”是”或“否”的决策值。在决策树中,每个树枝节点对应着一个有关某项属性的测试,每个树叶节点对应着一个布尔函数值,树中的每个分支,代表测试属性其中一个可能的值。 最为典型的决策树学习系统是ID3,它起源于概念学习系统CLS,最后又演化为能处理连续属性的C4.5(C5.0)等。它是一种指导的学习方法,该方法先根据训练子集形成决策树。如果该树不能对所有给出的训练子集正确分类,那么选择一些其它的训练子集加入到原来的子集中,重复该过程一直到时形成正确的决策集。当经过一批训练实例集的训练产生一棵决策树,决策树可以根据属性的取值对一个未知实例集进行分类。使用决策树对实例进行分类的时候,由树根开始对该对象的属性逐渐测试其值,并且顺着分支向下走,直至到达某个叶结点,此叶结点代表的类即为该对象所处的类。 决策树是应用非常广泛的分类方法,目前有多种决策树方法,如ID3,C4.5,PUBLIC,

数据挖掘分类实验详细报告

《数据挖掘分类实验报告》 信息安全科学与工程学院 1120362066 尹雪蓉数据挖掘分类过程 (1)数据分析介绍 本次实验为典型的分类实验,为了便于说明问题,弄清数据挖掘具体流程,我们小组选择了最经典的决策树算法进行具体挖掘实验。 (2)数据准备与预处理 在进行数据挖掘之前,我们首先要对需要挖掘的样本数据进行预处理,预处理包括以下步骤: 1、数据准备,格式统一。将样本转化为等维的数据特征(特征提取),让所有的样 本具有相同数量的特征,同时兼顾特征的全面性和独立性 2、选择与类别相关的特征(特征选择) 3、建立数据训练集和测试集 4、对数据集进行数据清理 在本次实验中,我们选择了ILPD (Indian Liver Patient Dataset) 这个数据集,该数据集已经具有等维的数据特征,主要包括Age、Gender、TB、DB、Alkphos、Sgpt、Sgot、TP、ALB、A/G、classical,一共11个维度的数据特征,其中与分类类别相关的特征为classical,它的类别有1,2两个值。 详见下表: 本实验的主要思路是将该数据集分成训练集和测试集,对训练集进行训练生成模型,然后再根据模型对测试集进行预测。 数据集处理实验详细过程:

●CSV数据源处理 由于下载的原始数据集文件Indian Liver Patient Dataset (ILPD).csv(见下图)中间并不包含属性项,这不利于之后分类的实验操作,所以要对该文件进行处理,使用Notepad文件,手动将属性行添加到文件首行即可。 ●平台数据集格式转换 在后面数据挖掘的实验过程中,我们需要借助开源数据挖掘平台工具软件weka,该平台使用的数据集格式为arff,因此为了便于实验,在这里我们要对csv文件进行格式转换,转换工具为weka自带工具。转换过程为: 1、打开weka平台,点击”Simple CLI“,进入weka命令行界面,如下图所示: 2、输入命令将csv文件导成arff文件,如下图所示: 3、得到arff文件如下图所示: 内容如下:

数据挖掘决策树算法概述

决策树是分类应用中采用最广泛的模型之一。与神经网络和贝叶斯方法相比,决策树无须花费大量的时间和进行上千次的迭代来训练模型,适用于大规模数据集,除了训练数据中的信息外不再需要其他额外信息,表现了很好的分类精确度。其核心问题是测试属性选择的策略,以及对决策树进行剪枝。连续属性离散化和对高维大规模数据降维,也是扩展决策树算法应用范围的关键技术。本文以决策树为研究对象,主要研究内容有:首先介绍了数据挖掘的历史、现状、理论和过程,然后详细介绍了三种决策树算法,包括其概念、形式模型和优略性,并通过实例对其进行了分析研究 目录 一、引言 (1) 二、数据挖掘 (2) (一)概念 (2) (二)数据挖掘的起源 (2) (三)数据挖掘的对象 (3) (四)数据挖掘的任务 (3) (五)数据挖掘的过程 (3) (六)数据挖掘的常用方法 (3) (七)数据挖掘的应用 (5) 三、决策树算法介绍 (5) (一)归纳学习 (5) (二)分类算法概述 (5) (三)决策树学习算法 (6) 1、决策树描述 (7) 2、决策树的类型 (8) 3、递归方式 (8) 4、决策树的构造算法 (8) 5、决策树的简化方法 (9) 6、决策树算法的讨论 (10) 四、ID3、C4.5和CART算法介绍 (10) (一)ID3学习算法 (11) 1、基本原理 (11) 2、ID3算法的形式化模型 (13) (二)C4.5算法 (14) (三)CART算法 (17) 1、CART算法理论 (17) 2、CART树的分支过程 (17) (四)算法比较 (19) 五、结论 (24) 参考文献...................................................................................... 错误!未定义书签。 致谢.............................................................................................. 错误!未定义书签。

决策树分类算法的时间和性能测试(DOC)

决策树分类算法的时间和性能测试 姓名:ls 学号:

目录 一、项目要求 (3) 二、基本思想 (3) 三、样本处理 (4) 四、实验及其分析 (9) 1.总时间 (9) 2.分类准确性. (12) 五、结论及不足 (13) 附录 (14)

一、项目要求 (1)设计并实现决策树分类算法(可参考网上很多版本的决策树算法及代码, 但算法的基本思想应为以上所给内容)。 (2)使用UCI 的基准测试数据集,测试所实现的决策树分类算法。评价指标 包括:总时间、分类准确性等。 (3) 使用UCI Iris Data Set 进行测试。 二、基本思想 决策树是一个类似于流程图的树结构,其中每个内部节点表示在一个属性变量上的测试,每个分支代表一个测试输出,而每个叶子节点代表类或分布,树的最顶层节点是根节点。 当需要预测一个未知样本的分类值时,基于决策树,沿着该树模型向下追溯,在树的每个节点将该样本的变量值和该节点变量的阈值进行比较,然后选取合适的分支,从而完成分类。决策树能够很容易地转换成分类规则,成为业务规则归纳系统的基础。 决策树算法是非常常用的分类算法,是逼近离散目标函数的方法,学习得到的函数以决策树的形式表示。其基本思路是不断选取产生信息增益最大的属性来划分样例集和,构造决策树。信息增益定义为结点与其子结点的信息熵之差。信息熵是香农提出的,用于描述信息不纯度(不稳定性),其计算公式是 Pi为子集合中不同性(而二元分类即正样例和负样例)的样例的比例。这样信息收益可以定义为样本按照某属性划分时造成熵减少的期望,可以区分训练样本中正负样本的能力,其计算公式是

数据挖掘weka数据分类实验报告

一、实验目的 使用数据挖掘中的分类算法,对数据集进行分类训练并测试。应用不同的分类算法,比较他们之间的不同。与此同时了解Weka平台的基本功能与使用方法。 二、实验环境 实验采用Weka 平台,数据使用Weka安装目录下data文件夹下的默认数据集。 Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java 写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、数据预处理 Weka平台支持ARFF格式和CSV格式的数据。由于本次使用平台自带的ARFF格式数据,所以不存在格式转换的过程。实验所用的ARFF格式数据集如图1所示 图1 ARFF格式数据集 对于iris数据集,它包含了150个实例(每个分类包含50个实例),共有sepal length、

sepal width、petal length、petal width和class五种属性。期中前四种属性为数值类型,class属性为分类属性,表示实例所对应的的类别。该数据集中的全部实例共可分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。 实验数据集中所有的数据都是实验所需的,因此不存在属性筛选的问题。若所采用的数据集中存在大量的与实验无关的属性,则需要使用weka平台的Filter(过滤器)实现属性的筛选。 实验所需的训练集和测试集均为。 四、实验过程及结果 应用iris数据集,分别采用LibSVM、决策树分类器和朴素贝叶斯分类器进行测试和评价,分别在训练数据上训练出分类模型,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 1、LibSVM分类 Weka 平台内部没有集成libSVM分类器,要使用该分类器,需要下载并导入到Weka中。 用“Explorer”打开数据集“”,并在Explorer中将功能面板切换到“Classify”。点“Choose”按钮选择“functions,选择LibSVM分类算法。 在Test Options 面板中选择Cross-Validatioin folds=10,即十折交叉验证。然后点击“start”按钮:

相关文档
最新文档