第二章 函数2-4指数与指数函数

第二章  函数2-4指数与指数函数
第二章  函数2-4指数与指数函数

第2章 第4节

一、选择题

1.(2010·陕西文)下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )

A .幂函数

B .对数函数

C .指数函数

D .余弦函数

[答案] C

[解析] ∵(x +y )α≠x α·y α,log a (x +y )≠log a x +log a y ,a x +y =a x ·a y ,cos(x +y )=cos x cos y -sin x sin y ≠cos x cos y ,∴选C.

2.(2010·南充市)若A ={x ∈Z |2≤22-x

<8},B ={x ∈R ||x -1|>1},则A ∩(?R B )的元素个

数为( )

A .0

B .1

C .2

D .3

[答案] C

[解析] 由2≤22-x <8得,1≤2-x <3,

∴-11得,x >2或x <0,

∴B ={x |x >2或x <0},∴?R B ={x |0≤x ≤2}, ∴A ∩?U B ={0,1}.

3.(文)(2010·北京崇文区)设a =????120.5,b =0.30.5,c =log 0.30.2,则a 、b 、c 的大小关系

是( )

A .a >b >c

B .a

C .b

D .a

[答案] C

[解析] y =x 0.5在(0,+∞)上是增函数,1>1

2>0.3,∴1>a >b ,

又y =log 0.3x 在(0,+∞)上为减函数, ∴log 0.30.2>log 0.30.3=1,即c >1,∴b

(理)(2010·重庆诊断)设0

B.12

2a <0

[答案] B

[解析] 依题意得ab -b 2

=b (a -b )>0,∴ab >b 2

,因此A 不正确;同理可知C 不正确;由函数y =????12x 在R 上是减函数得,当0????12b >????12a >??121,即12

[点评] 可利用a ,b 取值的任意性取特值检验,令b =14,a =12可得,14>18>116,∴a 2>ab >b 2

排除A 、C ;log

1214=2,log 1212=1,∴log 12b >log 1

2

a ,排除D ,故选B. 4.(文)(2010·泰安质检)某钢厂的年产量由1990年的40万吨增加到2000年的50万吨,如果按照这样的年增长率计算,则该钢厂2010年的年产量约为( )

A .60万吨

B .61万吨

C .63万吨

D .64万吨

[答案] C

[解析] 设年增长率为x ,则由题意知40(1+x )10=50,∴(1+x )10=5

4,∴2010年的年产

量为40(1+x )20

=40×????542=2504≈63万吨.

(理)(2010·安徽安庆联考)如图是一个算法的程序框图,当输入x 的值为3时,输出y 的结果恰好为1

3

,则?处的关系式是( )

A .y =log 9x

B .y =3x

C .y =3-x

D .y =x 1

3

[答案] B

[解析] 输入x =3≤0不成立,故x =3-2=1,1≤0不成立,故x =1-2=-1,-1≤0成立,执行?后输出y =1

3

,故选B.

5.(2010·安徽理,6)设abc >0,二次函数f (x )=ax 2

+bx +c 的图象可能是( )

[答案] D

[解析] 若a <0,则只能是 A 或B 选项,A 中-b

2a

<0,∴b <0,从而c >0与A 图不符;B 中-

b

2a

>0,∴b >0,∴c <0与B 图也不符;若a >0,则抛物线开口向上,只能是C 或D 选项,则当b >0时,有c >0与C 、D 不符.当b <0时,有c <0,此时-b

2a >0,且f (0)=c <0,故

选D.

6.(文)(2010·山东理,4)设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )

A .3

B .1

C .-1

D .-3

[答案] D

[解析] ∵f (x )是奇函数,∴f (0)=0,即0=20+b ,∴b =-1,故f (1)=2+2-1=3,∴f (-1)=-f (1)=-3.

(理)(2010·辽宁省实验中学)已知函数f (x )=2x

-1,对于满足0

(1)(x 2-x 1)[f (x 2)-f (x 1)]<0; (2)x 2f (x 1)x 2-x 1; (4)f (x 1)+f (x 2)2>f

????x 1+x 22. 其中正确结论的序号是( ) A .(1)(2) B .(1)(3) C .(2)(4)

D .(3)(4)

[答案] C

[解析] ∵f (x )为增函数,x 1

∴(x 2-x 1)[f (x 2)-f (x 1)]>0,故(1)错; 排除A 、B ;A (x 1,f (x 1)),B (x 2,f (x 2))是f (x )=2x -1在(0,2)上任意两点,则k AB =f (x 2)-f (x 1)

x 2-x 1

不总大于1,故(3)错,排除D ,选C.

7.(文)(2010·重庆南开中学)已知f (x )=a x ,g (x )=b x ,当f (x 1)=g (x 2)=3时,x 1>x 2,则a 与b 的大小关系不可能成立.....

的是( ) A .b >a >1 B .a >1>b >0 C .0

D .b >1>a >0

[答案] D

[解析] ∵f (x 1)=g (x 2)=3,∴ax 1=bx 2=3, ∴x 1=log a 3,x 2=log b 3,

当b >1>a >0时,x 1<0,x 2>0不满足x 1>x 2.

(理)(2010·辽宁文,10)设2a =5b =m ,且1a +1b =2,则m =( )

A.10 B .10 C .20

D .100

[答案] A

[解析] ∵2a

=5b

=m ∴a =log 2m b =log 5m ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2 ∴m =10 选A.

8.(文)(2010·吉林市质检、上海松江市模拟)若函数f (x )=(k -1)a x -a -x (a >0且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )

[答案] A

[解析] ∵f (x )为奇函数,∴f (0)=0,∴k =2,f (x )=a x -a -x , 又f (x )为减函数,∴0

(理)(2010·烟台中英文学校质检、海淀期中)在同一坐标系中画出函数y =log a x ,y =a x ,y =x +a 的图象,可能正确的是( )

[答案] D

[解析] 对于A ,y =x +a 中,01,∴y =log a x 单调增,与图象不符,排除B 、C ,因此选D.

9.(2010·深圳市调研)已知所有的点A n (n ,a n )(n ∈N *

)都在函数y =a x

(a >0,a ≠1)的图象上,则a 3+a 7与2a 5的大小关系是( )

A .a 3+a 7>2a 5

B .a 3+a 7<2a 5

C .a 3+a 7=2a 5

D .a 3+a 7与2a 5的大小关系与a 的值有关 [答案] A

[解析] 因为所有的点A n (n ,a n )(n ∈N *)都在函数y =a x (a >0,a ≠1)的图象上,所以有a n

=a n

,故a 3+a 7=a 3

+a 7

,由基本不等式得:a 3

+a 7

>2a 3

·a 7

=2a 10

=2a 5

,∴a 3+a 7>2a 5(因为a >0,a ≠1,从而基本不等式的等号不成立),故选A.

10.(文)(2010·青岛市质检)过原点的直线与函数y =2x 的图象交于A ,B 两点,过B 作y 轴的垂线交函数y =4x 的图象于点C ,若直线AC 平行于y 轴,则点A 的坐标是( )

A .(1,2)

B .(2,4)

C .(1

2,2)

D .(0,1) [答案] A

[解析] 设A (x 0,y 0),则y 0=2x 0,由条件知C (x 0,4x 0),∴y B =

4x 0=22x 0,∴B (2x 0,22x 0),∵直线AB 过原点,

∴k OA =k OB ,∴22x 02x 0=2x

0x 0

,∴x 0=1,∴A (1,2).

(理)(2010·湖南八校联考)已知函数f (x )=log 12(4x -2x +1

+1)的值

域是[0,+∞),则它的定义域可以是( )

A .(0,1]

B .(0,1)

C .(-∞,1]

D .(-∞,0] [答案] A

[解析] 由题意知,log 1

2(4x -2x +1+1)≥0,则有0<4x -2x +1+1≤1,解得x ≤1且x ≠0,

排除C 、D.经检验,当x ∈(0,1]时,f (x )的值域是[0,+∞).故选A.

[点评] 由函数f (x )的值域为[0,+∞)知,令u =4x

-2

x +1

+1,则log 1

2

u ≥0,∴0

而u =(2x -1)2,∴x ≤1且x ≠0,而当x =1时,u =1,当x =0时,u =0,故0

二、填空题

11.(文)已知函数f (x )=?????

????13x x ∈[-1,0]3x x ∈(0,1],则f ????

log 3

12

=________. [答案] 2

[解析] ∵-1

2

<0,

∴f (log 312)=????13log 312=(3log 312

)-1

=2.

(理)(2010·北京东城区)定义在R 上的函数f (x )满足f (x )=?

???

?

21-x x ≤0f (x -1)-f (x -2) x >0,则

f (-1)=______,f (33)=________.

[答案] 4,-2

[解析] f (-1)=21-(-1)=4,f (33)=f (32)-f (31)=f (31)-f (30)-f (31)=-f (30),同理f (30)=-f (27),∴f (33)=f (27),∴f (33)=f (3)=-f (0)=-2.

12.(文)(2010·常德市检测)定义区间[x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |

的定义域为[a ,b ],值域为[1,9],则区间[a ,b ]的长度的最大值为________,最小值为________.

[答案] 4 2

[解析] 由3|x |=1得x =0,由3|x |=9得x =±2,故f (x )=3|x |的值域为[1,9]时,其定义域可以为[0,2],[-2,0],[-2,2]及[-2,m ],0≤m ≤2或[n,2],-2≤n ≤0都可以,故区间[a ,b ]的最大长度为4,最小长度为2.

(理)(2010·柳州市模考)已知????2x -229的展开式的第7项为21

4,则x 的值为________.

[答案] -1

3

[解析] T 7=C 96

(2x )3

·?

?

?

?-

226=212×8x

=214,

∴3x =-1,∴x =-1

3

.

13.已知函数f (x )=?????

????12x x ≤1log 2(x -1) x >1,则f (x )≤12

的解集为________.

[答案] [1,2+1] [解析] 由f (x )≤1

2

?????

????12x ≤12x ≤1

或???

??

log 2

(x -1)≤12x >1, ∴x =1或1

∴1≤x ≤2+1,故解集为[1,2+1].

14.函数f (x )的定义由程序框图给出,程序运行时,输入h (x )=????12x ,φ(x )=log 2x ,则f (12+f (4)的值为________.

[答案] -15

16

[解析] 由程序框图知

f (x )=?

????

φ(x ) h (x )>φ(x )h (x ) h (x )≤φ(x ),

∵h ????12=????1212=22,φ????12=-1,∴f ????12=-1, ∵h (4)=116,φ(4)=2,∴f (4)=116,

∴f ????12+f (4)=-1+116=-15

16. 三、解答题

15.已知f (x )是定义在R 上的奇函数,且当x ∈(0,1)时,f (x )=2

x

4x +1.

(1)求f (x )在(-1,1)上的解析式; (2)证明:f (x )在(0,1)上是减函数.

[解析] (1)∵f (x )是R 上的奇函数,∴f (0)=0, 又当x ∈(-1,0)时,-x ∈(0,1),

∴f (-x )=2-x 4-x +1=2

x

1+4

x ,

∵f (-x )=-f (x ),∴f (x )=-2x

1+4x ,

∴f (x )在(-1,1)上的解析式为

f (x )=

???

2x

4x +1

x ∈(0,1)-2x 4x

+1 x ∈(-1,0)

0 x =0

.

(2)当x ∈(0,1)时,f (x )=2x

4x +1.

设0

则f (x 1)-f (x 2)=2x 14x 1+12x 2

4x 2+1

(2x 2-2x 1)(2x 1+x 2-1)

(4x 1+1)(4x 2+1)

∵00,2x 1+x 2-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,1)上是减函数.

16.已知关于x 的方程9x -2×3x +(3k -1)=0有两个实数根,求实数k 的取值范围. [解析] 令3x =t ,

则方程化为t 2-2t +(3t -1)=0,①

要使原方程有两个实数根,方程①必须有两个正根 所以????

?

Δ=(-2)2

-4(3k -1)≥0t 1t 2=3k -1>0t 1+t 2=2>0

解得13

[点评] ∵t =3x >0,∴原方程有两个实数根x 1、x 2,则对应的方程①应有两个正根t 1=3x 1,t 2=3x 2,而不是两个任意实数根.

17.(文)(2010·辽宁省锦州市通考)已知函数f (x )=m ·2x +t 的图象经过点A (1,1),B (2,3)及C (n ,S n ),S n 为数列{a n }的前n 项和.

(1)求a n 及S n ;

(2)若数列{c n }满足c n =6na n -n ,求数列{c n }的前n 项和T n . [解析] (1)∵函数f (x )=m ·2x

+t 的图象经过点A 、B , ∴?

??

??

2m +t =14m +t =3,∴?

??

??

m =1t =-1,∴f (x )=2x

-1,

∴S n =2n -1,∴a n =2n -1.

(2)c n =3n ·2n

-n ,T n =c 1+c 2+…+c n =3×(1×2+2×22

+3×23

+…+n ·2n

)-(1+2+…+n ),

令P n =1×2+2×22+…+n ·2n ① 则2P n =1×22+2×23+…+n ·2n +1② ①-②得-P n =2+22

+ (2)

-n ·2

n +1

=2×(2n -1)2-1-n ·2n +1=2n +1-2-n ·2n +1,

∴P n =(n -1)2

n +1

+2, ∴T n =3(n -1)2

n +1

+6-

n (n +1)

2

. (理)(2010·浙江台州模拟)定义在D 上的函数f (x ),如果满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.

已知函数f (x )=1+a ·

????12x +???

?14x . (1)当a =1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;

(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. [解析] (1)当a =1时,f (x )=1+??12x +????14x

. 因为f (x )在(-∞,0)上递减,所以f (x )>f (0)=3,

即f (x )在(-∞,0)上的值域为(3,+∞).故不存在常数M >0,使|f (x )|≤M 成立. 所以函数f (x )在(-∞,0)上不是有界函数. (2)由题意知,|f (x )|≤3在[0,+∞)上恒成立. ∴-3≤f (x )≤3,即-4-????14x ≤a ·????12x ≤2-????14x , ∴-4·2x -????12x ≤a ≤2·2x -????12x 在[0,+∞)上恒成立,

设2x =t ,h (t )=-4t -1t p (t )=2t -1

t

由x ∈[0,+∞)得t ≥1,

设1≤t 1

t 1t 2>0

p (t 1)-p (t 2)=(t 1-t 2)(2t 1t 2+1)

t 1t 2

<0

所以h (t )在[1,+∞)上递减,p (t )在[1,+∞)上递增,

h (t )在[1,+∞)上的最大值为h (1)=-5,p (t )在[1,+∞)上的最小值为p (1)=1, 所以实数a 的取值范围为[-5,1].

必修一指数与指数函数

指数函数 典例分析 题型一 指数函数的定义与表示 【例1】 求下列函数的定义域 (1)32 x y -= (2)21 3 x y += (3)512x y ??= ??? (4)()10.7x y = 【例2】 求下列函数的定义域、值域 ⑴11 2 x y -= ; ⑵3x y -=; ⑶2 120.5x x y +-= 【例3】 求下列函数的定义域和值域: 1.x a y -=1 2.31 )2 1(+=x y 【例4】 求下列函数的定义域、值域 (1)11 0.4 x y -=; (2)y = (3)21x y =+ 【例5】 求下列函数的定义域 (1)13x y =; (2)y =

【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f , (3)f -的值. 【例7】 若1a >,0b >,且b b a a -+=b b a a --的值为( ) A B .2或2- C .2- D .2 题型二 指数函数的图象与性质 【例8】 已知1a b c >>>,比较下列各组数的大小: ①___b c a a ;②1b a ?? ??? 1c a ?? ??? ;②11 ___b c a a ;②__a a b c . 【例9】 比较下列各题中两个值的大小: ⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9. 【例10】 比较下列各题中两个值的大小 (1)0.80.733, (2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01, (4) 3.3 4.50.990.99, 【例11】 已知下列不等式,比较m 、n 的大小 (1) 22m n < (2)0.20.2m n > (3)()01m n a a a <<< (4)()1m n a a a >>

指数与指数函数知识点

指数函数 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???=)(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根,()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . (二)分数指数幂 1() 102 5 0a a a ==>()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23 a =4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

指数函数练习题

$ 指数与指数函数练习题 姓名 学号 (一)指数 1、化简[32)5(-]4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、将322-化为分数指数幂的形式为 ( ) A .212- B .3 12- C .2 12- - D .6 52- 3.333 4)2 1 ()21() 2()2(---+-+----的值 ( ) ) A 4 3 7 B 8 C -24 D -8 4(a, b 为正数)的结果是_________. 5、3 21 41()6437 ---+-=__________. 6、)3 1 ()3)((65 613 1212132b a b a b a ÷-=__________。 (二)指数函数 一.选择题: 1. 函数x y 24-= 的定义域为 ( ) "

A ),2(+∞ B (]2,∞- C (]2,0 D [)+∞,1 2. 下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B 2 y x = C 3x y = D x y 5.0= 3.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。经过3个小时,这种细菌由1个可繁殖成( ) 511.A 个 512.B 个 1023.C 个 1024.D 个 4.在统一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是 ( ) 5.设d c b a ,,,都是不等于1的正数,x x x x d y c y b y a y ====,,,在同一坐标系中的图像如图所示,则 d c b a ,,,的大小顺序是 ( ) d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<. | 6.函数0.(12 >+=-a a y x 且)1≠a 的图像必经过点 )1,0.(A )1,1.(B )0,2.(C )2,2.(D 7 .若01<<-x ,那么下列各不等式成立的是 ( ) x x x A 2.022.<<- x x x B -<<22.02. x x x C 222.0.<<- x x x D 2.022.<<- 8. 函数x a x f )1()(2 -=在R 上是减函数,则a 的取值范围是 ( ) 1.>a A 2.

2015届高考数学总复习 基础知识名师讲义 第二章 第五节指数与指数函数 文

第五节 指数与指数函数 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 2.理解指数函数的概念,并理解指数函数的单调性与函数图象通过的特殊点. 3.了解指数函数模型的实际背景,知道指数函数是重要的函数模型. 知识梳理 一、指数 1.根式. (1)定义:如果x n =a 那么x 叫做a 的n 次方根(其中n >1,且n ∈N ),式子n a 叫做根式,这里的n 叫做根指数,a 叫做被开方数. (2)性质. ①当n 为奇数时,n a n =a ; 当n 为偶数时,n a n =|a |=? ???? a ,a ≥0,-a ,a <0. ②负数没有偶次方根. ③零的任何次方根都是零. 2.幂的有关概念. (1)正整数指数幂:a n =a ·a ·…·a n 个 a (n ∈N * ). (2)零指数幂:a 0=1(a ≠0). (3)负整数指数幂:a - p =1a p (a ≠0,p ∈N *). (4)正分数指数幂:a m n =n a m (a >0,m ,n ∈N *,且n >1). (5)负分数指数幂:a -m n =1a m n =1 n a m (a >0,m ,n ∈N *,且n >1).

(6)零的正分数指数幂为零,零的负分数指数幂没有意义. 3.有理数指数幂的性质. (1)a r a s =a s + r (a >0,r ,s ∈Q ). (2)(a r )s =a sr (a >0,r ,s ∈Q ). (3)( ab )r =a r b r (a >0,b >0,r ∈Q ). 二、指数函数的定义 形如 y = a x (a >0且a ≠1)的函数叫做指数函数,其中x 是自变量,定义域是(-∞,+∞),值域是(0,+∞). 三、指数函数的图象和性质 基础自测 1.化简x 3·3y xy (a ,b 为正数)的结果是( ) A .x 13·y -16 B .x 12·y 16 C .x ·y 16 D .x ·y -1 6

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

【全国卷】2018高三理科数学总复习第五节 指数与指数函数(001)

第五节指数与指数函数 【最新考纲】 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景.3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为 2,3,10, 1 2 , 1 3 的指数函数的图象.4.体会指数函数是一类重要的函数模型. 1.根式的性质 (1)( n a)n=a. (2)当n为奇数时, n a n=a. (3)当n为偶数时, n a n=|a|= ?? ? ??a (a≥0) -a (a<0) . (4)负数的偶次方根无意义. (5)零的任何次方根都等于零. 2.有理指数幂 (1)分数指数幂 ①正分数指数幂:a m n= n a m(a>0,m,n∈N*,且n>1); ②负分数指数幂:a- m n= 1 a m n = 1 n a m (a>0,m,n∈N*,且n>1);

③0的正分数指数幂等于0,0的负分数指幂没有意义. (2)有理数指数幂的运算性质: ①a r·a s=a r+s(a>0,r、s∈Q); ②(a r)s=a rs(a>0,r、s∈Q); ③(ab)r=a r b r(a>0,b>0,r∈Q). 3.指数函数的图象与性质 图象 a>1 0<a<1 定义域R 值域(0,+∞) 性质 过定点(0,1) 当x>0时,y>1; 当x<0时,0<y<1 当x>0时,0<y<1; 当x<0时,y>1 在R上是增函数在R上是减函数

1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1) 4 (-4)4=-4.( ) (2)(-1)24=(-1)1 2=-1.( ) (3)函数y =2x -1是指数函数.( ) (4)函数y =ax 2+1(a >1)的值域是(0,+∞).( ) 答案:(1)× (2)× (3)× (4)× 2.化简[(-2)6]1 2-(-1)0结果为( ) A .-9 B .7 C .-10 D .9 解析:[(-2)6]12-(-1)0=(26)1 2-1=8-1=7. 答案:B 3.已知函数f(x)=4+a x -1的图象恒过定点P ,则点P 的坐标是( ) A. (1,5) B .(1,4) C .(0,4) D .(4,0) 解析:由a 0=1知,当x -1=0,即x =1时,f(1)=5,即图象必过定点(1,5). 答案:A 4.(2016·唐山一模)函数f(x)=2-x -2的定义域是________. 解析:由题意可得:2-x -2≥0,∴2-x ≥2,∴-x ≥1,∴x ≤-1,即函数的定义域为(-∞,-1].

高一数学必修一指数函数、对数函数习题精讲

指数函数、对数函数习题精讲 一、指数及对数运算 [例1](1)已知x 21 +x 21-=3,求3 2222323++++--x x x x 的值 (2)已知lg(x +y )+lg(2x +3y )-lg3=lg4+lg x +lg y ,求y x 值. (1)【分析】 由分数指数幂运算性质可求得x 23+x 23 -和x 2+x -2的值. 【解】 ∵x 21+x 21-=3 ∴x 23 +x 23 -=(x 21+x 21 -)3-3(x 21+x 21-)=33-3×3=18 x 2+x -2=(x +x -1)2-2=[(x 21+x 21 -)2-2]2-2 =(32-2)2-2=47 ∴原式= 347218++=5 2 (2)【分析】 注意x 、y 取值范围,去掉对数符号,找到x 、y 关系式. 【解】 由题意可得x >0,y >0,由对数运算法则得 lg(x +y )(2x +3y )=lg(12xy ) 则(x +y )(2x +3y )=12xy (2x -y )(x -3y )=0 即2x =y 或x =3y 故y x =21或y x =3 二、指数函数、对数函数的性质应用 [例2]已知函数y =log a 1(a 2x )·log 2a ( ax 1)(2≤x ≤4)的最大值为0,最小值为-81,求a 的值. 【解】 y =log a 1(a 2x )·log 2a ( ax 1)=-log a (a 2x )[-21log a (ax )] = 21(2+log a x )(1+log a x )=21(log a x +23)2-8 1 ∵2≤x ≤4且-8 1≤y ≤0 ∴log a x +23=0,即x =a 23-时,y min =-81

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

高中必修一指数和指数函数练习题及答案

指数和指数函数 一、选择题 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) (A )6 (B )±2 (C )-2 (D )2 3.函数f (x )=(a 2 -1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2>b 2,(2)2a >2b ,(3)b a 11<,(4)a 31> b 31 ,(5)(31)a <(31) b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 7.函数y=1 21 2+-x x 是( ) (A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 9.下列函数中,值域为R + 的是( ) (A )y=5 x -21 (B )y=( 31)1-x (C )y=1)2 1(-x (D )y=x 21- 10.函数y=2 x x e e --的反函数是( ) (A )奇函数且在R + 上是减函数 (B )偶函数且在R + 上是减函数 (C )奇函数且在R +上是增函数 (D )偶函数且在R + 上是增函数 11.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

必修一:指数与指数函数

指数与指数函数 级级: 姓名: 学号: 得分: 一、选择题(每题5分,共40分) 1.(369a )4(639a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.下列函数中,定义域为R 的是( ) (A )y=5x -21 (B )y=(3 1)1-x (C )y=1)2 1 (-x (D )y=x 21- 3.已知01,b <0 B .a >1,b >0 C .00 D .0a a 且)的图象经过二、三、四象限,则一定有 A.10<b B.1>a 且0>b C.10<a 且0

y A.a <b <1<c <d B.b <a <1<d <c C.1<a <b <c <d D.a <b <1<d <c 二、填空题(每题5分,共30分) 10.已知函数()14x f x a -=+的图像恒过定点P ,则点P 的坐标是___________ 11.方程96370x x -?-=的解是_________ 12.指数函数x a x f )1()(2-=是减函数,则实数a 的取值范围是 . 13.函数221x x y a a =+-(0>a 且1≠a )在区间]1,1[-上的最大值为14,a 的值是 14.计算:412121325.0320625.0])32.0()02.0()008.0()9 45()833[(÷?÷+---_______________ 15.若()10x f x =,则()3f =———————— 三、解答题(16/17/19题各5分,18题15分,共30分) 16.设关于x 的方程02 41=--+b x x 有实数解,求实数b 的取值范围。),1[+∞- 17.设0a 522-+x x . 18.已知2()()1 x x a f x a a a -=-- (0>a 且1≠a ). (1)判断)(x f 的奇偶性;(2)讨论)(x f 的单调性;(3)当]1,1[-∈x 时,b x f ≥)(恒成立,求b 的取值范围。 19.若函数4323x x y =-+的值域为[]1,7,试确定x 的取值范围。

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

分数指数幂与指数函数(答案)

分数指数幂与指数函数 本节主要学习分数指数幂与指数函数. 1.理解有理数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算性质. 在初中我们学习了正整数指数幂的意义:一个数a 的n 次幂表示n 个a 相乘的积.正整数指数幂有五条运算性质: (1)a m a n =a m + n ;(2)a m ÷a n =a m - n (a ≠0,m >n );(3)(a m )n =a mn ; (4)(ab )n =a n b n ;(5)(b a )n =n n b a 若(b ≠0). 注意:a 0=1(a ≠0)、a - n = n a 1 (n 为正整数,a ≠0). 2.分数指数幂的引进是受根式的性质的启发. 从根式的基本性质mp np a =m n a (a ≥0,m 、n 、p ∈N*), 我们知道a ≥0时,6 a =a 3=2 6a , 12 3 a =a 4=3 12a .于是我们规定: (1)n m a =n m a (a ≥0,m 、n ∈N*); (2)n m a -= n m a 1(a >0,m 、n ∈N*,n >1); (3)零的正分数次幂是零,零的负分数次幂没有意义. 这样一来,我们就将指数幂的概念扩大到有理数指数幂了,有理数幂的运算性质归纳为: (1)a r a s =a r + s ;(2)(a r )s =a rs ; (3)(ab )r =a r b r ,式中a >0,b >0,r 、s 为有理数. 3.理解指数函数的概念和意义.在指数函数的定义中限定了底数a >0且a ≠1,这主要是使函数的定义域为实数集,且具有单调性. (1)若a =0,当x >0时,a x =0;当x ≤0时,a x 没有意义; (2)若a <0,如y =(-2)x 对于x = 21、4 3 等都是没有意义的; (3)若a =1,则函数为y =1x =1是一个常数函数,它的性质没有研究的必要,且不具有单调性. 4.能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点,体会指数函数是一类重要的函数模型. 5.在方法上,要体现“形”与“数”的结合,要重视指数函数的实际背景,会利用指

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

指数函数经典例题和课后习题

百度文库 - 让每个人平等地提升自我 指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

相关文档
最新文档