中国药品检验标准操作规范2010版制药用水电导率测定法

中国药品检验标准操作规范2010版制药用水电导率测定法
中国药品检验标准操作规范2010版制药用水电导率测定法

文件内容:

1、主题内容和适用范围 (2)

2、引用标准 (2)

3、简介 (2)

4、仪器的校正 (2)

5、操作程序 (3)

6、更改信息 (4)

颁发部门:

分发清单:

1主题内容和适用范围

本程序规定了制药用水电导率测定的方法和注意事项,使其规范化、标准化,并描述了更改信息。

本程序适用于制药用水电导率测定的操作。

2引用标准

中国药典2010年版附录Vffl S “制药用水电导率测定法”、中国药品检验标准操作规范2010年版P”4 “制药用水电导率测定法”。

3简介

电导率是物体传导电流的能力。电导率仪的测量原理是将两块平行的电极,放入被测溶液中,在电极的两端加上一定的电势,测量电极间流过的电流。根据欧姆定律,电导率为电阻的倒数,由导体本身决定。电导率的基本单位是西门子(S)或微西门子(μS),由于电导池的几何形状影响电导率值,标准的测量中釆用单位电导率来表示,单位为S/cm或μS/cm,以补偿各种电极尺寸造成的差别。单位电导率为所测电导率与电导池常数(L/A)的乘积,其中L为两块电极之间的液体长度,A为电极面积。

电解质是指在水中以离子状态存在的物质,包括可溶性的无机物及带电的胶体离子等,电解质具有导电性,所以可以用测量水的电导率的方法来反应电解质在水中的相对含量。

4仪器的校正

电导率的测定受温度影响较大,分子的运动决定溶液的电导率的大小,温度影响分子的运动,为了便于比较测量结果,测定温度一般为20笆或25°C。“制药用水的电导率测定法”中,注射用水测定法的第一步和纯化水测定可在任一温度下进行,但注射用水测定法的第二步和第三步以及灭菌注射用水的测定必须恒定温度为25°C。样品测定结果可按下式计算,得到校正温度后的电导率值:

=M[l+a(t-25)]

K

25

式中%为25°C时电导率,p S/cm;

a为各种离子电导率的平均温度系数;

t为测定时样品温度,°C。

但在测定制药用水中电导率时,由于制药用水中的离子浓度较低,釆用温度校正公式进行计算,得到的计算结果可能不准确,故采用温度和电导率的限度表直接进行査找。在测定制药用水的电导率时,应釆用非温度补偿模式。

电导率除应符合中华人民共和国国家计量规程JJG379-2007电导率仪测定规程外,在使用离线测定时,应釆用仪器生产厂家规定的,并与制药用水电导率最为接近的标准溶液进行校

正。

5操作程序

纯化水的电导率的测定在非温度补偿模式下釆用在线或离线仪器直接测定,在温度和电导率限度表中,找到测定温度对应的电导率值即为限度值。如测定温度未在表中列出,釆用线性内插法计算得到限度值。测定结果小于表中规定的限度,水样判为符合规定。线性内插法的计算公式

为:

T_T

k= X (ki-ko) +ko

T-To

式中k为测定温度下的电导率限度值;

虹为表中高于测定温度的最接近温度对应的电导率限度值;

k。为表中低于测定温度的最接近温度对应的电导率限度值;

T为测定温度;

R为表中高于测定温度的最接近温度;

T。为表中低于测定温度的最接近温度。

药品生产工艺中使用的大多为纯化水,普通的工艺环节中使用的纯化水水质不必要求与注射用水一致。注射用水的电导率釆用三步法测定电导率等。第一步测定了水中自身离子和外来离子引起的总电导率,用于控制水中电解质总量。如不符合规定,贝U进行第二步测定。第二步考虑到了由于环境中二氧化碳气体的存在,导致水的电导率变化,测定过程中剧烈搅拌水样,加速二氧化碳其他在水中的溶解,此时水样的电导率值升高是由于水中碳酸根离子浓度的增加,第二步可避免相同的水样在空气中暴露的时间不同而导致判定结果不同。如第二步测定结果仍不符合规定,则继续进行第三步测定。第三步综合考虑了二氧化碳气体和pH值对电导率的影响,由于水中的离子浓度过低,测定pH值较为困难,故在水样中加入饱和氯化钾溶液(100ml水样中加入0. 3ml)有助于pH 值的准确测定。

灭菌注射用水为注射用水按照注射剂生产工艺制备所得,故只能釆用离线电导率仪进行测定。由于灭菌注射用水是由注射用水按注射剂生产工艺制备所得,不可避免引入各种离子,故规定限度为:标示装量为10ml或10ml以下时,电导率限度为25μS/cm;标示装量为10ml以上时,电导率限度为5μS/cm o

6更改信息

附录ⅧS制药用水电导率测定法

附录Ⅷ S 制要用水电导率测定法本法是用于检查制药用水的电导率进而控制水中电解质总量的一种测定方法。 电导率是表征物体导电能力的物理量,其值为物体电阻率的倒数,单位是S/cm(Siemens)或μS/cm。 纯水中的水分子也会发生某种程度的电离而产生氢离子与氢氧根离子,所以纯化水的导电能力尽管很弱,但也具有可测定的电导率。水的电导率与水的纯度密切相关,水的纯度越高,电导率越小,反之亦然。当空气中的二氧化碳等气体溶于水并与水相互作用后,便可形成相应的离子,从而使水的电导率增高。另外,水的电导率还与水的pH值与温度有关。 仪器和操作参数 测定水的电导率必须使用精密的并经校正的电导率仪,电导率仪的电导池包括两个平行电极,这两个电极通常由玻璃保护,也可以使用其他形式的电导池。根据仪器设计功能和使用程度,应对电导率仪定期进行校正,电导池常数可使用电导标准溶液直接校正,或间接进行仪器比对,电导池常数必须在仪器规定数值的±2%范围内。进行仪器校正时,电导率仪的每个量程都需要进行单独校正。仪器最小分辨率应达到0.1μS/cm,仪器精度应达到±0.1μS/cm。 温度对样品的电导率测定值有较大影响,电导率仪可根据测定样品的温度自动补偿测定值并显示补偿后读数。水的电导率采用温度修正的计算方法所得数值误差较大,因此本法采用非温度补偿模式,温度测量的精确度应在±2℃以内。 测定法 1.纯化水

可使用在线或离线电导率仪,记录测定温度。在表1中,测定温度对应的电导率值即限度值。如测定温度未在表1中列出,则应采用线性内插法计算得到限度值。如测定的电导率值不大于限度值,则判为符合规定;如测定的电导率值大于限度值,则判为不符合规定。 表1 温度和电导率的限度(纯化水) 温度/℃电导率/μS·cm-1温度/℃电导率/μS·cm-1 0 2.4 60 8.1 10 3.6 70 9.1 20 4.3 75 9.7 25 5.1 80 9.7 30 5.4 90 9.7 40 6.5 100 10.2 50 7.1 内插法的计算公式为: 式中为测定温度下的电导率限度值; 为表1中高于测定温度的最接近温度对应的电导率限度值; 为表1中低于测定温度的最接近温度对应的电导率限度值; 为测定温度; 为表1中高于测定温度的最接近温度; 为表1中低于测定温度的最接近温度。 2.注射用水 (1)可使用在线或离线电导率仪。在表2中,不大于测定温度的最接近温

数显电导率仪操作规程

1.目的: 规范操作,正确使用DDS-307A型电导率仪。 保证分析数据的准确可靠。 2.适用范围: 适用于DDS-307A型数显电导率仪。 3.概述: DDS-307A型电导率仪(以下简称仪器)是实验室测量水溶液电导率必备的仪器,它采用大屏幕、带蓝色背光、双排数字显示液晶,可同时显示电导率、温度值或TDS、温度值。该仪器广泛地应用于石油化工、生物医药、污水处理、环境监测、矿山冶炼等行业及大专院校和科研单位。若配用适当常数的电导电极,还可用于测量电子半导体、核能工业和电厂纯水或超纯水的电导率。仪器的主要特点如下: 仪器采用大屏幕、带蓝色背光、双排数字液晶显示,可同时显示电导率、温度值或TDS、温度值,显示清晰,测量精度高; 具有电导电极常数补偿功能; 具有溶液的手动、自动温度补偿功能; 4.仪器的主要技术性能: 测量范围: 4.1.1电导率:μS/cm~cm; 4.1.2 TDS:L~1999mg/L 4.1.3 4.2.1电导率:±%(FS); 4.2.2 TDS:±%(FS); 4.2.3 温度:±0.4℃。 仪器的基本误差: 4.3.1电导率:±%(FS); 4.3.2温度:±0.6℃(0℃≤T≤60℃)。 温度补偿范围及误差:(0-40)℃ 外形尺寸1×b×h,mm:300×200×72 重量:1.5kg 仪器正常工作条件: 4.7.1 环境温度:(5~35)℃; 4.7.2 相对湿度:不大于85%; 4.7.3 供电电源:AC(220±22)V;(50±l)Hz; 4.7.4 无显著的振动; 4.7.5 除地球磁场外无外磁场干扰。 注:的含义为总溶解固体,不是我国法定计量单位。 b.温度补偿按2%/℃进行补偿。 5. 仪器结构 仪器外型及前面板结构 5.1.1机箱*1—多功能电极架固定座(已安装在机箱底部) 5.1.2键盘 5.1.3显示屏

电导的测定及其应用实验报告.doc

电导的测定及其应用 一、实验目的 1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。 2、用电导法测量醋酸在水溶液中的解离平衡常数。 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G可表示为:(1) 式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。 本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。 摩尔电导率与电导率的关系:(2) 式中C为该溶液的浓度,单位为mol·m-3。 2、总是随着溶液的浓度降低而增大的。 对强电解质稀溶液,(3) 式中是溶液在无限稀释时的极限摩尔电导率。A为常数,故将对c作图得到的直线外推至C=0处,可求得。 3、对弱电解质溶液,(4) 式中、分别表示正、负离子的无限稀释摩尔电导率。 在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5) 对于HAc,(6) HAc的可通过下式求得: 把(4)代入(1)得:或 以C对作图,其直线的斜率为,如知道值,就可算出K o 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只 试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水 四、实验步骤

1、打开电导率仪开关,预热5min。 2、KCl溶液电导率测定: ⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑷重复⑶的步骤2次。 ⑸倾去电导池中的KCl溶液,用电导水洗净量杯和电极,量杯放回烘箱,电极用滤纸吸干 3、HAc溶液和电导水的电导率测定: ⑴用移液管准确移入100.0(mol·m-3)HAc溶液25.00 ml,置于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管移入25.00 ml已恒温的电导水,置于量杯中,搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再移入25.00 ml电导水,搅拌均匀,测定其电导率3次,取平均值。 ⑷再用移液管准确移入25.00 ml电导水,置于量杯中,搅拌均匀,测定其电导率3次,取平均值。 ⑸倾去电导池中的HAc溶液,用电导水洗净量杯和电极;然后注入电导水,测定电导水的电导率3次,取平均值。 ⑹倾去电导池中的电导水,量杯放回烘箱,电极用滤纸吸干,关闭电源。 五、数据记录与处理 1、大气压:102.08kPa 室温:17.5℃实验温度:25℃ 已知:25℃时10.00(mol·m-3)KCl溶液k=0.1413S·m-1;25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) ⑴测定KCl溶液的电导率: ⑵测定HAc溶液的电导率: 电导水的电导率k(H2O)/ (S·m-1):7 *10-4S·m-1

02 纯化水电导率测定法标准操作规程

1.目的 建立体纯化水电导率测定法标准操作规程。 2.适用范围 适用于纯化水电导率的测定。 3.职责 QC检验员按此规程执行。 4.内容及方法 4.1 简述 4.1.1 本法是用于检查纯化水的电导率,进而控制水中电解质总量的一种测定方法。电导率是表征物体导电能力的物理量,其值为物体电阻率的倒数,单位是S/cm(Siemens)或μS/cm。 4.1.2 纯水中的水分子也会发生某种程度的电离而产生氢离子与氢氧根离子,所以纯水的导电能力尽管很弱,但也具有可测定的电导率。水的电导率与水的纯度密切相关,水的纯度越高,电导率越小,反之亦然。当空气中的二氧化碳等气体溶于水并与水相互作用后,便可形成相应的离子,从而使水的电导率增高。水中含有其他杂质离子时,也会使水的电导率增高。另外,水的电导率还与水的pH值与温度有关。 4.2 仪器和操作参数 4.2.1 测定水的电导率必须使用精密的并经校正的电导率仪,电导率仪的电导池包括两个平行电极,这两个电极通常由玻璃管保护,也可以使用其他形式的电导池。根据仪器设计功能和使用程度,应对电导率仪定期进行校正,电导池常数可使用电导标准溶液直接校正,或间接进行仪器比对,电导池常数必须在仪器规定数值的±2%范围内。进行仪器校正时,电导率仪的每个量程都需要进行单独校正。仪器最小分辨率应达到0.1μs/cm,仪器精度应达到±0.1μs/cm。 4.2.2 温度对样品的电导率测定值有较大影响,电导率仪可根据测定样品的温度自动补偿测定值并显示补偿后读数。水的电导率采用温度修正的计算方法所得数值误差较大,因此本法采用非温度补偿模式,温度测量的精确度应在±2℃以内。

-实验_电导法测定乙酸电离平衡常数

实验六 电导法测定乙酸电离平衡常数 报告人: 同组人: 实验时间2010年06月12日 一.实验目的: 1.掌握电导、电导率、摩尔电导率的概念以及它们之间的相互关系。 3.掌握电导法测定弱电解质电离平衡常数的原理。 二.实验原理: 1.电离平衡常数K c 的测定原理 在弱电解质溶液中,只有已经电离的部分才能承担传递电量的任务。在无限稀释的溶液中可以认为弱电解质已全部电离,此时溶液的摩尔电导率为∞∧m ,可以用离子的极限摩尔电导率相加而得。而一定浓度下电解质的摩尔电导率∧m 与无限稀释的溶液的摩尔电导率∞∧m 是有区别的,这由两个因素造成,一是电解质的不完全离解,二是离子间存在相互作用力。二者之间有如下近似关系: ∞∧ ∧= m m α (1) 式中为弱电解质的电离度。 对AB 型弱电解质,如乙酸(即醋酸),在溶液中电离达到平衡时,其电离平衡常数K c 与浓度c 和电离度α的关系推导如下: CH 3COOH →CH 3COO - + H + 起始浓度 c 0 0 平衡浓度 c (1-α) c α c α 则 a ca K c -=12 (2) 以式(1)代入上式得:) (Λm m 2ΛΛΛc K m m c -=∞∞ (3) 因此,只要知道∧m ∞ 和∧m 就可以算得该浓度下醋酸的电离常数K c 。 将式(2)整理后还可得: (4) 由上式可知,m m 1/Λm 作图可得一条直线,由 直线斜率可测出在一定浓度范围内c K 的平均值。 2.摩尔电导率∧m 的测定原理 电导是电阻的倒数,用G 表示,单位S (西门子)。电导率则为电阻率的倒数,用k 表 示,单位为G·m -1 。 摩尔电导率的定义为:含有一摩尔电解质的溶液,全部置于相距为1m 的两个电极之间,这时所具有的电导称为摩尔电导率。摩尔电导率与电导率之间有如下的关系。 ∧m = κ/c (5) 式中c 为溶液中物质的量浓度,单位为mol·m -3 。 在电导池中,电导的大小与两极之间的距离l 成反比,与电极的面积A 成正比。 G = κA/ l (6) 由(6)式可得 κ=K cell G (7)

制药用水电导率测定法

制药用水电导率测定法检验标准操作规程 1.目的:建立制药用水电导率测定法检验标准操作规程,保证检验人员操作规范化、标准化。 2.范围:制药用水电导率测定法的检验操作。 3.责任:化验员,化验室主任。 4.制定依据:《中国药典》2010年版、《中国药品检验标准操作规范》2010年版。 5.内容 5.1本法是用于检验制药用水的的电导率进而控制水中电解质总量的一种测定方法。 5.2 电导率是表征物体导电能力的物理量,其值为物体电阻率的倒数,单

位是S/cm(Siemens)或μS/cm。 5.3 纯水中的水分子也会发生某种程度的电离而产生氢离子和氢氧根离子,所以纯水的导电能力尽管很弱,但也具有可测定的导电率。水的导电率与水的纯度密切相关,水的纯度越高,导电率越小,反之亦然。当空气中的二氧化碳等气体溶于水并与水相互作用后,便可形成相应的离子,从而使水的电导率增高。水中含有其他杂质离子时也会使水的电导率增高。另外,水的电导率还与水的PH值与温度有关。 5.4 仪器和操作参数 5.4.1 测定水的电导率必须使用精密的并经校正的电导率仪,电导率仪的电导池包括两个平行电极,这两个电极通常由玻璃管保护,也可以使用其他形式的电导池。根据仪器设计功能和使用程度,应对电导率仪定期进行校正,电导池常数可使用电导标准溶液直接校正,或间接进行仪器比对,电导池常数必须在仪器规定数值的±2%范围内。进行仪器校正时,电导率仪的每个量程都需要进行单独校正。仪器最小分辨率应达到0.1μS/cm,仪器精密应达到±0.1μS/cm。 5.4.2 温度对样品的电导率测定值有较大影响,电导率仪可根据测定样品的温度自动补偿测定值并显示补偿后读数。水的电导率采用温度修正的计算方法所得数值误差较大,因此本法采用非温度补偿模式,温度测定的准确度应在±2℃以内。 5.6 测定法 5.6.1 可使用在线或离线电导率仪,记录测定温度。在表1中,测定温度对应的电导率值即为限度值。如测定温度未在标1中列出,则应采用线性内插法计算得到限度值。如测定的电导率值不大于限度值,则判为符合规定;如测定的电导率值大于限度值,则判为不符合规定。 5.6.2 内插法的计算公式为: 式中:κ

电导率仪校准标准操作规程

范围: 本校准要领旨在指导使用者对电导率仪进行常规校准,确保其准确性,可 靠性,并以最佳工作状态运行。 责任: 操作员严格按本电导率仪校准标准操作规程执行,质监员负责监督与检查。 内容: 1.标准操作规程 校准准备 将电导率仪电源打开,预热30min后进行校准可以取得更加理想的效果。 校准需要使用标准液进行,标准液有袋装及瓶装方式,一般向导电度计生产厂家购买,并出具检验报告及标注有效期。 检查标准液有效期,瓶装方式的取出一小部分于洁净容器中备用,需要对该容器进行润洗。袋装方式的可以一次性直接使用。 FE30型电导率仪可以使用两种标准的标准液进行校准,一种为梅特勒-托利多标准液组,包括84μs/cm、1413μs/cm、cm;另一种为中国标准液组,包括μs/cm、1408μs/cm、ms/cm、cm。 设置参数 按仪器“设置”键,MTC温度闪烁,直接按“读数”键,此时校准组开始闪烁,进入标准液组选择状态。 按“∧设置”或“∨模式”键在不同校准液组中切换,根据实际情况,我们选择梅特勒-托利多标准液组,即84μs/cm、1413μs/cm、cm,按“读数”键确认。确认之后进入标准液选择状态,在随机附带的标准液中,包括2袋1413μs/cm 和2袋cm标准液。根据实际试验中需要检测的电导率范围选择合适的标准液,按“读数”键保存。 按“退出”键退出参数设置模式,准备校准。 校准 用蒸馏水冲洗干净电极,滤纸吸干,将电极插入标准液中,轻轻搅拌以使电极和标准液充分接触。按“校准”键,仪器将自动识别校准液并将不停变动屏幕显示的电导率值。 默认状态下,仪器采用自动终点判断方式,即可在无需人为判断的情况下到达校准终点。(仪器所测电导率与过去6秒所测的平均值相差不超过%)时即为测量

2015药典纯化水及0681制药用水电导率测定法

纯化水 Chunhuashui Purified Water H 2O 18.02 本品为饮用水经蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的制药用水,不含任何添加剂。 【性状】本品为无色的澄清液体;无臭。 【检査】酸碱度取本品10ml,加甲基红指示液2滴,不得显红色;另取10ml,加溴麝香草酚蓝指示液5滴,不得显蓝色。 硝酸盐取本品5ml置试管中,于冰浴中冷却,加10%氯化钾溶液0.4ml和0.1%二苯胺硫酸溶液0.1ml,摇匀,缓缓滴加硫酸5ml,摇匀,将试管于50°C水浴中放置15分钟,溶液产生的蓝色和标准硝酸盐溶液[取硝酸钾0.163g,加水溶解并稀释至100ml,摇匀,精密量取1ml ,加水稀释成100ml,再精密量取10ml,加水稀释成100ml,摇匀,即得(每1ml 相当于1μg NO 3)]0.3ml,加无硝酸盐的水4.7ml,用同一方法处理后的颜色比较,不得更深(0.000006%)。 亚硝酸盐取本品10ml,置纳氏管中,加对氨基苯磺酰胺的稀盐酸溶液(1→100)1ml 和盐酸萘乙二胺溶液(0.1→100)ml,产生的粉红色,和标准亚硝酸盐溶液[取亚硝酸钠0.750g(按干燥品计算),加水溶解,稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,摇匀,再精密量取1ml,加水稀释成50ml,摇匀,即得(每1ml相当于1μg NO2)]0.2ml,加无亚硝酸盐的水9.8ml,用同一方法处理后的颜色比较,不得更深(0.000002%)。 氨取本品50ml,加碱性碘化汞钾试液2ml,放置15分钟;如显色,和氯化铵溶液(取氯化铵31.5mg,加无氨水适量使溶解并稀释成1000ml)1.5ml,加无氨水48ml和碱性碘化汞钾试液2ml制成的对照液比较,不得更深(0.00003%)。 电导率应符合规定(通则0681)。 总有机碳不得过0.50mg/L(通则0682)。

DDS-11A型数显电导率仪操作规程

电导率仪操作规程 一、仪器正常使用条件: ⑴环境温度:5~40℃ ⑵相对湿度:≤85% ⑶除地磁场外,无其它强磁场干扰。 二、操作方法: 1 接通仪器电源,让仪器预热约10分钟。 2 将电极侵入被测溶液,电极插头插入电极插座。 3 将“量程”(RANGES)开关板向“校正”(CAL)调节“常数”(CONST) 使显示数与所使用电极的常数标称值一致。 4 将量程开关扳至合适的量程挡,待显示稳定后,仪器显示数值即为测量时 温度下的电导率。 5 对高电导率测量可使用DJS-10电极,此时量程扩大10倍:即20ms/cm档 可测至200ms/cm,2ms/cm档可测至20ms/cm,但显示数须乘以10. 1防止湿气,腐蚀性气体进入仪器内部,电极插头,插座应保持干燥,电极使

用完毕应清洗干净,用净布擦干后放好,盛放被测液的容器须干净,无离子污染。 电导仪使用说明书 一、仪器特点 1、仪器采用高性能集成电路组成性能稳定的正弦波发生器,因此显示稳定、漂移小; 2、仪器采用了相敏检波器,抑制了由电极引线分布电容对测量的影响,因而本仪器不 用电容 补偿调节器,换档自动补偿并能测量低电导值; 3、仪器信号源频率和量程同步切换,使用方便; 4、仪器可在全量程范围内直读电导,只需校正一次电极常数,使用极为方便; 5、仪器内装有热反馈电路和驱湿元件,仪器使用不受温度和湿度影响; 6、仪器有温度补偿器,DDS-11C型对被测液能作标准温度系数百分之二,DDS-307 型作百分之一至百分之四补偿。 二、主要技术性能 1、测量范围:见(表三) 2、精度等级:1级(→表四) 3、电计精确度:≤F.S±1.0% 加减1个字; 4、仪器的基本误差:≤F.S±1.5%; 5、常数补偿器:≤F.S±1.0%; 6、温度补偿器:≤F.S±1.0%; 7、因电导因温度升高而增大,DDS-11C型2%(度),DDS-307型1-4%(度) 8、仪器重复性:不超过基本误差的三分之一; 9、仪器稳定性:3h内漂移量不超过基本误差的2/3 10、工作条件: ⑴、环境温度:5℃~35℃; ⑵、相对湿度:≤80%; ⑶、供电电源:AC 220V±22V,Hz 50±1Hz 三、仪器的使用 1、将电源插头插入接地可靠的插座; 2、将选择开关置于校正位置,开机预热10~15分钟; 3、电导的测量: (1)仪器在全量程范围内测量,只须在第三量程或任用量程校正电极常数, 有效读数最多为宜。 (2)温度补偿器置25℃,标准电导的温度值。 (3)DDS-307型电极选择开关置1或0.1等相应档位。选择开关置于校正位置,调节常数调节器,使仪器显示所用电极的电极常数值。例:电极的常数为 0.87则调常数调节器,使仪器显示为0.870(870)。

电导测定的基本原理

电导测定的应用 基本原理: 1.弱电解质电离常数的测定 本实验是通过对不同浓度HAc溶液的电导率的测定来确定电离平衡常数 对于HAc,在溶液中电离达到平衡时,电离平衡常数Kc与原始浓度C和电离度α有以下关系: HAc H+ + Ac- t=0 C 0 0 C(1-α) Cα Cα t=t 平衡 K= (Cα)2 =Cα 2 (1) C(1-α) 1-α 当T一定时,K一般为常数,因此,在确定c之后,可通过电解质α的测定求得K。电离度α等于浓度为c时的摩尔电导率Λm与溶液无限稀释时的摩尔电导率之比,即 α=Λm/Λ∞m (2) 将(2)代入(1) K= CΛ2m/ [Λ∞m(Λ∞m-Λm)] (3) 整理得 CΛm = K(Λ∞m)2 (4) Λm- KΛ∞m 以CΛm对1/Λm作图,其直线的斜率为K(Λ∞m)2 ,如知道Λ∞m值(可有文献查得),就可算出K。 文献:25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) 电解质溶液的导电能力通常用电导G来表示,若将电解质溶液放入两平行电极之间,设电极的面积为A,两电极的间的距离为l,则溶液的电导G为: G = к(A / l) (5) 即к= G * 1 / A = G K cell 来表示,它的式中к为该溶液的电导率,其单位是S.m-1;l/A为电导池常数,以K cell 单位为m-1。 由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数Kcell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率。 在讨论电解质溶液的电导能力时常用摩尔电导率(Λm)这个物理量。摩尔电导率与电导率的关系:

水质的测定-电导率

水质分析:电导率法 一、目的: 1.了解电导率的含义及测定方法。 2.掌握分光光度法对水质的测定原理及方法。 二、原理: 电导率是以数字表示溶液传导电流的能力。纯水的电导率很小,当水中含有无机酸、碱、盐或有有机带电胶体时,电导率就增加。电导率常用于简介推测水中带电荷物质的总浓度。水溶液的电导率取决于带电荷物质的性质和浓度、溶液的温度和粘度等。 电导率的标准单位是S/m(即西门子/米),一般实际使用单位为mS/m,常用单位μS/cm(微西门子/厘米)。 单位间的互换为: 1mS/m = cm = 10μS/cm 新蒸馏水电导率为,存放一段时间后,由于空气中的二氧化碳或氨的溶入,电导率可上升至;饮用水电导率在5-150mS/m之间;海水电导率大约为3000mS/m;清洁河水电导率为10mS/m。电导率随温度变化而变化,温度没升高1度,电导率增加约2%,通常规定25度为测定电导率的标准温度。 由于电导率是电阻的倒数,因此,当两个电极(通常为铂电极或铂黑电极)插入溶液中,可以测出两电极间的电阻R。根据欧姆定律,温度一定时,这个电阴值与电极的间距L(cm)成正比,与电极截面积A(cm2)成反比: R = ρ× L/A

由于电极面积A与间距L都是固定不变的,故L/A是一个常数,称电导池常数(以Q表示)。 比例常数ρ叫做电阻率。其倒数1/ρ称为电导率,以K表示。 S = 1/R = 1/(ρ*Q) S表示电导率,反应导电能力的强弱。 所以,K = QS 或 K = Q/R 当已知电导池常数,并测出电阻后,即可求出电导率。 三、仪器、试剂: 仪器:MP522电导率仪,GDH-2008W恒温浴槽,石英蒸馏水装置。 试剂:市售桶装纯净水、瓶装矿泉水、实验室去离子水、自来水、二次蒸馏水、河水(或湖水或江水)、污水(或废水)。 四、步骤: 1.电导率仪器校准:用标准氯化钾盐溶液对电导率仪器进行校准, 2.将所测水样放入带夹套的容器中,通入恒温水,待温度恒定后,对水样进 行电导率测量。 3.比较电导率的大小,对水样进行分析。 五、数据记录和处理: 气压: 101kpa ;室温:23°C;实验温度:25°C。 1、电导池常数的测定: KCl溶液的浓度: l;KCl溶液电导率:。

电导率仪标准操作规程

电导率仪标准操作规程 1.目的 规范DDSJ-308A电导率仪的使用和维护。 2.范围 DDSJ-308A电导率仪的使用和维护。 3.系统组成 本系统由仪器主机,电导电极、温度传感器及支架组成。 4.程序 4.1 开机 接通电源后,打开开关。 4.2 功能设置 4.2.1 模式选择 按“模式”键可以在电导率、TDS、盐度三种测量功能模式间进行切换。仪器开始为电导率测量状态,按一下“模式”键,仪器进入盐度测量状态,再按一下“模式”键,仪器进入TDS状态。 4.2.2 电极常数设置 电导电极出厂时,每支电极都标有一定的电极常数值,需将此值输入仪器。 在电导率测量状态下,按“电极常数”键,按上、下键选择电极常数的档次及修改为电极标出的电极常数值;按“确认”键,仪器自动将电极常数值存入并返回到测量状态。 4.2.3 TDS转换系数的设置

在TDS测量状态下,有时需设置TDS的转换系数。在“TDS“测量状态下,按“电极常数”键,按上、下键修改到需要的转换系数,按“确认”键,仪器自动保存设置的转换系数值,并返回到测量状态。 4.2.4 温度系数设置 在电导率或TDS测量状态下,按“温补系数”键,仪器进入温补系数调节状态。按上、下键修改测量溶液的温度系数,最后按“确认”键,仪器自动将修改好的温度补偿系数存入并返回测量状态。 4.3 样品测量 用蒸馏水清洗电导电极及温度传感器,再用被测液清洗一次,然后将电导电极和温度传感器浸入被测溶液中,数值稳定后即可读数。 5.校准 5.1 将电导电极接入仪器,将温度电极拔去,仪器则认为温度为25℃,此时仪器所显示的电导率值是未经温度补偿的绝对电导率值。 5.2 用蒸馏水清洗电导电极,再用校准溶液清洗一次电极。 5.3 将电导电极浸入校准溶液中。 5.4 控制溶液温度恒定为(25.0±0.1)℃或(20.0±0.1)℃或(18.0±0.1)℃。 5.5 接上电源,进入电导率测量工作状态,根据所用的电导电极,选择合适的档次,并回到电导测量状态,待仪器读数稳定后,按下“标定”键,按上、下键使仪器显示值调到标准值,然后,按“确认”键,仪器将自动计算出电极常数并储存,随即自动返回测量状态;按“取消”键,仪器不作电极常数标定并返回测量状态。

电导法测定酶活力

电导法测定酶活力 摘要 我们已经测定了脲酶,脂肪酶,葡萄糖苷酶水解过程中的电导率的变化,这些变化严格地与前两个体系中碳酸铵的释放和第三个体系中氨基的数目成正比。电导率的方法运用在酶和各种生理液浓度的测定中。 引言 Sjoquist,Oker-Blom,Henri,des Bancels 和Bayliss 证实了用电导法测定酶活性的可能性。最近,Northrop在他的课程中也用了这种方法研究胃蛋白酶,测定了卵蛋白盐酸盐的的水解,解释了水解底物的依赖性电离,并研究有关机制的胰蛋白酶消化的动力学。Euler 欧拉一直采用这种方法研究甘肽的水解。Bayliss通过研究脲酶,脂肪酶,葡萄糖苷酶的行为证实了电导率的可能性,但没有报道过任何与这些系统相关的研究。 以电导判断为目的,酶反应可以归类为:(1)那些释放强烈电子的,(2)释放那些弱离的电解质,(3)那些传统被认为非电解质的。脲脲酶,sinigrin- myrosin,和丙酮醛-乙二醛是属于第一类,而蛋白质水解系统,会有氨基酸的产生,属于第二类。第三组的代表是碳水化合物和大多数的葡萄糖苷酶,作用于他们各自的底物,释放糖类。该反应属于第一组,显然最适合电导研究。第二组反应有一定的局限性和一定的困难,但是随后能使用一个敏感的设备。第三组反应,就目前来说,超过了其研究的范围,在他们的使用范围内,有一定的优势,在硼酸盐,硫酸盐,和钼酸存在条件下,多元醇像糖一样表现出导电性增强。 最强烈的反对意见,提出了该方法不能研究缓冲系统。反应过程中不仅有因为反应的变化,而且有水解产物的累积,为了确定酶的活性,我们必须关注最初阶段的反应过程,使干扰因素控制在最小值。在这段阶段,电导率的方法也许是唯一一个有任何的优势且可以应用方法。因为它能够给人们提供早期反应阶段的大量数值。由于在这些反应中介质的pH值很少有变化,Northrop在pH值6.2至6.4胰蛋白酶明胶的水解不伴pH值的改变而改变。在低浓度电解质中杂质的存在不影响测量,因为可以选择适当的电导率细胞给出须需要的精度。 与其他物理方法相比,电导率测量有着在反应过程中不受干扰和能适用于极小批量底物中的优势。 实验部分 用目前的方法对脲-脲酶,精氨酸-精氨酸酶-脲酶,蛋白胨-胰蛋白酶-激酶和杨素- 苦杏仁酶进行了研究。 通常采用Kohlrausch电桥法测量电导率。一个校准Kohlrausch滑线,4号电阻箱和一个Arrhenius-Ostwald细胞组成了电路的元件。一个5毫升整数倍的底物溶液对工作是必要的。采用铂电极,提供的细胞是在水中浸泡,恒温维持在30.0 ℃±0.1 ℃。当高频电流源和一个电话的听筒用于零点检测时,提供1000 Hz的音频振荡器被使用。该导电细胞的电容通过一个与电阻箱并联的的空气冷凝器平衡。在反应开始,在很短的时间间隔内读数,后来时间间隔较长。利用相对应的酶底物浓度,大量的实验同时在单一的反应容器进行时。对在一定的时间间隔内从反应容器中倒出的等份反应混合物进行分析。因此该反应过程可由一个完全独立的化学方法而知。 脲-脲酶。利用丙酮使一个百分之一的尿素溶液(Kahlbaum)和大豆脲酶的水溶液沉淀。由Sastri 1935年提出的方法有碳酸铵的释放,包括在丙酮中用标准酒精盐酸溶液(0.1 N)滴定等份反应混合物。 精氨酸-精氨酸酶-脲酶。精氨酸碳酸盐是在5%的d-精氨酸中通入二氧化碳至饱和制备而成的。过量的二氧化碳是通过电解溶液中的氢冒泡而赶出的。因此获得的精氨酸碳酸盐溶液呈稳定电导率值。水溶性萃取液丙酮使公羊肝中的提取物沉淀,因此可作为精氨酸酶的来源。因为脲酶几乎瞬间水解、随着精氨酸分解逐步释放,我们需要使用过多的脲酶以确保反

制药用水电导率测定法 标准操作规程

标准操作规程 STANDARD OPERATION PROCEDURE 编号SOP-02-QC-014题目制药用水电导率测定法标准操作规程 版本号0.0 生效日期2015年12月1日 编制部门QC 签名/日期 审核部门QC经理签名/日期 审核部门QA经理签名/日期 批准质量副总经理签名/日期 颁发部门质量保证部分发部门QC 1目的:建立制药用水电导率测定法操作规程,以使检验操作规范化。 2适用范围:适用于制药用水电导率测定的操作。 3责任:QC人员对本SOP实施负责。 4内容 本法是用于检查制药用水的电导率进而控制水中电解质总量的一种测定方法。 电导率是表征物体导电能力的物理量,其值为物体电阻率的倒数,单位是S/cm(Siemens)或μS/cm。 纯水中的水分子也会发生某种程度的电离而产生氢离子与氢氧根离子,所以纯水的导电能力尽管很弱,但也具有可测定的电导率。水的电导率与水的纯度密切相关,水的纯度越髙,电导率越小,反之亦然。当空气中的二氧化碳等气体溶于水并与水相互作用后,便可形成相应的离子,从而使水的电导率增髙。水中含有其他杂质离子时,也会使水的电导率增高。另外,水的电导率还与水的pH值与温度有关。 4.1仪器和操作参数 测定水的电导率必须使用精密的并经校正的电导率仪,电导率仪的电导池包括两个平行电极,这两个电极通常由玻璃管保护,也可以使用其他形式的电导池。根据仪器设计功能和使用程度,应对电导率仪定期进行校正,电导池常数可使用电导标准溶液直接校正,或间接进行仪器比对,电导池常数必须在仪器规定数值的±2%范围内。进行仪器校正时,电导率仪的每个量程都需要进行单独校正。仪器最小分辨率应达到0.1μS/cm,仪器精度应达到±0.1μS/cm。 温度对样品的电导率测定值有较大影响,电导率仪可根据测定样品的温度自动补偿测定值并显示补偿后读数。水的电导率采用温度修正的计算方法所得数值误差较大,因此本法采用非温度补偿模式,温度测量的精确度应在±2℃以内。

电导率仪标准操作规程

电导率仪标准操作规程 1 开机 1.1 电源线插入仪器电源插座,电导率仪器必须有良好接地! 1.2 按电源开关,接通电源,预热30分钟后,进行校准。 2 校准 仪器使用前必须进行校准! 将“选择”开关量程选择开关旋钮指向“检查”,“常数”补偿调节旋钮指向“1”刻度线,“温度”补偿调节旋钮指向“25”度线,调节“校准”调节旋钮,使仪器显示100.0μS/cm,至此校准完毕。 3 测量 3.1 在电导率测量过程中,正确选择电导电极常数,对获得较高的测量精度是非常重要的。可配用的常数为0.01、0.1、1.0、10四种不同类型的电导电极。用户应根据测量范围参照表1选择相应常数的电导电极。 表1 测量范围(μS/cm)推荐使用电导常数的电极 0~2 0.01,0.1 2~200 0.1,1.0 200~2000 1.0 2000~20000 1.0,10 20000~200000 10 注:对常数为1.0、10类型的电导电极有“光亮”和“铂黑”二种形式,镀铂电极习惯称作铂黑电极,对光亮电极其测量范围为(0~300)μS/cm为宜。 3.2 电极常数的设置方法如下: 目前电导电极的电极常数为0.01、0.1、1.0、10四种不同类型,但每种类型电极具体的电极常数值,制造厂均粘贴在每支电导电极上,根据电极上所标的电极常数值调节仪器面板“常数”补偿调节旋钮到相应的位置。 3.2.1 将量程选择开关旋钮指向“检查”,“温度”补偿调节旋钮指向“25”度线,调节“校准”调节旋钮,使仪器显示100.0μS/cm。 3.2.2 调节“常数”补偿调节旋钮使仪器显示值与电极上所标数值一致。 3.2.2.1 电极常数为0.01025cm-1,则调节常数补偿调节旋钮使仪器显示值为102.5。(测量值=读数值×0.01)。 3.2.2.2 电极常数为0.01025cm-1,则调节常数补偿调节旋钮,使仪器显示为102.5。(测量值读数值×0.1)。 3.2.2.3 电极常数为1.025cm-1,则调节常数补偿调节旋钮,使仪器显示为102.5。(测量值=读数值×1)。 3.2.2.4 电极常数为10.25cm-1,则调节常数补偿调节旋钮,使仪器显示为102.5。(测量值=读数值×10)。 3.3 温度补偿的设置 3.3.1 调节仪器面板上“温度”补偿调节旋钮,使其指向待测溶液的实际温度值,此时,测量得到的将是待测溶液经过温度补偿后折算为25℃下的电导率值;

中国药典 2010 年版一部附录

中国药典2010 年版一部附录 附录Ⅰ A 丸剂丸剂系指饮片细粉或提取物加适宜的黏合 剂或其他辅料制成的球形或类球形制剂,分为蜜丸、水蜜丸、水丸、糊丸、蜡丸和浓缩丸等类型。蜜丸系指饮片细粉以蜂蜜为黏合剂制成的丸剂。其中每丸重量在0.5g(含0.5g)以上的称大蜜丸,每丸重量在0.5g 以下的称小蜜丸。水蜜丸系指饮片细粉以蜂蜜和水为黏合剂制成的丸剂。水丸 系指饮片细粉以水(或根据制法用黄酒、醋、稀药汁、糖液等)为黏合剂制成的丸剂。糊丸系指饮片细粉以米粉、米糊或面糊等为黏合剂制成的丸剂。蜡丸系指饮片细粉以蜂蜡为黏合剂制成的丸剂。浓缩丸系指饮片或部分饮片提取浓缩后,与适宜的辅料或其余饮片细粉,以水、蜂蜜或蜂蜜和水为勤合剂制成的丸剂。根据所用黏合剂的不同,分为浓缩水丸、浓缩蜜丸和浓缩水蜜丸。丸剂在生产与贮藏期间应符合下列有关规定。一、除另有规定外,供制丸剂用的药粉应为细粉或最细粉。二、蜜丸所用蜂蜜须经炼制后使用,按炼蜜程度分为嫩蜜、中蜜和老蜜,制备蜜丸时可根据品种、气像等具体情况选用。除另有规定外,用塑制法制备蜜丸时,炼蜜应雄热加入药粉中,混合均匀;处方中有树脂类、胶类及含挥发性成分的药味时,炼蜜应在60℃左右加入;用泛制法制备水蜜丸时,炼蜜应用沸水稀释后使用。三、浓缩丸所用提取物应按制法规定,采用一定的方法提取浓缩

制成。四、除另有规定外,水蜜丸、水丸、浓缩水蜜丸和浓缩水丸均应在80℃以下干燥;含挥发性成分或淀粉较多的丸剂(包括糊丸)应在60℃以下干燥;不宜加热干燥的应采用其他适宜的方法干燥。五、制备蜡丸所用的蜂蜡应符合本版药典该饮片项下的规定。制备时,将蜂蜡加热熔化,待冷却至60℃左右按比例加入药粉,棍合均匀,趁热按塑制法制丸,并注意保温。六、凡需包衣和打光的丸剂,应使用各品种制法项下规定的包衣材料进行包衣和打光。七、丸剂外观应圆整均匀、色泽一致。蜜丸应细腻滋润,软硬适中。蜡丸表面应光滑无裂纹,丸内不得有蜡点和颗粒。八、除另有规定外,丸剂应密封贮存。蜡丸应密封并置阴凉干燥处贮存。除另有规定外,丸剂应进行以下相应检查。【水分】照水分测定法(附录ⅨH测定。除另有规定外,蜜丸和浓缩蜜丸中所含水分不得过15.0%,水蜜丸和浓缩水蜜丸不得过12.0;水丸、糊丸和浓缩水丸不得过9.0%。蜡丸不检查水分。【重量差异】除另有规定外,丸剂照下述方法检查,应符合规定。检查法以10 丸为1 份(丸重1. 5g 及1. 5g 以上的以1 丸为 1 份),取供试品10 份,分别称定重量,再与每份标示重量(每丸标示量×称取丸数)相比较(无标示重量的丸剂,与平均重量比较),按表 1 的规定,超出重量差异限度的不得多于 2 份,并不得有1 份超出限度 1 倍。表1 标示重量(或平均重重量差异限度

溶液电导率的测定

电解质溶液电导的测定及应用 [适用对象]生物工程、药学、药物制剂、中药学、制药工程、中药学(国际交流方向)专业 [实验学时] 3学时 一、实验目的 1.测定氯化钾的无限稀释摩尔电导。 2.测定醋酸的电离平衡常数。 3.掌握测定溶液电导的实验方法。 二、实验原理 电解质溶液的电导的测定,通常采用电导池,如图1 若电极的面积为A,两电极的间的距离为l,则溶液的 电导L为 L = KA / l 式中K称为电导率或比电导,为l=1m,A=1m2 时溶液的电导,K的单位是S/m. 电解质溶液的电导率与温度、溶液的浓度 及离子的价数有关.为了比较不同电解质溶液的导 电能力.通常采用涉及物质的量的摩尔电导率Λm来 衡量电解质溶液的导电能力. 图1 Λm=K/C 式中Λm为摩尔电导率(Sm2 /mol) 注意,当浓度C的单位是mol/L表示时,则要换算成mol/m3,后再计算. 因此,只要测定了溶液在浓度C时的电导率K之后,即可求得摩尔电导率Λm。 摩尔电导率随溶液的浓度而变,但其变化规律对强、弱电解质是

不同的.对于强电解质的稀溶液有: 式中A 常数, 0,m Λ也是常数,是电解质溶液 无限稀释时的摩尔 电导,称为无限稀释摩尔电导。因此以Λm..和根号C 的关系作图得一直线,将直线外推至与纵轴相交,所得截距即 为无限稀释时的摩尔电导0,m Λ. 对于弱电解质,其0,m Λ值不能用外推法求得.但可用离子独立运动定 律求得: 0,m Λ=I 0,++I 0,- 式中I 0,+ 和I 0,-分别是无限稀释时正、负离子的摩尔电导,其值可通过 查表求得。 根据电离学说,可以认为,弱电解质的电离度α等于在浓度时的摩尔电导Λ与溶液在无限稀释时的电导0,m Λ之比,即 a K AB 型弱电解质的另外还可以求得 所以,通过实验测得α即可得a K 值。 三、仪器设备 DDS -11A 型电导率仪器(图2) 1台 DJS -电报 1支 恒温槽 1套 电导池 1个 100ml 容量瓶 2个 α αα-=ΛΛ=120 ,C K a m m

METTLERTOLEDOFE38电导率仪标准操作规程

目录 1、目的 (3) 2、范围 (3) 3、职责 (3) 4、依据 (3) 5、内容 (3) 6、环境健康安全要求 (15) 7、变更记载和原因 (15) 8、相关文件 (15) 9、流程图/结构图 (15) 10、附录/附表 (15) 11、相关记录 (15) 发放范围: 质量管理部工程设备部生产部人事行政部物流部财务部质量保证科质量检验科一车间二车间三车间四车间

1、目的 本规程规范METTLER TOLEDO FE38 电导率仪的正确使用和维护保养。 2、范围 本规程适用于XX公司METTLER TOLEDO FE38 电导率仪使用及维护保养的全过程。 3、职责 3.1设备操作人员:严格按照本操作规程正确使用和维护保养METTLER TOLEDO FE38 电导率仪。 3.2质量保证部:负责监督设备操作人员严格按照本规程进行操作。 3.3工程设备部:负责对METTLER TOLEDO FE38 电导率仪进行定期的维护。 4、依据 《METTLER TOLEDO FE38 电导率仪使用说明书》。 5、内容 5.1设备结构及工作原理 5.1.1外观结构

图1. 外观结构 5.1.2 设备接口 图2. 设备接口 1 电极安装的左侧支架位置 6 紧固按钮 2 按键 7 支架杆 3 显示屏 8 接线板 4 外壳 9 直流电连接 5 支架臂 10 支架杆存储空间 1 电导率信号输出的Mini Din 接口 3 计算机USB-B 接口 2 打印机RS232接口 4 直流电源插口 1 2 4 3

5.1.3控制面板 图3.控制面板 按键名称短按(测量模式)长按(测量模式)短按(其他模式) 1 开/关/退出?打开仪表?关闭仪表?返回至测量 界面 2 存储/回显?存储?调用内存数据?增大数值?查看上一条 内存 3 读数/终点方式?开始或终止 测量 ?设置自动终点 打开/关闭 ?确认设置 4 模式/设置?更改测量模 式(电导率、 TDS、盐度) ?输入设置模式 ?减少数值 ?查看下一条 内存 5 校准?启动校准?调用校准数据/

实验6__表面活性剂CMC值的测定——电导法

实验6 表面活性剂CMC值的测定——电导法 一、实验目的: 1、学习并掌握表面活性剂CMC值的电导测定方法; 2、了解表面活性剂的性质与应用; 3、学习电导法测定十二烷基硫酸钠的cmc,了解表面活性剂的特性及胶束形成原理; 4、掌握DDS-11A型电导率仪和恒温槽的使用方法。 二、实验原理: 具有明显“两亲”性质的分子,既含有亲油的足够长的烃基,又含有亲水的极性基团。由这一类分子组成的物质称为表面活性剂,见图1(a)。 表面活性剂为了使自己成为溶液中的稳定分子,有可能采取的两种途径:一是当它们以低浓度存在于某一体系中时,可被吸附在该体系的表面上,采取极性基团向着水,非极性基团脱离水的表面定向,形成定向排列的单分子膜,从而使表面自由能明显降低,见图1(c);二是在表面活性剂溶液中,当溶液浓度增大到一定值时,表面活性剂离子或分子不但在表面聚集而形成单分子层,而且在溶液本体内部也三三两两的以憎水基相互靠拢,聚在一起形成胶束。胶束可以成球状、棒状或层状。形成胶束的最低浓度称为临界胶束浓度(Critical Micelle Concentration, CMC),如图1(b)。 (a) (b) (c) 图1 CMC是表面活性剂的一种重要量度,CMC越小,则表示这种表面活性剂形成胶束所需浓度越低,达到表面(界面)饱和吸附的浓度越低,只有溶液浓度稍高于CMC时,才能充分发挥表面活性剂的作用。比如图2的洗涤去污过程。目前表面活性剂广泛用于石油、纺织、农药、采矿、食品、民用洗涤等各个领域,具有润湿、乳化、洗涤、发泡等重要作用。

图2 表面活性剂的洗涤原理图 由于溶液的结构发生改变,表面活性剂溶液的许多物理化学性质(如表面张力,电导.渗透压,浊度,光学性质等)都会随着胶团的出现而发生突变,原则上,这些物理化学性质随浓度的变化都可以用于测定CMC,常用的方法有表面张力法、电导法、染料法等。本实验采用电导法来测定表面活性剂的CMC值。在溶液中对电导有贡献的主要是带长链烷基的表面活性剂离子和相应的反离子,而胶束的贡献则极为微小。从离子贡献大小来考虑,反离子大于表面活性剂离子。对于浓度低于cmc的表面活性剂稀溶液,电导率的变化规律与强电解质一样,摩尔电导率λm与c、电导率κ与c均成线性关系。当溶液浓度达CMC时,随着溶液中表面活性剂浓度的增加,单体的浓度不再变化,增加的是胶束的个数,由于对电导贡献大的反离子固定于胶束的表面,它们对电导的贡献明显下降,电导率随溶液浓度增加的趋势将会变缓,这就是确定CMC的依据。 因此利用离子型表面活性剂水溶液的电导率随浓度的变化关系,作κ- c曲线,由曲线的转折点求出CMC值。 三、仪器与试剂: L十二烷基硫酸钠溶液; LKCl标准溶液;50ml容量瓶11;50mL烧杯一个;移液管一支);电导率仪一台,恒温槽一台。 四、实验步骤: 1、打开电导率仪开关,预热15min,用KCl标准溶液校正电极常数。 2、调节恒温槽温度为25度。 3、分别移取、、、、、、、、、、的L的十二烷基硫酸钠溶液,定容到50mL 。配制成浓度为×10-3、×10-3、×10-3、×10-3、×10-3、×10-2、×10-2、×10-2、×10-2、×10-2、×10-2mol/L的待测溶液。

相关文档
最新文档