82种胶片对比测评

82种胶片对比测评
82种胶片对比测评

彩色反转片

彩色负片

双相不锈钢奥氏体铁素体不锈钢之比较

双相不锈钢奥氏体铁素体不锈钢之比较 所谓双相不锈钢是在其固淬组织中铁素体相与奥氏体相各占一半,一般最少相的含量也许要达到30%。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使DSS兼有铁素体不锈钢和奥氏体不锈钢的优点。 与奥氏体不锈钢相比,双相不锈钢的优势如下: (1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。采用双相不锈钢制造储罐或压力容器的壁厚要比常用的奥氏体减少30-50%,有利于降低成本。 (2)具有优异的耐应力腐蚀破裂的能力,即使是含合金量最低的双相不锈钢也有比奥氏体不锈钢更高的耐应力腐蚀破裂的能力,尤其在含氯离子的环境中。应力腐蚀是普通奥氏体不锈钢难以解决的突出问题。 (3)在许多介质中应用最普遍的2205双相不锈钢的耐腐蚀性优于普通的316L奥氏体不锈钢,而超级双相不锈钢具有极高的耐腐蚀性,再一些介质中,如醋酸,甲酸等甚至可以取代高合金奥氏体不锈钢,乃至耐蚀合金。

(4)具有良好的耐局部腐蚀性能,与合金含量相当的奥氏体不锈钢相比,它的耐磨损腐蚀和疲劳腐蚀性能都优于奥氏体不锈钢。 (5)比奥氏体不锈钢的线膨胀系数低,和碳钢接近,适合与碳钢连接,具有重要的工程意义,如生产复合板或衬里等。 (6)不论在动载或静载条件下,比奥氏体不锈钢具有更高的能量吸收能力,这对结构件应付突发事故如冲撞,爆炸等,双相不锈钢优势明显,有实际应用价值。 与奥氏体不锈钢相比,双相不锈钢的弱势如下: (1)应用的普遍性与多面性不如奥氏体不锈钢,例如其使用温度必须控制在250摄氏度以下。 (2)其塑韧性较奥氏体不锈钢低,冷,热加工工艺和成型性能不如奥氏体不锈钢。 (3)存在中温脆性区,需要严格控制热处理和焊接的工艺制度,以避免有害相的出现,损害性能。 与铁素体不锈钢相比,双相不锈钢的优势如下:

双相不锈钢参数对比

双相钢介绍 双相不锈钢(Duplex stainless steel) 双相不锈钢是一种铁素体相和奥氏体相共存的不锈钢,同时也是集优良的耐蚀性能、高强度和易于加工制造等诸多优异性能于一身的钢种。 双相不锈钢已经有60多年的历史,世界上第一批双相不锈钢于1930年在瑞典生产出来并用于亚硫酸盐造纸工业。 1968年不锈钢精炼工艺——氩氧脱碳工艺(AOD)的发明,使一系列新的不锈钢的产生成为可能。AOD工艺带来的诸多进步之一就是合金元素N的添加。双相不锈钢添加N元素可以使焊接状态下热影响区的韧性和耐蚀性能接近于基体金属的性能,还可以降低有害金属间相的形成速率。 双相不锈钢同奥氏体不锈钢一样,是一种按腐蚀性能排序的钢种,腐蚀性能取决于它们的合金成分。双相不锈钢一直在不断发展,现代的双相不锈钢可以分为四种类型: 1、不含Mo的低级双相不锈钢2304; 2、标准双相不锈钢2205(德标),占双相钢总量的80%以上; 3、25%Cr的双相不锈钢,典型代表合金255,可归为超级双相不锈钢; 4、超级双相不锈钢,含25-26%Cr,与255合金相比Mo和N的含量增加。典型代表钢种2507。

双相不锈钢中的合金元素主要是Cr铬、Mo钼、N氮、Ni镍,它们在双相钢中的作用如下: 1、Cr铬 钢中最少含有%的Cr才能形成保护钢不受大气腐蚀的稳定的钝化膜。不锈钢的耐蚀性能随Cr的含量提高而增强。Cr是铁素体元素,它可以使具有体心立方晶格的铁组织稳定,也可以提高钢在高温下的抗氧化能力。 2、Mo钼 Mo与Cr协同作用能提高不锈钢的抗氯化物腐蚀的能力。Mo在氯化物环境下的抗点蚀和缝隙腐蚀的能力是Cr的3倍(参见CPT公式)。Mo是铁素体形成元素,同样能促进形成金属间相。因此,通常奥氏体不锈钢中Mo含量小于%,双相钢中小于4%。 3、N氮 N元素可增加奥氏体和双相不锈钢的抗点蚀和缝隙腐蚀的能力,并可以显着地提高钢的强度,它是固溶强化最有效的一个元素。在提高钢强度的同时,N元素还可以增加奥氏体不锈钢和双相不锈钢的韧性,延缓金属间相的形成,使双相不锈钢有足够的时间进行加工和制造,还可以抵消因高Cr、Mo所带来的易于形成σ相的倾向,N是强烈的奥氏体元素,在奥氏体不锈钢中能部分取代Ni。双相不锈钢中一般加入几乎接近溶解度极限的N和用以调整达到相平衡的Ni。铁素体元素Cr和Ni与奥氏体形成元素Ni和N需要达到平衡,才能获得期望的双相组织。

X线影像质量的评价13

X线影像质量的评价 1.主观评价2客观评价 3.综合评价 主观评价:通过人的视觉在检出识别过程中,根据心理学规律以心理学水平进行的评价,称为主观评价。目前,对医学影像质量的主观评价主要采用观察者操作特性(ROC)曲线分析和对比度细节分析有的,Rose模型。 客观评价:对导致X线照片影像的密度、对比度、清晰度、颗粒度及信息传递功能,以物理量水平进行评价为客观评价。主要通过特性曲线、响应函数等方法予以测定、评价。 综合评价:是以诊断学为依据、以物理参数为客观评价手段、以满足诊断要求所需的摄影技术条件为保证、同时充分考虑减少辐射剂量的评价方法。 影响X线影像质量的基本因素 体位、目标显示清楚密度、对比度、清晰度、颗粒席还有层次也很重要。 在对X线照片进行质量评价时,很难对影响X线影像质量的基本因素进行准确区分。 对照片影像质量进行更加科学的分析、评价的视觉评价方法、是借助于统计学的ROC曲线。当影响照片影像质量的某种因素较其他因素具有明显表征时,对质量的评价会很容易; 实际工作中,某一方面的不满意并不是那么明显。或者几个方面不满意同时存在; 照片质量的评价还受主观因素的影响,如医生的偏爱;不同组织、器官间也没有可比性;人眼观察和物理评价之间还没有建立一个完全的统一,这也是“综合评价”出现的原因;重视各种评价方法的综合应用。 光学密度 1密度的概念:透光率是指照片上某处的透光程度。在数值上等于透过光线强度与入射强度之比,用T表示,T值的定义域为:0

结构纠偏

结构纠偏

建筑物的沉井冲水掏土纠偏和锚杆静压桩托换加固 该帖被浏览了528次| 回复了0次 1 引言 软土地基的变形问题是房屋地基设计中的一个主要问题,其变形问题主要 反映在以下几个方面: (1)沉降和差异沉降大:工程实测资料表明,对砖墙承重的混合结构,如以楼层数表示地基受荷大小,则3层房屋天然地基沉降量一般为150~200mm;4层变化较大一般为200~500mm; 5、6层则可能 达700mm。 (2)沉降速率大:建筑物沉降速率是衡量地基发展程度与状况的一个重要标志。软土地基沉降速率一般均较大,而加荷终止时沉降速率最大。随着时间的发展,沉降速率逐渐衰减,约在半年到一年时 间内为建筑物差异沉降发展到最快时期,也是建筑物最易出现裂缝的时期。在正常情况下,如沉降速率减到0.05m/d以下时能出现等速沉降,但长时间的等速沉降就有导致地基丧失稳定的危险。 (3)沉降稳定时间长:由于软土渗透性弱,孔隙水不易排除,所以建筑物沉降稳定历时较长,有些建筑物建成后几年、十几年甚至几十年沉降都未完全稳 定。 宁波地区一大批80年代初建造的多层民用住宅楼,由于受当时造价的限制基本上均未打桩,基础形式大都采用条基或筏基。虽建造至今已有将近20年时间,但由于上述软土地基的特点及外界干扰因 素的影响(如邻近建筑物施工等)使其中有相当一部分房屋产生了不均匀沉降,从而出现墙身开裂、倾斜率过大等问题,有的甚至成为危房。为了保障人民的生命财产安全,如何既经济又适用地对这些房 屋进行加固或纠偏已成为当前极迫切的问题。 2 沉井冲水掏土纠偏和锚杆静压桩托换加固 (1)建筑物的纠偏托换方法众多,其中纠偏方法有堆载加压纠偏、锚桩加压纠偏、掏土纠偏、降水掏土纠偏、压桩掏土纠偏、浸水纠偏、顶升纠偏等。托换加固方法有基础加宽托换、坑式托换、桩式 托换、灌浆托换、高压喷射注浆托换、热加固托换、基础减压和加强刚度托换等。在众多的方法中笔者从多年的实践中得出用沉井冲水掏土纠偏结合锚杆静压桩托换加固法是一种在软土地基上对建筑物 进行纠偏加固的既经济又可靠的好方法。 (2)该法的基本原理是:在基础沉降小的建筑物一侧,设置若干个沉井,沉

双相不锈钢分类、牌号及标准

双相不锈钢分类、牌号及标准 双相不锈钢一般可分为低合金型、中合金型、高合金型和超级双相不锈钢型四类。 常用双相不锈钢牌号和各国牌号的近似值对照如下表: 型号\国家中国美国瑞典德国法国日本 低合金型00Cr23Ni4N UN23 (SAF2304) SS232 (SAF2304) W.Nr.1.4362 UR35N DP11 中合金型00Cr18Ni5Mo3Si2 00Cr22Ni5Mo3N UNS S31500 UNS S31803 SS2376(3RE60) SS2377(SAF2205) W.Nr.1.4417 W.Nr.1.4462 UR45N DP1 DP8 高合金型 0Cr25Ni5Mo2 00Cr25Ni7Mo3WCuN UNS S32900 UNS S31260 SS2324(10RE51) W.Nr.1.4460 W.Nr.1.4501 329J1 329J2L 超级双相 钢 00Cr25Ni7Mo4N 00Cr25Ni6Mo3CuN UNS S32750 UNS S32550 SS2328(SAF2507) W.Nr.1.4410 W.Nr.1.4507 UR47N+ UR52N+ 常用双相不锈钢的性能: 1.化学成分(%) 钢号C≤Mn≤Si≤S≤P≤Cr Ni Mo Cu≤N S32750((SAF2507) 00Cr22Ni7Mo4N 0.03 1.20 0.80 0.020 0.035 24.0/ 26.0 6.0/ 8.0 3.0/ 5.0 0.50 0.24/ 0.32 S31803(SAF2205)00Cr22Ni5Mo3N 0.03 2.00 1.0 0.02 0.030 21.0/ 23.0 4.50/ 6.50 2.50/ 3.50 0.08/ 0.20 S31500(3RE60)00Cr18Ni5Mo3Si2 0.03 1.2/ 2.00 1. 4/ 2.00 0.030 0.030 18.0/ 19.0 4.25/ 5.25 2.50/ 2.00 0.05/ 0.10 2.机械性能: 热处理温度℃Ab(MPa)≥As(MPa)≥∮≥布氏洛氏 S32750(SAF2507)00Cr22Ni5Mo3N 1025-1125 水 800 550 15 310 32 S31803(SAF2205) 00Cr22Ni5Mo3N 1020-1100 620 450 25 290 30.5 S31500(3RE60) 00Cr18Ni5Mo3Si2 980-1040 630 440 30 290 30.5 3.双相不锈钢的连续使用温度范围为-50℃-60℃。热加工温度应不低于950℃。 双相不锈钢简介 双相不锈钢是指它的微观组织是由铁素体相和奥氏体相二组成的材料,二相各约占50%。在实际使用中其中一相约在40-60%之间较为合适。 根据两相组织的特点,通过正确控制化学成分和热处理工艺,将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢成为一类集优良的耐腐蚀、高强度和易于加工制造等诸多优异性能于一身的钢种。它们的物理性能介于奥氏体不锈钢和铁素体不锈钢之间,但更接近于铁素体不锈钢和碳钢。双相不锈钢的耐氯化物孔蚀和缝隙腐蚀能力与铬、钼和氮含量有关,其耐孔蚀和缝隙腐蚀能力可以类似于316不锈钢,或者高于海水用不锈钢如6%MO奥氏体不锈钢。所有的双相不锈钢耐氯化物应力腐蚀断裂的能力均明显强于300系列奥氏体不锈钢,而且其强度也大大高于奥氏体不锈钢,同时表现出良好的塑性和韧性。 双丰不锈钢各种产品形式:板材和带材管---焊管和无缝管锻材管件和法兰棒和丝

射线检测复习题(第3章含答案)

射线检测复习题 (含参考答案) 第3章 是非题 1.射线照相时,若千伏值提高,将会使胶片对比度降低。(×)? 2.一般说来,对厚度较大的工件,应使用较高能量射线透照,其目的是降低对比 度,增大宽容度。(×) 3.用增大射源到胶片距离的办法可降低射线照相固有不清晰度。(×) 4.减小几何不清晰度的途径之一,就是使胶片尽可能地靠近工件。(√) 5.增加源到胶片的距离可以减小几何不清晰度,但同时会引起固有不清晰度增 大。(×) 6.使用较低能量的射线可提高主因对比度,但同时会降低胶片对比度。(×) 7.胶片的粒度越大,固有不清晰度也就越大。(×)? 8.如果信噪比不够,即使增大胶片衬度,也不可能识别更小的细节影像。(√) 9.散射线只影响主因对比度,不影响胶片对比度。(√) 10.底片黑度只影响胶片对比度,与主因对比度无关。(√) 11.射线的能量同时影响照相的对比度、清晰度和颗粒度。(√) 12.底片黑度只影响对比度,不影响清晰度。(√) 13.固有不清晰度是由于使溴化银感光的电子在乳剂层中有一定穿越行程而造成 的。(√) 选择题 1.射线底片上两个不同区域之间的黑度差叫做( B ) A.主因对比度 B.底片对比度 C.清晰度 D.胶片反差 2.影响主因对比度的是( D ) A.射线的波长 B.散射线 C.工件的厚度差 D.以上都是 3.射线底片上缺陷轮廓鲜明的程度叫做( C ) A.主因对比度 B.颗粒度 C.清晰度 D.胶片对比度 4.几何不清晰度也称为( D ) A.固有不清晰度 B.几何放大 C.照相失真 D.半影 5.决定细节在射线底片上可记录最小尺寸的是( D ) A.对比度 B.不清晰度 C.颗粒度 D.以上都是 6.固有不清晰度与下列哪一因素有关( D )

对中纠偏系统

对中纠偏系统 在工业生产中,一般长度在10米以上生产线,如冶金行业铜版、铁板、不锈钢板、织布和印染行业的布料及造纸行业的纸卷在连续生产中都要保证材料处于一定的横向位置,如材料跑偏会造成材料的损失,严重时造成设备的损坏。为保证生产安全顺利的进行,一般会在生产线上安装数套对中(CPC)或纠偏(EPC)装置。 现着重介绍卷取机纠偏系统 一、系统说明 卷取机纠偏系统是一个连续的闭环式调节系统,有探测头连续的测量板带位置变化,将板带的位置偏差信号输入电控系统,电控系统的输出与液压站电液伺服阀相连,伺服阀驱动与卷取机相连的液压缸而使卷取机跟踪进带位置,卷取机和测量探头的相接使板带能准确地卷取。 二、卷取机纠偏、 开卷机的纠偏和中间纠偏控制是对板带位置的偏差进行纠正,卷取机的纠偏则是对板带的位置进行跟踪;并不是对板带位置的偏差进行纠正,而是跟踪进板的位置;这样就可以使板带边缘在卷取时对准一点而使带卷的一边平齐。 采用对边纠偏装置,使探测头测量板带的一边,对准一点进行精确的卷取;当板带边缘尚未剪齐,或下一道工序板带仍需对中纠偏时,应采用这种纠偏卷取。

对于任何卷取机的纠偏系统,探测头必须安装在导向辊附近,并与卷取机相连以保证同步移动;这种连接可以通过机械的金属臂直接相连或电的同步跟踪来实现。有一点十分重要需加以注意,那就是板带需紧贴导向辊而没有相对滑动,因此板带的导向辊上应有一定的包角,导向辊的直径必须足够大,以确保板带在一定的张力下精确的卷取。 三、系统原理图 1、采用红外线光电探边器控制的EPC系统 卷取机 纠偏原理图(一)

2、采用单片机和CCD光电探边器控制的EPC系统 卷取机 纠偏原理图(二)

双相不锈钢参数对比

1.4462 双相钢介绍 双相不锈钢(Duplex stainless steel) 双相不锈钢是一种铁素体相和奥氏体相共存的不锈钢,同时也是集优良的耐蚀性能、高强度和易于加工制造等诸多优异性能于一身的钢种。 双相不锈钢已经有60 多年的历史,世界上第一批双相不锈钢于1930 年在瑞典生产出来并用于亚硫酸盐造纸工业。 1968 年不锈钢精炼工艺——氩氧脱碳工艺(AOD) 的发明,使一系列新的不锈钢的产生成为可能。AOD 工艺带来的诸多进步之一就是合金元素N 的添加。双相不锈钢添加N 元素可以使焊接状态下热影响区的韧性和耐蚀性能接近于基体金属的性能,还可以降低有害金属间相的形成速率。 双相不锈钢同奥氏体不锈钢一样,是一种按腐蚀性能排序的钢种,腐蚀性能取决于它们的合金成分。双相不锈钢一直在不断发展,现代的双相不锈钢可以分为四种类型: 1、不含Mo 的低级双相不锈钢2304 ; 2、标准双相不锈钢2205(德标1.4462 ),占双相钢总量的80% 以上; 3、25%Cr 的双相不锈钢,典型代表合金255 ,可归为超级双相不锈钢; 4、超级双相不锈钢,含25-26%Cr, 与255 合金相比Mo 和N 的含量增加。典型代表钢种2507 。 双相不锈钢中的合金元素主要是Cr铬、Mo钼、N氮、Ni镍,它们在双相钢中的作用如下:

1、Cr 铬 钢中最少含有10.5%的Cr才能形成保护钢不受大气腐蚀的稳定的钝化膜。不锈钢的耐蚀性能随Cr 的含量提高而增强。Cr 是铁素体元素,它可以使具有体心立方晶格的铁组织稳定,也可以提高钢在高温下的抗氧化能力。 2、Mo 钼 Mo 与Cr 协同作用能提高不锈钢的抗氯化物腐蚀的能力。Mo 在氯化物环境下的抗点蚀和缝隙腐蚀的能力是Cr的3倍(参见CPT公式)。Mo是铁素体形成元素,同样能促进形成金属间相。因此,通常奥氏体不锈钢中Mo 含量小于7.5%,双相钢中小于4%。 3、N 氮 N 元素可增加奥氏体和双相不锈钢的抗点蚀和缝隙腐蚀的能力,并可以显著地提高钢的强度,它是固溶强化最有效的一个元素。在提高钢强度的同时,N 元素还可以增加奥氏体不锈钢和双相不锈钢的韧性,延缓金属间相的形成,使双相不锈钢有足够的时间进行加工和制造,还可以抵消因高Cr、Mo所带来的易于形成彷相的倾向, N是强烈的奥氏体元素,在奥氏体不锈钢中能部分取代Ni。双相不锈钢中一般加入几乎接近溶解度极限的N和用以调整达到相平衡的Ni。铁素体元素Cr 和Ni 与奥氏体形成元素Ni 和N 需要达到平衡,才能获得期望的双相组织。 4、Ni 镍 Ni 是稳定奥氏体组织的元素。铁基合金中添加Ni 可促使不锈钢从体心立方晶 体结构(铁素体)转化为面心立方晶体结构(奥氏体) Ni 可以延缓金属间相的形成,但效果远不如N 有效

胶片的“感光特性曲线”

前些天就胶片感光特性曲线问题,与强总进行过短信沟通。我认为强总的意见比较准确、全面,而我的意见则有些偏颇。为了进一步阐述这个问题,撰写了此文。如有不当,请专家和读者朋友指正。 1 铅增感胶片感光特性曲线的两种型式 我们讨论的胶片,应是符合GB/T19348.1一2003《无损检测工业射线照相胶片第一部分:工业射线照相胶片系统的分》标准,即铅增感胶片。感光特性曲线是表示吸收剂量K(或照射量P)和底片黑度之间的关系曲线,可以是D一LgK曲线,也可以是D一K曲线。前者是涉及梯度G定义的常用曲线。当X射线管电压和管电流等条件固定后,黑度仅决定于曝光时间t时,D一LgK曲线可用D一Lgt代替,D一K曲线可用D一t代替。 1.1 D一Lgt曲线 其特性曲线如图1所示。 图1 铅增感型胶片的D一lgt特性曲线 这种曲线,大约在黑度0.5以下,它有迟钝区和曝光不足区,黑度从0.5至5是曝光正常区,是个近三次方的呈“J”形的曲线。在D=0.5~5的范围内,没有过渡区和反转区。 1.2 D一t曲线 铅增感胶片的D一t曲线,大约是一条上斜的直线,即黑度D和曝光时间t(实质是和吸收剂量K)近似成正比。,见图2。D和t、D和K的关系可以写为 D≈g.t D≈g.K 式中: g一比例系数。 笔者根据《日本射线探伤B》第22页表1.2,整理出表1,并根据表1绘制了D一t曲线。 表1 富士100#不同黑度下的t (数据来源于《B》表1.2,管电压、管电流固定) D t (秒) 梯度G 1.0 35.25 1.7 1.5

58.5 3.0 2.0 81 3.7 2.5 105 4.9 3.0 127 5.9 以表1的t为横座标,D为纵座标,绘出D一t曲线,如图2。 图2富士100#胶片D一t曲线之一段 图2的纵座标D如果是净黑度,则D一t斜直线过座标零点。由图可见:在管电压和管电流不变的前提下,铅增感型胶片的底片黑度大约和曝光时间t(或说吸收剂量K)成正比。《美国无损检测手册.射线卷》(1992译本)给出了相似的图形,读者可查该书第216页图4一34。该图是管电压不变的前提下,底片黑度D和曝光量E(管电流乘曝光时间)的关系曲线,即D一E曲线,在黑度0.5~3.0的范围内,D一E曲线是近乎过零点的右上斜曲线。但在D>3以后有了(向下)偏差。 2 为什么常见特性曲线是D一Lgt曲线 我们熟悉的胶片法(黑度)对比度定性表达式为 ΔD=0.434.G.μ.ΔT/(1+n) (1) 去掉公式(1)和胶片有关的梯度G,其余部分可称为“透射线图像的对比度”,也即我们常说的主因对比度,暂以符号ΔP记之 ΔP=0.434μ.ΔT/(1+n) (2) 公式(2)是怎么导出来的,前提是 ΔP=LgI2-LgI1=ΔLgI (3) 可能是先行者们把这一概念用在胶片特性曲线上,就形成D一Lgt胶片特性曲线,并用这一思路求胶片某一黑度下的梯度G。《日本射线探伤B》第22页表1.2,ΔD=D2-D1=0.2,Δt=t2-t1≈10s(秒),然后取t的对数,求梯度G(译本称胶片对比度γ)的。

纠偏技术及常用纠偏方法介绍

纠偏技术及常用纠偏方法的介绍 一、纠偏技术的进展 建(构)筑物的纠偏(有的文献中也称作纠倾)技术、托底技术、平移技术及增层加载时的地基基础加固技术,被统称为基础工程的“后继技术”,这四项技术在20世纪前半叶仅在少数几个国家受到重视,在我国也是从20世纪后半叶才逐渐兴起的。建(构)筑物的纠偏技术、托底技术、平移技术及增层加载时的地基基础加固技术经常联合使用,以满足各种工程需要,它们与常规的地基及基础处理即有联系,又有区别。这四项技术的出现和兴起,一方面是由于土力学理论的发展、地基处理技术及相应施工机械与监测技术的进步而使这些技术的实现成为可能,另一方面是受与日俱增的客观需求分不开的。一些古建筑的倾斜和相继倒塌,迫使人们采取各种措施来保护现存的古迹和文物;新建建(构)筑物因地基处理不当或其它原因而发生倾斜,迫使人们开始重视建筑物的纠偏和基础托底加固技术,以减少大量经济损失。特别是在城市建筑群密集的地方,新建建(构)筑物常常会促使既有建筑物发生不均匀沉降;城市功能的改变,干道的重新规划,常要求将一些重要建筑物及文化遗址完整地平移。 世界上许多著名的大型建(构)筑物都是由于地基基础的问题而发生倾斜,因当时挽救乏术,不得不任其倒塌和倾斜,典型的例子如建于中世纪著名的英国Ely大教堂和法国的Bauyais大教堂的倒塌。举世闻名的意大利比萨斜塔,始建于1173年,竣

工于1372年,施工历时整整200年,主要就是因为施工中塔身曾两次出现倾斜,虽然从结构上采取了一些措施,仍无法纠正,而一再被迫停工,最终不得不带着倾斜而结顶。美国著名岩土工程学家C. Spencer曾于1953年预测,比萨斜塔如不进行纠偏,势必在50~100年后倒塌。至1990年,塔顶中心点已向南偏离中心线4.5m,塔身倾角5o33′17″。在我国,苏州虎丘塔是继杭州雷锋塔倒坍后现存的唯一具有千年以上历史的古砖塔。虎丘塔呈七级八角形,塔底直径13.66m,高47.5m。塔顶位移1978年为2.3m,塔顶重心偏离基础轴线0.924m。经专家调查研究,虎丘塔倾斜和墩身开裂,主要原因是地基土中存在压缩性大且厚度不均匀的可塑状粘性填土,以及由于地基土的流失,而使砖砌体长期处于偏心受压状态。经过正确的纠偏加固措施以后,塔体的不均匀沉降和倾斜已得到了控制。 其它类建筑物的倾斜事例就更不胜枚举。建(构)筑物因地基和基础处理不当而倾斜、倒塌或拆除的后果是严重的。1995年12月26日,汉口桥苑新村的一栋18层住宅楼因地基基础设计、施工等多种原因以致发生严重倾斜,最后被控爆拆除,给人们以极其深刻的印象。该住宅楼是采用336根锤击沉管扩底灌注桩基础,桩长17.5m,桩端进入中密粉细砂持力层1~4m,这一栋楼房失稳的事故也告诉我们采用桩基础并不是万无一失的。 由于设计、施工的问题而引起建筑物倾斜的例子是非常多的,其造成的社会影响和经济损失也是很明显的。当建筑物发生

《双相不锈钢资料》word版

2205不锈钢 2205不锈钢 双相不锈钢2205合金是由21%铬,2.5%钼及4.5%镍氮合金构成的复式不锈钢。它具有高强度、良好的冲击韧性以及良好的整体和局部的抗应力腐蚀能力。 特点: 1.双相不锈钢2205合金与316L和317L奥氏体不锈钢相比,2205合金在抗斑蚀及裂隙腐蚀方面的性能更优越,它具有很高的抗腐蚀能力,与奥氏体相比,它的热膨胀系数更低,导热性更高。 2.双相不锈钢2205合金与奥氏体不锈钢相比,它的耐压强度是其两倍,与316L和317L相比,设计者可以减轻其重量。2205合金特别适用于—50°F/+600°F温度范围内,在严格限制的情况下(尤其对于焊接结构),也可以用于更低的温度。 化学成分:C≤0.030 Mn≤2.00 Si≤1.00 p≤0.030 S≤0.020 Cr 22.0~23.0 Ni 4.5~6.5 Mo3.0~3.5 N0.14~0.20(奥氏体-铁素体型) 性能补充:[1]主要成分:22Cr-5.3Ni-3.2Mo-0.16N;各国标准:NAS 329J3L、UN S S32205/S31803、DIN/EN 1.4462、ASTM A240、ASME SA-240;机械性能:抗拉强度:σb≥640Mpa;延伸率:δ≥25%;典型工况:20%稀硫酸,60℃以下,年腐蚀率<0.1 mm;配套焊丝:ER2209。 2205双相不锈钢焊接和焊后热处理工艺研究 资料 2009-04-05 15:53:32 阅读648 评论0 字号:大中小 摘要:采用了等离子弧焊(PAW)打底+钨极氩弧焊(TIG)盖面和等离子弧焊(PAW)打底+熔化极氩弧焊(MIG)盖面两种焊接工艺焊接2205双相不锈钢,并对焊接接头进行了固溶处理,对采用两种焊接工艺的焊件进行金相组织、铁素体-奥氏体两相比例、力学性能以及耐点腐蚀性检测。结果表明,两种焊接工艺都可以保证焊接接头的各项性能均能满足技术要求,TIG焊盖面的焊接接头铁素体含量低于MIG焊盖面,且冲击韧性也于优于MIG焊盖面,而MIG焊盖面的焊接接头的耐点腐蚀性能优于TIG焊盖面。 关键词:2205双相不锈钢 TIG焊 MIG焊力学性能点腐蚀 一、引言 双相不锈钢是由奥氏体和铁素体两相组成,当两相比例约为50%时,双相不锈钢将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所有的较高强度和耐氯化物应力腐蚀性能结合在一起,使 其兼具奥氏体不锈钢和铁素体不锈钢的优点。 2205双相不锈钢是20世纪70年代首先由瑞典研制成功,材料牌号为SAF2205,属于第二代双相不锈钢。中国在80年代初开始研究相当SAF2205的00Cr22Ni5Mo3N双相不锈钢,它是一种典型的含N、超低碳、双相铁素体—奥氏体不锈钢,它具有较高的屈服强度(为奥氏体不锈钢的二倍)及良好的塑性,有

EPC纠偏总结

1.工作原理: 如上图所示:两个高频光传感器,一个垂直安装(测量探头),一个带有一 定的角度(参考探头),两个传感器由一个伺服电机驱动。安装时调整两个传感 器的位置,使发送到传感器的两束光线的交点与光源的中心线平行。带钢下方是一个固定安装可调高频光源,向两个传感器发射高频光线。当有带钢通过时两个传感器在伺服电机的驱动下向带钢的边部移动,如果垂直探头的检测电压为5V (MESS1和GND),表明传感器已经检测到带钢边部。系统通过伺服电机的移动得 到带钢的偏移量,然后将这个信号传送到控制单元,最后控制单元根据这个信号去控制液压执行单元动作,从而使带钢的边部的偏移量在工艺要求的范围内,系统纠偏方向与带钢的移动方向相同。 2.两个检测探头的调节: 在控制单元EVK2_CP的电路板(如图2箭头2所示)上有4个插孔,分别是 。 GND,W,REF1,MESS1 ㈠根据带钢运行方向调节测量探头: 该探头应该与带钢运行方向垂直,以带钢运行方向为基准前后移动测量探 头,用万用表测量MESS1,黑表笔接GND,当所测电压为最大值并且唯一(感光度

最大),固定该探头,调节控制面板上的R1使测量电压值为DC10V。测量探头调节完毕。 ㈡根据带钢运行方向调节参考探头: 以带钢运行方向为基准前后移动参考探头,用万用表测量REF1,黑表笔接GND,当所测电压为最大值并且唯一,固定该探头,调节控制面板上的R2使测量电压值为DC5V。该步为参考探头的第一步调节。 ㈢参考探头的第2步调节: 把万用表连接到测量点MESS1和GND上,用一块最小宽度为250mm的钢板直接放置到光源上,挡住测量探头接收器的检测范围,沿带钢横截面方向移动钢板, 到万用表上的读数为 2.5V为止。后将万用表连接到测量点REF1和GND上,沿带钢横截面方向左右转动参考探头,使测量仪表上的读数为 2.5V,用螺丝固定参考探头。至此,参考探头位置调节完毕。 3.常用按键如下: EPC操作面板 显示屏中显示画面共两种参数:M为反馈值,P为设定值。(我们只能修改设定值,即P值。共21个M选项,45个P选项)。 面板右边青色区域为现场操作按钮,各按钮功能如下: 远程本地控制切换,当指示灯亮时为远程控制

双相不锈钢、奥氏体、铁素体不锈钢之比较

双相不锈钢、奥氏体、铁素体不锈钢之比较 所谓双相不锈钢是在其固淬组织中铁素体相与奥氏体相各占一半,一般最少相的含量也许要达到30%。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使DSS兼有铁素体不锈钢和奥氏体不锈钢的优点。 与奥氏体不锈钢相比,双相不锈钢的优势如下: (1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。采用双相不锈钢制造储罐或压力容器的壁厚要比常用的奥氏体减少30-50%,有利于降低成本。 (2)具有优异的耐应力腐蚀破裂的能力,即使是含合金量最低的双相不锈钢也有比奥氏体不锈钢更高的耐应力腐蚀破裂的能力,尤其在含氯离子的环境中。应力腐蚀是普通奥氏体不锈钢难以解决的突出问题。 (3)在许多介质中应用最普遍的2205双相不锈钢的耐腐蚀性优于普通的316L奥氏体不锈钢,而超级双相不锈钢具有极高的耐腐蚀性,再一些介质中,如醋酸,甲酸等甚至可以取代高合金奥氏体不锈钢,乃至耐蚀合金。 (4)具有良好的耐局部腐蚀性能,与合金含量相当的奥氏体不锈钢相比,它的耐磨损腐蚀和疲劳腐蚀性能都优于奥氏体不锈钢。 (5)比奥氏体不锈钢的线膨胀系数低,和碳钢接近,适合与碳钢连接,具有重要的工程意义,如生产复合板或衬里等。 (6)不论在动载或静载条件下,比奥氏体不锈钢具有更高的能量吸收能力,这对结构件应付突发事故如冲撞,爆炸等,双相不锈钢优势明显,有实际应用价值。 与奥氏体不锈钢相比,双相不锈钢的弱势如下: (1)应用的普遍性与多面性不如奥氏体不锈钢,例如其使用温度必须控制在250摄氏度以下。 (2)其塑韧性较奥氏体不锈钢低,冷,热加工工艺和成型性能不如奥氏体不锈钢。 (3)存在中温脆性区,需要严格控制热处理和焊接的工艺制度,以避免有害相的出现,损害性能。 与铁素体不锈钢相比,双相不锈钢的优势如下: (1)综合力学性能比铁素体不锈钢好,尤其是塑韧性,不象铁素体不锈钢那样对脆性敏感。 (2)除耐应力腐蚀性能外,其他耐局部腐蚀性能都优于铁素体不锈钢。 (3)冷加工工艺性能和冷成型性能远优于铁素体不锈钢。

调心托辊的纠偏原理和应用

调心托辊的纠偏原理和应用带式输送机由于制造、安装以及接头不正等因素的影响, 跑偏问题不可避免。目前, 胶带跑偏的纠偏方法很多, 对于机身来说最常用和最有效的方式是采用调心托辊, 本文对调心托辊的调心原理和常用调心托辊的结构特点进行简单介绍。 1 调心托辊的调心原理 由图1a 可以看出, 当托辊的中心线与胶带的 中心线垂直时, 取胶带与托辊任一接触点M, 该点胶带的线速度V 与托辊的旋转速度V g 相等, 由于无相对滑动速度, 二者之间为静摩擦, 胶带给托辊的摩擦力F t 与托辊给胶带的摩擦反力F d 相平衡, F d 与胶带中心线夹角α= 0 , 因此当托辊的中心线与胶带的中心线垂直时, 胶带横向不受力, 胶带跑偏时托辊不能自动纠偏。 当托辊的中心线与胶带的中心线不垂直时(见 图1b) , 即托辊前倾一定角度ε时, 取任一接触点M, 该点胶带的线速度为V , 托辊的旋转速度为 V g , 由于托辊的中心线与胶带的中心线不垂直时, 产生相对滑动速度ΔV , 二者之间为动摩擦, 胶带给托辊的摩擦力F t 与相对滑动速度ΔV 方向一致, 托辊给胶带的摩擦反力F d 与相对滑动速度ΔV 方向相反; 由于F d 与胶带中心线存在一定角度α, 胶带具有横向力F h 和径向力F j , 托辊给胶带的横向纠偏力F h = F dsinα, 因此, 托辊前倾一定角度后胶带跑偏时具有纠偏能力, 调心托辊就是基于此设计、制造的。 2 调心托辊类型及结构特点 综合TD75、DX、DT Ⅱ选型设计手册, 可以看 出目前较常用的调心托辊主要有槽形调心托辊、锥形调心托辊和摩擦调心托辊。 211 槽形调心托辊 图1 调心托辊的调心原理 (a) 托辊中心线与胶带中心线垂直 (b) 托辊中心线与胶带中心线不垂直 见图2 , 槽形调心托辊主要依据TD75、DX 选 型手册, 3 个槽形辊子和2 个小立辊安装在上横梁上, 下横梁连接在中间架上, 上下横梁通过回转轴连接在一起, 胶带跑偏时, 带动上横梁绕回转轴旋转一定角度ε, 此时调心托辊给胶带施加横向推力F h , 促使跑偏后的胶带自动回到原位, 实现跑偏胶带的自动纠偏, 确保胶带对中运行。其特点是在前倾调心的基础上增加了2 个挡偏立辊, 挡偏立辊

双相不锈钢参数对比

1.4462双相钢介绍 双相不锈钢(Duplex stainless steel) 双相不锈钢是一种铁素体相和奥氏体相共存的不锈钢,同时也是集优良的耐蚀性能、高强度和易于加工制造等诸多优异性能于一身的钢种。 双相不锈钢已经有60多年的历史,世界上第一批双相不锈钢于1930年在瑞典生产出来并用于亚硫酸盐造纸工业。 1968年不锈钢精炼工艺——氩氧脱碳工艺(AOD)的发明,使一系列新的不锈钢的产生成为可能。AOD工艺带来的诸多进步之一 就是合金元素N的添加。双相不锈钢添加N元素可以使焊接状 态下热影响区的韧性和耐蚀性能接近于基体金属的性能,还可以降低有害金属间相的形成速率。 双相不锈钢同奥氏体不锈钢一样,是一种按腐蚀性能排序的钢种,腐蚀性能取决于它们的合金成分。双相不锈钢一直在不断发展,现代的双相不锈钢可以分为四种类型: 1、不含Mo的低级双相不锈钢2304; 2、标准双相不锈钢2205(德标1.4462),占双相钢总量的80% 以上; 3、25%Cr的双相不锈钢,典型代表合金255,可归为超级双相不锈钢;

4、超级双相不锈钢,含25-26%Cr,与255合金相比Mo和N的含量增加。典型代表钢种2507。 双相不锈钢中的合金元素主要是Cr铬、Mo钼、N氮、Ni镍,它们在双相钢中的作用如下: 铬Cr、1. . 钢中最少含有10.5%的Cr才能形成保护钢不受大气腐蚀的稳定的钝化膜。不锈钢的耐蚀性能随Cr的含量提高而增强。Cr是铁素体元素,它可以使具有体心立方晶格的铁组织稳定,也可以提高钢在高温下的抗氧化能力。 2、Mo钼 Mo与Cr协同作用能提高不锈钢的抗氯化物腐蚀的能力。Mo在氯化物环境下的抗点蚀和缝隙腐蚀的能力是Cr的3倍(参见CPT 公式)。Mo是铁素体形成元素,同样能促进形成金属间相。因此,通常奥氏体不锈钢中Mo含量小于7.5%,双相钢中小于4%。 3、N氮 N元素可增加奥氏体和双相不锈钢的抗点蚀和缝隙腐蚀的能力,并可以显著地提高钢的强度,它是固溶强化最有效的一个元素。在提高钢强度的同时,N元素还可以增加奥氏体不锈钢和双相不锈钢的韧性,延缓金属间相的形成,使双相不锈钢有足够的时间进行加工和制造,还可以抵消因高Cr、Mo所带来的易于形成σ相的倾向, N是强烈的奥氏体元素,在奥氏体不锈钢中能部分取代Ni。双相

医用胶片种类

医用胶片种类 医用胶片属于银盐感光材料中的一种,其种类可归纳以下四大类别。 1.一般摄影用X线胶片 (1)感蓝胶片:感蓝片是配合发蓝紫色荧光的增感屏使用的色盲片,其吸收光谱的峰值在420nm。它主要分为标准感度的通用型(RX型)胶片,适用于一般摄影中的大部分,性能适中,低灰雾高对比,可使骨骼、空气和造影剂之间对比增强。 (2)感绿胶片(扁平颗粒胶片):感绿片是一种配合发绿光的增感屏使用的正色片,其吸收光谱的峰值在550nm。它是将三维卤化银颗粒切割成扁平状,以预期的方式排列,并在乳剂中加入了一层防荧光交迭效应的染料。从而增加了影像的清晰度。 (3)乳腺摄影用正色胶片:这是一种高分辨率、高对比、单层乳剂、对绿色光敏感的乳腺专用胶片。由于采用了扁平颗粒技术,使荧光交迭效应几乎减少到0%,可获得极为清晰锐利的图像,皮肤线条影像可得到提高,特别是在乳腺放大摄影上有特色。 (4)高清晰度摄影用胶片:这是一种高分辨率、高对比度胶片。特别适用于要求提供高清晰的图像、显示组织微细结构信息的四肢摄影。 2.多幅相机和激光相机成像胶片 (1)多幅相机成像胶片:此类胶片也称CRT图像记录胶片。适用于CT、MR、DSA、ECT 等多幅相机的成像记录。胶片为单面乳剂(分色片),背面涂有防光晕层,保证影像的清晰、细腻.减少荧光物质造成的影像模糊。 (2)激光相机成像胶片:它分为氦氖激光片(HN型),吸收光谱峰值为633nm和红外激光片(IR),吸收光谱峰值为820nm。此类胶片特点是具有极微细的乳剂颗粒,单层涂布,背底涂有防光晕层。激光片的数字成像质量远远高于多幅相机胶片的模拟成像。 3.影像增强器记录胶片 (1)荧光电影胶片:由于心血管放射学的发展,对荧光电影成像技术的要求越加广泛和严格。因此,相应的胶片既要求很高的感光度,又要求有颗粒细腻的特点。此类胶片根据临床使用目的不同分有5种之多。 (2)荧光屏图像及荧光缩影胶片:此类胶片适用于荧光屏下的瞄准摄影(点片)或体检荧光缩影。乳剂为单面、背面涂有防光晕层,规格分别有70mm、90mm、105mm卷片和100×100mm页片。 4.特种胶片 (1)直接反转胶片:它可利用紫外光源人工复印或通过专用复印机一次复印成功,取得与原版X线照片质量一样的图像。单层乳剂、蓝底聚酯片基,其感光特性恰与原片相反,为一个倒置的特性曲线,不曝光的部分为全黑。 (2)清洁用胶片:这是—种自动冲洗机辊轮清洁片。每日晨自动冲洗机开机后均应用3—4张清洁片对放置一夜的冲洗机进行清洁。 5.胶片的保存 胶片原有感光性能的保持与其周围条件有很大关系。应将未感光胶片作为“生物制品”存放。 (1)标准储存条件:温度10°~15°℃,湿度40~60%;防止辐射线的照射;X线胶片必须完全避开辐射线的照射,它们会引起胶片的严重灰雾。 (2)防止压力效应的产生:压力效应会产生人工伪影,也是胶片盒为什么直立放置的原因。 (3)避免有害气体接触:胶片应避免有害气体,如福尔马林、发动机尾气、煤气等接触。否则,胶片产生灰雾。

各种不锈钢材质参数

不锈钢材质参数: 常用材料的化学成分和力学性能常用双相不锈钢理化性能指标中国与其他国家钢号近似对照 中国与亚洲、北美诸国(地区)及澳大利亚的不锈钢钢号近似对照

https://www.360docs.net/doc/7214659004.html, 中国与亚洲、北美诸国(地区)及澳大利亚的不锈钢钢号近似对照

不锈钢 stainless steel 耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢。又称不锈耐酸钢。实际应用中,常将耐弱腐蚀介质腐蚀的钢称为不锈钢,而将耐化学介质腐蚀的钢称为耐酸钢。由于两者在化学成分上的差异,前者不一定耐化学介质腐蚀,而后者则一般均具有不锈性。不锈钢的耐蚀性取决于钢中所含的合金元素。铬是使不锈钢获得耐蚀性的基本元素,当钢中含铬量达到12%左右时,铬与腐蚀介质中的氧作用,在钢表面形成一层很薄的氧化膜(自钝化膜),可阻止钢的基体进一步腐蚀。除铬外,常用的合金元素还有镍、钼、钛、铌、铜、氮等,以满足各种用途对不锈钢组织和性能的要求。不锈钢通常按基体组织分为:①铁素体不锈钢。含铬12%~30%。其耐蚀性、韧性和可焊性随含铬量的增加而提高,耐氯化物应力腐蚀性能优于其他种类不锈钢。②奥氏体不锈钢。含铬大于18%,还含有 8%左右的镍及少量钼、钛、氮等元素。综合性能好,可耐多种介质腐蚀。③奥氏体 - 铁素体双相不锈钢。兼有奥氏体和铁素体不锈钢的优点,并具有超塑性。④马氏体不锈钢。强度高,但塑性和可焊性较差。 不锈钢是具有60年发展历程的现代材料 自本世纪初发明不锈钢以来,不锈钢就把现代材料的形象和建筑应用中的卓越声誉集于一身,使其竞争对手羡慕不已。 只要钢种选择的正确,加工适当,保养合适,不锈钢不会产生腐蚀、点蚀、锈蚀或磨损。不锈钢还是建筑用金属材料中强度最高的材料之一。由于不锈钢具有良好的耐腐蚀性,所以它能使结构部件永久地保持工程设计的完整性。含铬不锈钢还集机械强度和高延伸性于一身,易于部件的加工制造,可满足建筑师和结构设计人员的需要。 在建筑、大楼和结构的行业中,不锈钢成功的关键是其具有良好的耐腐蚀性能。 不锈钢牌号分组 200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号 301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号 302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号 303—通过添加少量的硫、磷使其较304更易切削加工。 型号 304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号 309—较之304有更好的耐温性。 型号 316—继304之後,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号 321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类

相关文档
最新文档