SAE AMS 2759-7B-2010

SAE AMS 2759-7B-2010
SAE AMS 2759-7B-2010

__________________________________________________________________________________________________________________________________________ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright ? 2010 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)

Tel: +1 724-776-4970 (outside USA)

Fax: 724-776-0790

Email: CustomerService@https://www.360docs.net/doc/7615515801.html,

SAE WEB ADDRESS: https://www.360docs.net/doc/7615515801.html,

AMS2759/7

I

ssued 1991-10

RATIONALE

AMS2759/7B is an update of this specification to include Low Pressure Vacuum Carburizing (LPC) and positive pressure gas quenching, (PPGQ), typically referred to as high pressure gas quenching, (HPGQ).

1. SCOPE

This specification, in conjunction with the general requirements for steel heat treatment covered in AMS2759, establishes the requirements and procedures for three classes of gas, vacuum, liquid, and low pressure (LPC) carburizing and related heat treatment of parts fabricated from carburizing grade steels. It does not cover pack carburizing.

1.1 Classification

Parts to be carburized shall be processed to meet the requirements of one of the following classes:

Class 1: Case depth and case hardness shall be as specified. Subsurface case hardness shall be in accordance with Table 1. Surface carbon shall be 0.70 to 1.00% (weight %). Retained austenite shall not exceed 10%.

Intergranular carbides shall be scattered and discontinuous and shall not be evident in more than 40% of the

grain boundaries.

Class 2: Case depth and case hardness shall be as specified. Subsurface case hardness shall be in accordance with Table 1. Surface carbon shall be 0.75 to 1.10% (weight %). Retained austenite shall not exceed 20%.

Continuous carbide network shall not be evident in more than 80% of the grain boundaries.

Class 3: Case depth and case hardness shall be as specified.

1.1.1 If class is not specified, parts shall be processed to meet the requirements of Class

2.

1.2 Types

Type 1: Gas and vacuum carburizing

Type 2: Liquid (salt bath) carburizing

Type 3: Low Pressure (vacuum) carburizing (0.5 to 35 mbar)

1.2.1 If the type is not specified, Type 1 shall be used.

1.3 Safety - Hazardous Materials While the materials, methods, applications, and processes described or referenced in this specification may involve the

use of hazardous materials, this specification does not address the hazards that may be involved in such use. It is the sole responsibility of the user to ensure familiarity with the safe and proper use of any hazardous materials and to take necessary precautionary measures to ensure the health and safety of all personnel involved.

2. APPL I

CABLE DOCUMENTS

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), https://www.360docs.net/doc/7615515801.html, .

AMS2418 Plating, Copper

AMS2750 Pyrometry

AMS2759 Heat Treatment of Steel Parts, General Requirements

AMS2759/1 Heat Treatment of Carbon and Low-Alloy Steel Parts Minimum Tensile Strength Below 220 ksi

(1517 MPa)

AMS2759/2 Heat Treatment of Low-Alloy Steel Parts Minimum Tensile Strength 220 ksi (1517 MPa) and

Higher

AMS2759/11 Stress Relief of Steel Parts

AMS2769 Heat Treatment of Parts in Vacuum ARP1820

Chord Method of Evaluating Surface Microstructural Characteristics J423 Methods of Measuring Case Depth

2.2 ASTM Publications

Available from ASTM I nternational, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, https://www.360docs.net/doc/7615515801.html, .

ASTM E 3

Preparation of Metallographic Specimens ASTM E 18

Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials ASTM E 384

Microindentation Hardness of Materials ASTM E 415

Optical Emission Vacuum Spectrometric Analysis of Carbon and Low Alloy Steel ASTM E 1019 Determination of Carbon, Sulfur, Nitrogen, Oxygen, and Hydrogen in Steel and in I ron, Nickel,

and Cobalt Alloys

2.3 ASM Publications

Available from ASM I nternational, 9639 Kinsman Road, Materials Park, OH 44073-0002, Tel: 440-338-5151, https://www.360docs.net/doc/7615515801.html, .

ASM Handbook Volume 09 – Metallography and Microstructures (1985 Edition), ISBN 10: 0-87170-015-8

3. TECHN

I CAL REQU

I

REMENTS

3.1 Equipment

Shall conform to the requirements of AMS2759.

3.1.1 Quenching

Equipment

Shall be in accordance with AMS2759 and AMS2769 section on inert gas quenching.

3.1.2 Auxiliary

Equipment

Shall be in accordance with AMS2759.

3.1.3 Thermal Processing Equipment

Pyrometry shall conform to AMS2750.

3.1.4 Cleaning

Equipment

Shall be in accordance with AMS2759.

3.1.5 Carburizing

Equipment

The carburizing atmosphere shall be generated with mixtures of hydrocarbon compounds and gases reacting to supply the carbon. Circulation of the atmosphere shall be sufficient to provide uniform carburizing.

3.1.5.1 For Classes 1 and 2 gaseous carburizing, the process (time, temperature, gas flows (Type 1 vacuum only),

carbon potential,) shall be automatically controlled, maintained and recorded. Manual equipment may be used to verify the automatic equipment.

3.1.5.2 For Types 1 and 3 vacuum carburizing, precision gas flow meters (±3.5%) or mass flow sensors shall record the

additions of carburizing medium. The process (time, temperature, gas flows, vacuum levels, pressure, etc.) shall be automatically controlled, maintained and recorded. The carbon potential shall be determined by correlation of the additions with the results from carbon gradient test specimens.

3.1.5.3 Other carburizing media, such as molten salt bath or fluidized beds, may be used when appropriate, except

pack carburizing shall not be used. The carbon potential shall be determined by correlation with the results from carbon gradient test specimens. When molten salt baths are used, the medium shall be analyzed periodically for chemical composition.

3.1.5.4 Carbon potential shall be determined in accordance with 3.11.8 for Type 1 gas carburizing.

3.1.5.5 Accuracy of Atmosphere Control Instruments

The accuracy of instruments used for measuring and controlling carbon potential of Type 1 gas carburizing furnace atmospheres and the accuracy of instruments used for measuring and controlling pressure of Type 1 vacuum carburizing and Type 3 Low Pressure carburizing furnaces shall be checked as often as necessary to ensure that the equipment is operating properly and shall be calibrated. These activities shall be performed per manufacturers' recommendations.

3.2 Sequence of Operations

Shall be (1) preparation for carburizing, (2) carburizing, (3) cooling after carburizing, (4) hardening, and (5) tempering. The hardening operation may be omitted when cooling after carburizing has incorporated a quench in accordance with

3.6.4, and when the conditions of 3.2.1, 3.2.2, or 3.2.3 are satisfied.

--```,,`,,`,,`,

3.2.1

Parts were quenched from the carburizing temperature and both of the following apply: 3.2.1.1

Case depth is 0.020 inch (0.51 mm) or less. 3.2.1.2 Carburizing temperature was not higher than 1600 °F (871 °C). 3.2.2 Parts were furnace cooled to the austenitizing temperature, stabilized, and quenched in accordance with 3.6.4

and either of the following apply:

3.2.2.1

Parts were made from a low hardenability steel (e.g., 1020, 4615, 4620, 8615, or 8620). 3.2.2.2 Parts were made from a high hardenability steel (e.g., 4320, 4820, or 9310), and were carburized to meet Class

3 requirements, or parts made to meet Class 1 or 2 requirements that have been approved by the cognizant engineering organization.

3.2.3 Parts made from a low hardenability steel were quenched from the carburizing temperature and either of the

following applies:

3.2.3.1

Parts were carburized to meet Class 2 or Class 3 requirements. 3.2.3.2

Parts were carburized to meet Class 1 requirements and quenching from the carburizing temperature was approved by the cognizant engineering organization. 3.3 Preparation for Carburizing

All metallurgical operations, such as brazing or welding, or stress inducing operations, such as forming or bending, should be completed prior to carburizing. Parts shall be free from visible defects, contamination, and corrosion that may retard carburizing or be detrimental to the appearance or performance of the finished parts.

3.3.1 Stress Relief/Normalizing

Parts may be stress relieved per AMS2759/11 or normalized prior to carburizing. Normalizing times and temperatures for commonly carburized steels are given in Tables 2 and 3.

3.3.2 Cleaning

All parts shall have scale, oxides, residual oil film, and any other surface contamination removed prior to carburizing or heat treatment. Parts shall be cleaned as necessary for the process to be performed. Cautionary note: Pre-oxidation following washing has proven useful in Type 3 processing providing the temperature does not exceed 500 °F (260 °C)

3.3.3 Masking

Masking shall be copper plate, not less than 0.0008 inches (20 μm) in thickness, applied in accordance with AMS2418. Other masking may be used if acceptable to the cognizant engineering organization.

3.3.4 Visual I nspection

Masked or plated parts shall be visually inspected prior to and after carburizing. Parts exhibiting blistering, peeling, or porosity in the masking after carburizing shall be rejected.

3.3.5 Loading of Parts

Load parts to minimize distortion at temperature and assure free circulation of atmosphere and quench fluid.

--```,,`,,`,,`,,,````,``,,``,-`-`,,`,,`,`,,`---

3.4 Carburization

Temperature

3.4.1 Carburizing

Shall be at a selected temperature ±25 °F (±14 °C) consistent with the material to be carburized and the depth of case required. Carburizing ranges are as follows:

Type 1 - Gas Carburizing: 1450 to 1750 °F (788 to 954 °C)

Type 1 - Vacuum Carburizing:1550 to 1900 °F (843 to 1038 °C)

Type 2 - Liquid Carburizing: 1500 to 1750 °F (815 to 954 °C)

Type 3 – Low Pressure Carburizing: 1450 to 2100 °F (788 to 1149 °C)

Potential

3.4.2 Carburizing

The carbon potential, however controlled, shall be such as to provide the required case carbon content and case depth.

3.4.2.1 For Types 1 and 3 vacuum carburizing, the carbon potential shall be determined by correlation of the additions

with the results from carbon gradient test specimens. Cautionary note: Consideration must be given to the production operating conditions when developing a qualification/periodic testing plan for multiple chamber furnaces when evaluating carbon potential. Cautionary note: The surface area needs to be taken into consideration when establishing process control parameters.

Carburizing

3.5 Cooling after

Shall be in accordance with one of the following:

3.5.1 Quenching from the Carburizing Temperature

3.5.1.1 Cooling in a protective atmosphere or vacuum to 900 °F (482 °C) or lower, followed by cooling at a rate not

faster than that provided by fan circulated air or atmosphere. Fan cooling from the carburizing temperature is permitted.

3.5.1.2 Furnace cooling from the carburizing temperature to the austenitizing temperature in Table 2, stabilizing, and

quenching, including press quenching. The press quenching procedure will require cognizant engineering approval.

3.6 Hardening

Shall consist of austenitizing and quenching. It may be preceded by subcritical annealing in accordance with Tables 2 and 3, and cooling to ambient temperature.

3.6.1 Atmosphere

Protective atmosphere or masking or both shall be used to protect part surfaces from decarburization, carburization, intergranular oxidation, and other surface damage during sub- critical annealing or austenitizing. Parts exhibiting blistering or peeling of the masking in the prior masked areas after exposure to elevated temperature shall be subject to rejection.

3.6.2 Rate of Heating

Hard parts (>35 HRC) shall be preheated or stress relieved in accordance with AMS2929/11 prior to hardening. Preheating in air is permitted.

--```,,`,,`,,`,,,````,``,,``,-`-`,,`,,`,`,,`---

3.6.3 Austenitizing

Temperature shall be as specified in Table 2. For steels not listed in Table 2, austenitizing temperatures shall be specified by purchaser. The charge shall be held within the specified temperature range for sufficient time for necessary diffusion and transformation to take place. The soak times shown in Table 3 are recommended times. Soaking time shall commence when all control, thermocouple(s) reach a temperature 5 °F (3 °C) below the austenitizing temperature or, and when the last of any other monitoring and recording thermocouples (excluding load thermocouples and thermocouples used only to monitor over-temperature) reach the minimum of the required temperature range. When soaking time is based on one or more load thermocouples, it shall start when all load thermocouples have reached the minimum of the required temperature range.. The proper time interval will vary with the type of steel, power input to furnace and size of charge, as well as the nominal thickness and configuration of the individual parts.

3.6.4 Quenching

Following austenitizing, parts shall be quenched in the media specified in Table 2 and as follows:

Quenching

3.6.

4.1 Oil

Type 1 – Gas Carburizing: Quench in circulating oil at a temperature between 60 to 160 °F (16 to 71 °C) at the start of the quenching operation. The circulation of the oil shall be controlled so that the oil temperature does not exceed 200 °F (93 °C) at any time during the quenching operation. Parts may be quenched in a die or in an open basket, but in either case, the oil shall circulate around every part.

Type 1 and Type 3 – Vacuum and Low Pressure Carburizing: Oil Quenching shall be performed by transferring the parts from a heating chamber to a separate chamber that has been backfilled with an inert gas or under vacuum/partial pressure and immersing the parts in circulating oil. Quench oil shall be compatible with the vacuum level used during initial evacuation/transfer and shall be capable of quenching the parts at a rate sufficient to meet specified property requirements. The oil temperature should be consistent with the manufactures recommendation.

3.6.

4.2 Molten salt or synthetic quenchants are permitted.

3.6.

4.3 Marquenching

Parts shall be marquenched in a nitrate salt bath, oil bath, or alternate quenchant operated between 300 to 450 °F (149 to 232 °C). The parts shall be in the marquenching bath only for sufficient time to stabilize the parts at the bath temperature, but not less than two minutes, followed by cooling in still air.

3.6.

4.4 Positive Pressure Gas Quenching (PPGQ, > 1 bar)

When gas quenching is specified, it shall be accomplished by transferring the parts from a heating chamber to a separate chamber or backfilling the heating chamber with a gas that has no detrimental metallurgical effect on the material being processed or on the furnace equipment. The system and the pressure of the backfilling gas selected shall be capable of cooling the parts at a rate sufficient to meet the material property requirements specified. The use of hydrogen as a quenching gas must be approved by the cognizant engineering organization.

3.6.

4.5 For steels other than those listed in Table 2, quench media shall be as specified by the purchaser.

Treatment

3.6.5 Sub-Zero

Sub-zero treatment is required for parts carburized to Class 1 and Class 2 requirements and for steels containing 2.5% (total) or more of alloying elements when carburized to Class 3 requirements. Other parts shall be sub-zero treated when specified. Parts shall be held at -100 °F (-73 °C) or lower, for 1 hour per inch (25 mm) of thickness, but not less than 1 hour, and warmed in air to room temperature. The sub-zero treatment shall be initiated within 2 to 4 hours after start of quench or completion of a snap temper. Parts less than 2.5 inches thick shall follow the 2 hour time and parts 2.5 inches and thicker shall meet the 4 hour time.

3.6.5.1 When authorized by the cognizant engineering organization, a snap temper between 250 and 300 °F (121 and

149 °C) may be used after quenching and prior to the sub-zero treatment when part design and thermal stresses may result in part cracking. The snap temper treatment shall be initiated within 2 hours after start of quench.

3.6.6 Cleaning

Parts may be cleaned before tempering. Marquenching salts shall be removed, before tempering in air, by a hot water rinse.

3.7 Tempering

Tempering shall be started within 2 hours after start of quench or sub-zero treatment except as permitted in 3.7.1.

3.7.1 I f hardened parts cannot be tempered within 2 hours after removal from sub-zero cooling, they shall be snap

tempered for not less than 2 hours at a temperature between 250 °F and 300 °F (121 °C and 149 °C).

3.7.2 Unless otherwise specified, parts shall be tempered for not less than 2 hours at a temperature consistent with the

case hardness requirements but within the range of 275 to 475 °F (135 to 246 °C). Soak time shall be per AMS2759/1 or AMS2759/2.

3.8 Cleaning Carburized Surfaces

Shall be by one of the following methods; blast cleaning, detergent cleaning, vapor blast cleaning, degreasing, abrasive honing, or anodic electrolytic cleaning. Acid pickling or cathodic electrolytic cleaning is not permitted.

Masking

3.9 Removal of

Masking shall be removed from parts after the carburizing operation. If plating is used, it shall be removed by a method that is controlled to prevent etching, pitting or hydrogen embrittlement of the part.

3.10 Straightening

Straightening carburized areas of parts is permitted only if done prior to sub-zero treatment and/or tempering and if approved by the cognizant engineering organization.

3.10.1 Warm straightening is permitted in uncarburized areas of the parts. Part temperature shall not exceed 275 °F

(135 °C) during the straightening operation.

3.11 Properties

3.11.1 Case Depth

3.11.1.1 Case Depth Measurement

Shall be determined in accordance with 3.11.1.1.1, 3.11.1.1.2, or 3.11.1.1.3.

3.11.1.1.1 Case Depth Determination by Microhardness Method

Shall be by microhardness traverse of a test specimen sectioned perpendicular to the carburized surface and prepared in accordance with ASTM E 3. Hardness shall be determined in accordance with ASTM E 384 or SAE J423, starting 0.002 inch (0.05 mm) from the carburized edge and traversing inward in increments of 0.004 inch (0.10 mm) to the depth where a hardness of 542 HK500 or 513 HV500 or less is reached. The case depth shall be the distance from the surface to the location where the hardness is equivalent to 50 HRC.

--```,,`,,`,,`,,,````,``,,``,-`-`,,`,,`,`,,`---

3.11.1.1.2 Case Depth Determination by Metallographic Method

Shall be by examination of a test specimen sectioned perpendicular to the carburized surface and prepared in accordance with ASTM E 3. Etch the sectioned surface with a suitable reagent to get maximum contrast between phases and constituents, then examine at 40X to 60X magnification. The case depth shall be the distance from the surface to the location where the contrast is greatest. In case of dispute, the method of 3.11.1.1.1 shall apply.

3.11.1.1.3 The method of ARP1820 may be used to determine depth of thin cases.

3.11.1.2 Case Depth Requirements and Allowances

3.11.1.2.1 The depth of the applied case on the as-carburized and hardened part shall be sufficient to assure that

engineering drawing required finished case depth and surface hardness requirements are met. The case

depth is defined as the depth below the surface of the finished part where the hardness is the equivalent of 50

HRC. (See also 3.11.3.) This is often referred to as the “effective case depth”.

3.11.1.2.2 The drawing case depth applies to the finish machined surfaces. The effective case depth at external

corners, internal corners, boundaries, internal bores and gears and splines shall be as follows:

3.11.1.2.2.1 For external edges with a radius less than two times the maximum specified case depth, the case depth

may be exceeded for a distance from the corner equal to three times the minimum specified case depth.

3.11.1.2.2.2 For internal corners with a radius less than two times the maximum specified case depth, the case depth

may be less than the minimum specified for a distance from the theoretical corner equal to two times the

minimum specified case depth but not less than one half of the minimum specified case depth.

3.11.1.2.2.3 For boundaries between carburized and uncarburized areas, the case depth may be less than the minimum

specified case depth for a distance from the boundary equal to two times the minimum specified case depth

but not less than one half the minimum specified case depth at the boundary. The carburized case may

extend by normal diffusion beyond the boundary by not more than twice the minimum specified case depth.

3.11.1.2.2.4 For gears and splines, the specified case depth applies to the tooth surface at the pitch diameter. Case

depth at the root radius shall be not less than 0.75 times the minimum specified case depth.

3.11.1.2.2.5 For internal bores, the case depth is applicable at the entrance and midpoint depth of bores open at both

ends, and at the entrance and closed end of bores open at only one end.

3.11.2 Case Surface Hardness

Shall be determined in accordance with 3.11.2.2.

3.11.2.1 The roots of splines or gear teeth may exhibit a hardness not more than 2 HRC or equivalent numbers lower

than that required at the pitch line. When approved by the cognizant engineering organization, a reduction of

4 HRC or equivalent is acceptable.

3.11.2.1.1 If a suitable surface is not accessible for hardness testing, the hardness at 0.002 inch (0.05 mm) obtained as --```,,`,,`,,`,,,````,``,,``,-`-`,,`,,`,`,,`---

in 3.11.1.1 shall be the case hardness.

3.11.2.2 Case Hardness Determination

Shall be in accordance with ASTM E 18 on the carburized and hardened surface, of the finished part using a superficial hardness test appropriate for the depth of case specified.

3.11.3 Sub-Surface Case Hardness

For parts carburized to Class 1 and Class 2 requirements, the subsurface hardness shall meet the requirements of Table 1, determined in accordance with 3.11.3.2. Where a different hardness is specified, the subsurface hardness shall be as specified, when applicable.

3.11.3.1 Sub-surface hardness requirements do not apply to roots of splines or gear teeth.

3.11.3.2 Sub-surface Case Hardness Determination

The hardness traverse or 3.11.1.1 shall be used to determine the sub-surface case hardness. The microhardness conversion for 58 HRC shall be 690 HK500 or 653 HV500 and for 60 HRC shall be 732 HK500 or 697 HV500.

3.11.4 Core Hardness

Shall be as specified, determined in accordance with 3.11.4.1.

3.11.

4.1 Core hardness shall be determined in accordance with ASTM E 18 on a noncarburized surface of the part, or at

a location not less than five times the case depth from the surface, or at the approximate center of the

microstructure specimen (See 3.11.6.6). As an alternate method the core hardness can be established in accordance with ASTM E 384 at a location not less than five times the case depth from the surface.

3.11.5 The hardness of non-carburized surfaces shall be in accordance with specified core hardness.

3.11.6 Case Microstructure

Shall be predominantly tempered martensite, determined in accordance with 3.11.6.6.

3.11.6.1 Intergranular oxidation shall not exceed 0.0005 inch (0.013 mm) in depth from the unmachined surface.

3.11.6.2 For Class 1 parts, any intergranular carbides on a finish machined working surface shall be scattered and

discontinuous and shall not be evident in more than 40% of the grain boundaries. Only dispersed intergranular spheroidal (secondary) carbides are permitted more than two grains below the finish machined working surface.

Massive or blocky carbides are unacceptable.

3.11.6.3 For Class 2 parts, a continuous carbide network shall not be evident in more than 80% of the grain boundaries.

Photomicrograph 13 on page 220 of ASM Handbook, Volume 09, 1985 Edition, is an illustration of the maximum acceptable continuous carbide microstructure. Photomicrographs 12 and 14 on page 220 of ASM Handbook, Volume 09, 1985 Edition, are illustrations of non-acceptable microstructures containing excessive carbides around the grain boundaries and massive carbides.

3.11.6.4 The microstructure of a finished Class 1 part shall not show evidence of retained austenite in excess of Figure

16 on page 220 of ASM Handbook, Volume 09, 1985 Edition. f interpretation of the microstructure is

questionable, or if it appears to represent retained austenite in excess of this figure, x-ray diffraction shall be performed to determine the acceptability. When inspected by x-ray diffraction, retained austenite greater than 10% is unacceptable.

3.11.6.5 The microstructure of a finished Class 2 part shall not show evidence of retained austenite in excess of Figure

17 on page 221 of ASM Handbook, Volume 09, 1985 Edition. f interpretation of the microstructure is

questionable, or if it appears to represent retained austenite in excess of this figure, x-ray diffraction shall be performed to determine the acceptability. When inspected by x-ray diffraction, retained austenite greater than 20% is unacceptable.

3.11.6.6 Case Microstructure Determination

Shall be by examination of a test specimen sectioned perpendicular to the carburized surface and prepared in accordance with ASTM E 3. Examine at 900X to 1100X magnification for retained austenite, 400X to 600X for intergranular oxidation and carbides, and 200X to 300X for core structure. For part surfaces that are to be subsequently machined, the stock to be removed in finish machining need not be evaluated.

3.11.7 Core Microstructure

The transformed microstructure of the core shall be consistent with the steel composition and the thickness of the part at the time of quenching.

3.11.8 Carbon Content of Case (Carbon Potential or surface carbon)

Shall be 0.70 to 1.00% for parts carburized to Class 1 requirements and 0.75 to 1.10% for parts carburized to Class 2 requirements, determined in accordance with 3.11.8.1, 3.11.8.2, or 3.11.8.3

3.11.8.1 A machined specimen, not less than 0.50 inch (12.7 mm) in diameter and 6 inches (152 mm) in length shall be

carburized, preferably with a furnace load, for each alloy processed. The specimen shall be carburized to a depth not less than the maximum depth normally carburized or 0.020 inch (0.51 mm), whichever is greater.

The specimen shall not be hardened after carburizing. 0.005 inch (0.13 mm) shall be machined from the diameter of the carburized specimen and the chips discarded. Chips for analysis shall be taken from the next

0.005 inch (0.13 mm) machined from the diameter. The chips shall be free of oil, grease, dirt, scale, or other

foreign substances. Carbon determination may be by any method acceptable to purchaser, but in case of dispute, the combustion analysis method of ASTM E 1019 shall govern.

3.11.8.2 A second method requires a specimen, not thicker than 0.01 inch (0.25 mm), of the same material as is

required to be carburized, may be tested. I n this case, the entire thickness of the specimen is analyzed for carbon content using the combustion analysis method of ASTM E 1019.

3.11.8.3 A final alternative method requires a specimen, not less than 0.5 inches (12.5 mm) thick of the same material

as is to be carburized, to be tested using Optical Emission Spectroscopy (OES) to ASTM E 415 or similar methods acceptable to the purchaser.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection

Shall be in accordance with AMS2759. Where test specimens are required, except for specimens for case carbon determination, these shall be supplied by purchaser.

4.2 Classification of Tests

Tests

4.2.1 Acceptance

Tests for case depth (3.11.1), case surface hardness (3.11.2), sub-surface case hardness (3.11.3), core hardness (3.11.4), hardness of noncarburized surfaces (3.11.5), case microstructure (3.11.6), and core microstructure (3.11.7) are acceptance tests and shall be performed on each lot.

Tests

4.2.2 Periodic

Tests for carbon content of the case (3.11.8) are periodic tests and shall be performed every six months unless frequency of testing is specified by purchaser.

4.2.3 Preproduction

Tests

All tests specified are preproduction tests and shall be performed on specimens for each piece of carburizing equipment to be used, as applicable for the carburizing class or classes (See 1.2) to be processed, and prior to any production carburizing.

4.3 Sampling and Testing

Shall be as specified in AMS2759 and the following; other methods of sampling, including statistical sampling, are permitted when authorized by purchaser.

4.3.1 Lot

Shall be in accordance with AMS2759 and the following:

4.3.2 Process Control Specimens

At least one test specimen shall accompany each lot through each carburizing cycle. One specimen shall be hardened, tempered, and tested for properties required by 4.2.1. Purchaser may request one or more additional specimens to be quenched and tempered with the production parts. Additional specimens are required for parts with two or more carburized surfaces that are of different case depths, or of different shapes or sizes or materials, and when using multiple chamber furnaces. Multiple chamber furnaces shall require a minimum of two samples located at the front and back of each load).

4.3.2.1 Test specimens shall represent the part thickness of the heaviest cross-section carburized and shall be of the

same alloy as the parts, or shall represent the part configuration such as a section of gear or spline teeth or an internal bore if the bore has a depth to diameter ratio greater than one.

4.3.2.1.1 At least one specimen per lot shall be cut perpendicular to carburized surfaces and the section

metallographically prepared in accordance with ASTM E 3. The examination may be performed on a finished

part or an as-hardened and tempered part.

4.3.2.1.2 Where metallographic examination is conducted before finish machining, the test procedure shall provide

evidence that finished case requirements will be met after finish machining.

4.3.2.1.3 For gears and splines, the test piece shall consist of not less than four teeth of an actual gear or spline. For

internal bores, the bore diameter and depth shall be the same as the actual parts.

4.3.2.1.4 Metallographic examination shall include a microhardness traverse sufficient to show the actual effective case

depth and surface hardness at all required surfaces.

4.3.2.1.5 Microstructure of each metallographically prepared section shall be examined for compliance with the

metallographic requirements of this specification.

4.3.2.2 Test specimens shall be uniformly distributed throughout the furnace load.

4.3.2.3 Actual parts or part sections may be used in lieu of the test specimen.

4.4 Approval

Shall be in accordance with AMS2759.

4.5 Furnace Log and Recorder Chart Entries

Shall be in accordance with AMS2759.

--```,,`,,`,,`,,,````,``,,``,-`-`,,`,,`,`,,`---

4.6 Records Shall be in accordance with AMS2759. I n addition whenever gas quenching is used the gas and pressure shall be recorded.

4.7 Reports

Shall be in accordance with AMS2759. I n addition whenever gas quenching is used the gas and pressure shall be reported.

4.8 Resampling and Retesting

If any specimen used in the above tests fails to meet the specified requirements, disposition of the heat treated parts may be based on the results of testing three additional specimens or two actual parts for each original nonconforming specimen. Except as permitted in 4.8.1, failure of any retest specimen or part to meet the specified requirements shall be cause for rejection of the parts represented. Results of all tests shall be reported.

4.8.1 Parts that do not meet the minimum case depth or minimum hardness limits after processing as herein specified

may be reprocessed by recarburizing, rehardening, or retempering as necessary to meet specified requirements except that parts may be recarburized only once. Except for retempering, reprocessing is not applicable to parts that exhibit excessive case depth. Test samples for such reprocessing shall be the remaining portions of specimens or parts used to determine the original nonconformance.

5. PREPARATION FOR DELIVERY

Shall be in accordance with AMS2759.

6. ACKNOWLEDGMENT

Shall be in accordance with AMS2759.

7. REJECT I ONS

Shall be in accordance with AMS2759.

8. NOTES

8.1 A change bar (l) located in the left margin is for the convenience of the user in locating areas where technical

revisions, not editorial changes, have been made to the previous issue of this document. An (R) symbol to the left of the document title indicates a complete revision of the document, including technical revisions. Change bars and (R) are not used in original publications, nor in documents that contain editorial changes only.

8.2 Dimensions in inch/pound units and the Fahrenheit temperatures are primary; dimensions in SI units and the

Celsius temperatures are shown as the approximate equivalents of the primary units and are presented only for information.

8.3 Purchase documents should specify not less than the following:

AMS2759/7B

Part number, alloy designation, and quantity of parts to be carburized

Class of carburizing (See 1.1)

Type of carburizing (See 1.2)

Case depth desired (include maximum amount to be removed during subsequent machining and measurement technique if other than 3.11.1.1).

Case surface hardness desired

Periodic test frequency if other than in 4.2.2

If Positive Pressure Gas Quenching, the gas(es) and the minimum pressure allowed.

--```,,`,,`,,`,,,````,``,,``,-`-`,,`,,`,`,,`---

8.4 Similar Specifications

MIL-S-6090 is listed for information only and shall not be construed as an acceptable alternate unless all requirements of this AMS are met.

PREPARED BY AMS COMMITTEE "E"

--```,,`,,`,,`,,,````,``,,``,-`-`,,`,,`,`,,`---

TABLE 1 - FINISHED PART CASE DEPTH AND CASE HARDNESS

Minimum Depth of Minimum Depth of Specified Case Depth Specified Case Hardness Specified Case Hardness Minimum 58 HRC 60 HRC

Under 0.030 inch (0.76 mm) 20% (1) 10% (1)

0.030 to 0.050 inch (0.76 to 1.27 mm), incl 20% (1) 20% (1)

Over 0.050 inch (1.27 mm) 0.010 inch 0.010 inch

(0.25 mm) (0.25 mm)

(1) Percent of specified minimum case depth.

Example: For a specified case depth of 0.030 inch (0.76 mm), the case hardness shall be not less than 58 HRC at 0.006 inch (0.15 mm) from the carburized surface.

TABLE 2 - SUBCRITICAL ANNEALING, NORMALIZING, AND AUSTENITIZING

TEMPERATURES AND QUENCHANTS

Subcritical

Subcritical

Annealing

Annealing

Normalizing

Normalizing

Austenitizing Austenitizing Alloy Temperature Temperature Temperature Temperature Temperature (2) Temperature (2) Quenchant

(1) °F °C °F °C °F °C (3)

(4)

1020 1300 704 1750 954 1425 774 (5) 4320 1300 704 1750 954 1525 829 Oil,(6) 4615 1300 704 1750 954 1500 816 Oil,

(6)

4620 1300 704 1750 954 1500 816 Oil,(6) 4820 1150 621 1750 954 1475 802 Oil,

(6)

8615 1300 704 1750 954 1550 843 Oil,

(6)

8620 1300 704 1750 954 1550 843 Oil,

(6)

9310 1150 621 1700 927 1525 829 Oil,

(6) Pyrowear

?53

1300 704 1850 1010 1650 - 1700 898-926 Oil, (6)

Pyrowear ? 6751175 635 ----- ------ 1900 1038 Oil,

(6)

M50 NIL 1300 704 ----- ------- 2000 -2050 1093-1121 PPGQ Ferrium?

C61

1256 680 1787 975 1832 1000 PPGQ

Ferrium?

C64

1256 680 1787 975 1832 1000 PPGQ

(1). Parts made from steels other than those specified in the detail specifications may be heat treated in accordance with the applicable requirements using processing temperatures, times, and other parameters recommended by the material

producer unless otherwise specified by purchaser.

(2) For parts carburized to Class 3 requirements, the austenitizing temperature may be 1400 to 1600 °F (760 to 871 °C).

(3) Marquenching in nitrate salt, hot oil, or alternate quenchant is permitted (See 3.6.4.3).

(4) Molten salt or synthetic quenchants are permitted when approved by the cognizant engineering organization.

(5) Water, oil, or brine.

(6) PPGQ – Gases allowed: He, Ar, N2, He/CO2, Ar/N2, H2 and mixture of., see 3.6.4.4

Pyrowear? is a registered trademark of Carpenter Technology Corporation.

Ferrium? is a registered trademark of QuesTek Innovations LLC

--```,,`,,`,,`,,,````,``,,``,-`-`,,`,,`,`,,`---

TABLE 3 - RECOMMENDED SOAK TIME FOR SUBCRITICAL ANNEALING, NORMALIZING, AND AUSTENITIZING

Minimum Soak Minimum Soak

Time (2) (3) Time (2) (3)

Thickness (1) Thickness (1) Air or Atmosphere Salt

Inches Millimeters Hours: minutes Hours: minutes

Up to 0.25, incl Up to 6.4, incl 0:25 0:18

Over 0.25 to 0.50, incl Over 6.4 to 12.7, incl 0:45 0:35

Over 0.50 to 1.00, incl Over 12.7 to 25.4, incl 1:00 0:40

Over 1.00 to 1.50, incl Over 25.4 to 38.1, incl 1:15 0:45

Over 1.50 to 2.00, incl Over 38.1 to 50.8, incl 1:30 0:50

Over 2.00 to 2.50, incl Over 50.8 to 63.5, incl 1:45 0:55

Over 2.50 to 3.00, incl Over 63.5 to 76.2, incl 2:00 0:60

Over 3.00 (4) (4)

(1) Thickness is the minimum dimension of the heaviest section of the part.

(2) Soaking time shall commence when all control, thermocouple(s) reach a temperature 5 °F

(3 °C) below the austenitizing temperature and when the last of any other monitoring and

recording thermocouples (excluding load thermocouples and thermocouples used only to

monitor over-temperature) reach the minimum of the required temperature range. When

soaking time is based on one or more load thermocouples, it shall start when all load

thermocouples have reached the minimum of the required temperature range.

(3) When load thermocouples are used, the soaking time shall be not less than 30 minutes.

(4) Two hours, plus 30 minutes for each inch (25 mm) or increment thereof of thickness over

3.00 inches (76.2 mm).

--```,,`,,`,,`,,,````,``,,``,-`-`,,`,,`,`,,`---

车身骨架强度分析

客车车身骨架疲劳强度分析 [周俊杰,严伊莉] [郑州大学化工与能源学院,郑州450001] [ 摘要] 运用有限元方法建立了某轻型客车车身骨架的有限元模型,在确定载荷的简化和施加方法后,进行了该车身骨架在满载弯曲工况下的有限元仿真,以此在ANSYS Workbench的 Fatigue(疲劳)模块对其进一步的疲劳分析,为该车车身骨架的优化设计和进一步研究 提供了理论依据。 [ 关键词] 车身骨架;有限元;疲劳分析 Fatigue strength analysis of bus body frame [ZHOU Jun-jie, YAN Yi-li] [School of Chemical and Energy, Zhengzhou University, Zhengzhou 450001,China] [ Abstract ] Finite element modeling of the bus framework is established by using finite element methods. When the simplified load and load way exerting on the framework are ensured,the finite element simulation of bus framework is executed under fully loaded bending condition. And then further fatigue analysis with ANSYS Workbench Fatigue finishes. These results provide theoretical basis for optimization and further study of the bus framework. [ Keyword ] Bus framework;Finite element analysis;Fatigue analysis 1前言 车身骨架是客车的主要承载结构,车身骨架的强度、刚度及疲劳性能都直接影响着客车的使用寿命、安全性、操作稳定性等基本性能。本文运用通用有限元分析软件对某

翻译岗岗位职责

市场办翻译岗位职责 一、岗位素质要求 1、具有大学以上文化程度。拥有扎实的英语及汉语基本功,广泛的钻井专业知识。 2、掌握英汉两种语言的特点和互译规律,有良好的语音基本功,敏锐的听力和丰富的词汇量,良好的语感,灵活的表达能力以及广阔语言文化背景知识。 3、掌握涉外礼仪基本原则,自觉遵守外事纪律,维护国家主权和民族自尊。 4、熟悉办公软件的运用,具有表格制作等基本技能。 二、岗位工作职责 1、树立良好的职业道德观念,加强责任心,认真对待每一次翻译任务。 2、严格执行公司各项规章制度,坚持依法办事、秉公办事,遵守外事纪律,杜绝各种违纪违法现象发生。 3、负责公司外文来电来函的翻译工作,译稿内容准确,并及时呈报领导。 4、参与投标书的制作,负责招标信息的整理,甲乙方职责和商务报价表的翻译及人员简历的编译工作。 5、接待国际客户,口译内容忠实、准确地进行汉-英,英-汉翻译。 6、按时完成领导交办的工作及各种突出性工作任务,重点工作及时请示报告。

三、岗位安全职责 1、认真学习集团公司、油田、公司安全管理规定; 2、严格遵守钻井公司《安全生产十大禁令》等各项安全规章制度。 3、严格遵守企业HSE管理规定; 4、按时参加科室组织的安全教育和安全知识的学习,做好安全活动记录。 5、执行科室内部安全防范措施,落实物品、现金安全管理规定。 6、到基层调研时,做好“三穿两戴”,严格遵守HSE管理制度及各项安全管理规定,认真填写“两表一卡”。 7、在日常工作中,互相提醒安全事项,互相规范安全行为、做到节能省电,人走灯灭电源断。 四、岗位质量职责 1、及时向领导呈报各外文来电来函译文。 2、各文件和资料的译稿应做到内容贴切,技术术语翻译准确,语法规范,层次清楚,并且能够按时完成翻译任务。

车架计算

XXX车架强度计算报告 现根据需要,对XXXX车架结构进行调整,对比调整前后的结构状态,进行车架强度计算。根据协议要求,需保证更改后车架的强度满足安全使用要求,同时在支腿工作时,车架的变形量不大于6mm。 一、模型的建立 鉴于UG软件不但具有很强的建模能力,而且还具有很强的数值运算能力和高效的求解技术,本车架利用UGNX8.0建立物理模型后,直接从UG建模模块切换至CAE模块进行有限元网格划分、边界条件加载、NASTRAN求解器求解等工作,从而避免了不同软件模型之间传递的失真问题。 1. 车架的物理模型 整个车架由主纵梁、主横梁、支腿、座圈和支架等几部分组成。保证各个零件之间的相对位置,并且保证它们的联结关系。车架变更前后的物理模型见图1。 图1a 图1b 图1 车架更改前后物理模型 2. 车架的约束

主要考虑上装工作时车架的实际工作情况,可以假定支腿的四个端面为固定面,因此将这四个面上的所有点的自由度全部进行约束,即约束所有点的六个自由度。 3. 车架的载荷加载 根据车架各主要部件的位置,将驾驶室、发动机、变速箱、分动器、油箱等总成的载荷按实际重量加载在车架上,并将16吨的上装载荷加载在座圈三个垫块上,载荷安全系数取3,如图2所示。 图2 模型的边界条件及加载 4. 车架的网格划分 对车架进行网格划分,为提高计算精度,对座圈等关键位置网格细分,见图3.

图3 座圈位置网格细分二、计算结果 1. 更改前后车架强度 图4(a) 更改前

图4(b) 更改后 图4更改前后车架等效应力云图 局部位置应力强度对比见图5、6、7: 图5(a) 更改前

车架计算

汽车车架是整个汽车的基体,是将汽车的主要总成和部件连接成汽车整体的金属构架,对于这种金属构架式车架,生产厂家在生产设计时应考虑结构合理,生产工艺规范,要采取一切切实可行的措施消除工艺缺陷,保证它在各种复杂的受力情况下不至于被破坏。 车架作为汽车的承载基体,为货车、中型及以下的客车、中高级和高级轿车所采用,支撑着发动机离合器、变速器、转向器、非承载式车身和货箱等所有簧上质量的有关机件,承受着传给它的各种力和力矩。为此,车架应有足够的弯曲刚度,以使装在其上的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小;车架也应有足够的强度,以保证其有足够的可靠性与寿命,纵梁等主要零件在使用期内不应有严重变形和开裂。车架刚度不足会引起振动和噪声,也使汽车的乘坐舒适性、操纵稳定性及某些机件的可靠性下降。车架受力状态极为复杂。汽车静止时,它在悬架系统的支撑下,承受着汽车各部件及载荷的重力,引起纵梁的弯曲和偏心扭转(局部扭转)。如汽车所处的路面不平,车架还将呈现整体扭转。汽车行驶时,载荷和汽车各部件的自身质量及其工作载荷(如驱动力、制动力和转向力等)将使车架各部件承受着不同方向、不同程度和随机变化的动载荷,车架的弯曲、偏心扭转和整体扭转将更严重,同时还会出现侧弯、菱形倾向,以及各种弯曲和扭转振动。同时,有些装置件还可能使车架产生较大的装置载荷。 钢板经冷冲成形后,其疲劳强度要降低,静强度高、延伸率小的材料的降低幅度更大。常用车架材料在冲压成形后的疲劳强度约为

140~160Mpa 。轻型货车冲压纵梁的钢板厚度为5.0~7.0mm ,槽型断面纵梁上下翼缘的宽度尺寸约为其腹板高度尺寸的35%~40%. 随着计算机技术的发展,在产品开发阶段,对车架静应力、刚度、振动模态以至动应力和碰撞安全等已可进行有限元分析,对其轻量化、使用寿命,以及振动和噪声特性也可以做出初步判断,为缩短产品开发周期创造了有利条件。 当车架纵梁承受的是均匀分布的载荷时,车架强度的简化计算可按下述进行,但须做一定假设。即认为纵梁为支承在前后轴上的简支梁;空车时簧上负荷Gs 均布在左右纵梁的全长上,满载时有效载荷Ge 则均布在车箱长度范围内的纵梁上;忽略不计局部扭矩的影响。 R f 为一根纵梁的前支承反力,由该图可求得: R f =)]2()2([412c c Ge b L Gs l -+- (1) 在驾驶室的长度范围内这一段纵梁的弯矩为 Mx=R f x-2)(4a x L Gs + (2) 驾驶室后端至后轴这一段纵梁的弯矩为: Mx ˊ= R f x-2)(4a x L Gs +-21)]([4x l c c Ge -- (3) 显然,最大弯矩就发生在这一段梁内。可用对上式中的弯矩 Mx ˊ=f (x )求导数并令其为0的方法求出最大弯矩发生的位置x ,即 0)(2)(2'1=+--+-=c l x c Ge a x L Gs R dx dMx f (4) 由此求得: )(])(2[1c Ge L Gs c c l Ge L a Gs R x f +-+?- = (5)

车架受力分析基础

车架受力分析基础 一、对车架整车的受力要求 二、车架的受力情况具体分析 三、车架的结构分析 1.车架的基本结构形式 2.车架宽度的确定 3.纵梁的形式、主参数的选择 4.车架的横梁及结构形式 5.车架的连接方式及特点 6.载货车辆采用铆接车架的优点 四、车架的计算 1.简单强度计算分析 2.简单刚度计算分析 3.CAE综合分析 五、附表 2000年7月1日

一、整车对车架的要求 车架是整车各总成的安装基体,对它有以下要求: 1.有足够的强度。要求受复杂的各种载荷而不破坏。要有足够的疲劳强度,在大修里程内不发生疲劳破坏。 2.要有足够的弯曲刚度。保证整车在复杂的受力条件下,固定在车架上的各总成不会因车架的变形而早期损坏或失去正常工作能力。 3.要有足够的扭转刚度。当汽车行使在不平的路面上时,为了保证汽车对路面不平度的适应性,提高汽车的平顺性和通过能力,要求车架具有合适的扭转刚度。对载货汽车,具体要求如下:3.1车架前端到驾驶室后围这一段车架的扭转刚度较高,因为这一段装有前悬架和方向机,如刚度弱而使车架产生扭转变形,势必会影响转向几何特性而导致操纵稳定性变坏。对独立悬架的车型这一点很重要。 3.2包括后悬架在内的车架后部一段的扭转刚度也应较高,防止由于车架产生变形而影响轴转向,侧倾稳定性等。 3.3驾驶室后围到驾驶室前吊耳以前部分车架的刚度应低一些,前后的刚度较高,而大部分的变形都集中在车架中部,还可防止因应力集中而造成局部损坏现象。 4.尽量减轻质量,按等强度要求设计。 二、车架的受力情况分析 1.垂直静载荷: 车身、车架的自重、装在车架上个总成的载重和有效载荷(乘员和货物),该载荷使车架产生弯曲变形。 2.对称垂直动载荷: 车辆在水平道路上高速行使时产生,其值取决于垂直静载荷和加速度,使车架产生弯曲变形。 3.斜对称动载荷 在不平道路上行使时产生的。前后车轮不在同一平面上,车架和车身一起歪斜,使车架发生扭转变形。其大小与道路情况,车身、车架及车架的刚度有关。 4.其它载荷 4.1汽车加速和减速时,轴荷重新分配引起垂直载荷。 4.2汽车转弯时产生的侧向力。 4.3一前轮撞在凸包上,车架水平方向上产生箭切变形。 4.4装在车架上总成(方向机、发动机、减振器)产生的作用反力。 4.5载荷作用线不通过纵梁的弯曲中心(油箱、悬架)而使纵梁产生局部受扭。 因此车架的受力是一复杂的空间力系,纵梁和横梁截面形状和连接的多变多样,使车架的受载更复杂化。车架CAE分析时一轮悬空这种极限工况,即解除一个车轮的约束,分析车架弯扭组合情况下的最大应力。

翻译岗岗位职责

翻译岗岗位职责 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

市场办翻译岗位职责 一、岗位素质要求 1、具有大学以上文化程度。拥有扎实的英语及汉语基本功,广泛的钻井专业知识。 2、掌握英汉两种语言的特点和互译规律,有良好的语音基本功,敏锐的听力和丰富的词汇量,良好的语感,灵活的表达能力以及广阔语言文化背景知识。 3、掌握涉外礼仪基本原则,自觉遵守外事纪律,维护国家主权和民族自尊。 4、熟悉办公软件的运用,具有表格制作等基本技能。 二、岗位工作职责 1、树立良好的职业道德观念,加强责任心,认真对待每一次翻译任务。 2、严格执行公司各项规章制度,坚持依法办事、秉公办事,遵守外事纪律,杜绝各种违纪违法现象发生。 3、负责公司外文来电来函的翻译工作,译稿内容准确,并及时呈报领导。 4、参与投标书的制作,负责招标信息的整理,甲乙方职责和商务报价表的翻译及人员简历的编译工作。 5、接待国际客户,口译内容忠实、准确地进行汉-英,英-汉翻译。 6、按时完成领导交办的工作及各种突出性工作任务,重点工作及时请示报告。 三、岗位安全职责

1、认真学习集团公司、油田、公司安全管理规定; 2、严格遵守钻井公司《安全生产十大禁令》等各项安全规章制度。 3、严格遵守企业HSE管理规定; 4、按时参加科室组织的安全教育和安全知识的学习,做好安全活动记录。 5、执行科室内部安全防范措施,落实物品、现金安全管理规定。 6、到基层调研时,做好“三穿两戴”,严格遵守HSE管理制度及各项安全管理规定,认真填写“两表一卡”。 7、在日常工作中,互相提醒安全事项,互相规范安全行为、做到节能省电,人走灯灭电源断。 四、岗位质量职责 1、及时向领导呈报各外文来电来函译文。 2、各文件和资料的译稿应做到内容贴切,技术术语翻译准确,语法规范,层次清楚,并且能够按时完成翻译任务。

某商用车白车身结构静强度分析

某商用车白车身结构静强度分析 本论文依据有限元的基本理论,建立某型商用车白车身有限元模型,并在通用有限元分析系统MSC.Patran/Nastran中进行白车身结构的弯曲、单边扭曲、全扭曲三种工况的静态强度分析。 0 前言 从2000年法兰克福国际商用车展到2009年第37届美国中部卡车展,商用车(尤其是重型卡车)在国际主流车市上凸显强劲的增长势头和市场占有率。驾驶室作为商用车辆的一个主要产品总成,由于它是造型和结构功能的有机结合体,同时也是驾驶员和乘员工作和休息的空间,因此它在整车中体现出共性的技术应用和独有的发展特征。 本论文某型商用车驾驶室白车身作为研究对象,首先对白车身结构几何进行网格划分,检查网格划分质量,建立精确的有限元分析模型;进而基于此模型,施加适当约束,使用MSC.Patran/Nastran对白车身结构进行弯曲、单边扭曲、全扭曲等不同工况的静态强度仿真分析。 1 白车身有限元模型的建立 驾驶室白车身含有零件数目众多,并且常含有复杂的曲面,用网格准确描述其几何特征的难度较高,复杂的曲面会产生许多网格上的问题,如单元畸变、网格细小、网格失真等诸多问题。对数目繁多、曲面复杂的零部件划分高质量的网格工作量大、难度高。除此之外,白车身各个部件之间是通过焊接连接起来的,两部件在焊接处具有完全相同的自由度,为刚性连接,可用一维rigid单元模拟表示。在整个白车身模型中焊点多达上万个,需利用rigid 面板在焊点位置逐个施加。并且焊点与焊点、焊点与约束之间很容易出现过约束的情况。 文中将网格的检查标准设为Jacobin=0.6、aspect ratio=5、warpage=15°、skew=40°、min-angle=30°、max angle=120°,经检查后,不合格网格数为162个,网格失效百分比为0.0%,整体上网格的形状较为理想,网格质量较高,为计算结果的准确性提供了一个必要条件。图1为白车身整车的有限元模型。 点击图片查看大图

汽车车架的动力分析计算

重型运输车车架的动力学分析 摘要:本文采用有限元方法对重型运输车车架进行了动力学分析。通过对改变车架纵梁厚度、横梁壁厚、横梁外径和局部加强的分析计算,研究了车架结构与其固有频率及其振型的关系,为解决车架结构的动力学问题和结构的改进提供了一定的依据。 关键词:有限元方法,车架,固有频率,动力学分析 1 引言 车辆是运输机械,其工作过程总是受到随时间变化的载荷作用。当动载荷很小时,可忽略不计,只需进行静态分析。若所受动载荷较大,或者虽然不大但作用力的频率与结构的某一固有频率接近时,都可能引起结构共振,从而引起很高的动应力,造成强度破坏或产生不允许的变形,破坏车辆的性能,因此必须对车辆的结构进行动态分析。以往,研究车辆的振动是在样车研制出来以后,测量车辆在各种路面及车速下的加速度和振动频率,这种方法显然存在一定的设计风险。因此有必要针对其结构形式和结构特点,用动态分析的方法求出整车的动态特性模型及参数,并通过已有的试验结果予以验证,从而预估车辆的动态特性响应。本文应用有限元方法对运输车的车架进行动力学分析,分析采用先进的有限元分析软件ANSYS完成。 2 有限元模型的建立 以往车架结构的有限元分析大多采用梁单元模型,其优点在于建模简单、单元数目少、计算速度快,适合于对结构的初选方案进行分析对比。但将梁单元用于整车的结构分析时,存在下列问题: ①无法解决应力集中问题,尤其是在纵梁与横梁连接处的应力集中,这是由于梁单元在离散车架结构时,将纵梁与横梁连接处处理为一个节点,不能真实反映车架纵梁与横梁连接处的几何形状。 ②对于复杂的梁,其截面特性无法确定,因此计算精度差。 该运输车的底盘采用双横臂双扭杆独立悬架(带液力减振器)、宽断面越野低压可充放气轮胎、大断面Z型底盘大梁(两根大梁间用数根管状横梁相连),底盘自重大、整车载荷分布均匀。根据这一结构,车架模型中大梁与横梁支座采用三维壳单元SHELL63,扭杆和横臂等采用梁单元BEAM4,横梁采用管单元PIPE16。此外,由于整个车架的结构复杂,在建立模型时根据具体结构情况进行了以下简化: ①略去承受载荷比较小、对结构变形影响很小的部件,如储气筒等。 ②对部分部件进行简化,如悬挂支座和扭杆固定端支座由于结构复杂,对其采用板单元进行简化。 ③将一些节点的自由度进行耦合,如将横梁支座与大量的螺栓连接处的自由度进行耦合。 ④把发动机、液力变矩器、变速箱等部件简化为其支点上的集中质量与转动惯量。 经过以上简化处理,建立有限元结构模型如图1所示。

基于ANSYS的车身结构强度及刚度分析

南京工程学院 本科毕业设计(论文) 题目:基于ANSYS的车身结构强度及刚度 分析 专业:车辆工程(汽车技术) 班级:汽车技术091学号:215090105 学生姓名:周文军 指导教师:陈茹雯副教授 起迄日期:2013.2.25~2013.6.3 设计地点:车辆工程实验中心

Graduation Design (Thesis) Analysis on The Stiffness and Strength of Body Structure Based on ANSYS By ZHOU Wenjun Supervised by Associate Prof. CHEN Ruwen Nanjing Institute of Technology June, 2013

摘要 以有限元法为基础的车身结构分析已成为一种面向车身结构设计全过程的分析方法,车身结构设计的过程也随之成为一种设计与分析并行的过程。 车身作为车辆的重要组成部分,对整车的安全性、动力性、经济性、舒适性及操控性有着重要的影响。在设计车身时,应用有限元法对汽车车身骨架进行静、动态特性的分析,对其结构的强度和刚度进行评价,对于进一步了解车身结构的应力和变形情况,充分认识掌握车身结构分析方法,进而对整个车身结构设计进行优化,提高整车性能,缩短产品开发周期,降低开发成本,均具有重要的意义。 本课题是采用有限元分析法对2046车身骨架结构作适当简化,在ANSYS中建立其有限元模型,并按照实际载荷对车身进行了静力学分析,校验其强度和刚度,根据分析结果找出车身骨架结构的危险断面。同时对车身骨架进行动态分析,并提取前十阶模态,得到了车身固有频率及相应的振型。最后根据静、动态的分析结果,对车身结构提出改进意见。 关键词:车身;有限元法;静力分析;动态分析

英语翻译工作职责

[标签:标题] 篇一:英语翻译工作职责 职责一:英语翻译工作职责 1、负责公司日常文字翻译工作; 2、负责公司网站的翻译工作; 3、公司资料的翻译、公司涉外形象设计; 4、负责公司涉外接待工作; 5、协助培训部门做好员工英语基础培训; 6、公司海内外项目资料的翻译及资料的整理、存档工作; 7、记录并做好与国外公司电话会议的会议记录; 8、做好相关部门商务谈判及对外联络的现场翻译工作; 9、协助公司做好产品说明书翻译工作; 10、上级交办的其他工作。 职责二:英语翻译工作职责 1. 配合推广部编写各推广活动的文案编辑(中英版) 2. 翻译公司产品的宣传资料和产品资料(中英互译) 3. 接受上级分配的其他工作。 职责三:英语翻译工作职责 1、负责日常英语业务的翻译; 2、接受主管的分配的翻译任务; 3、保证翻译质量; 4、翻译资料的整理收集、知识管理; 5、翻译并与翻译团队成员沟通协作; 6、参加部门内开展的专业培训与交流,提高翻译的专业水平。 职责四:英语翻译工作职责 1. 公司日常客户英语资料的翻译,对相关中英文资料进行整理并归档保存; 2. 各种生产资料的中外文互译,协助其他部门完成所需的中英文互译工作; 3. 短期访问外国专家的申请审批、签证变更等工作的办理;外籍专家在我公司指导期间的沟通翻译、生活管理、机场接送等工作; 4. 国外客户沟通、交流及公司高层管理人员与外商谈判翻译工作,跟踪国外客户定单; 5. 海外专家来华对员工指导培训内容的翻译,公司各种会议的会务工作,做好记录并整理存档; 6. 督促员工的英语普及学习工作; 篇二:翻译工作职责 翻译岗位职责 1、负责公司日常文字翻译工作; 2、负责公司网站的翻译工作; 3、公司资料的翻译、公司涉外形象设计; 4、负责公司涉外接待工作; 5、协助培训部门做好员工英语基础培训; 6、公司海内外项目资料的翻译及资料的整理、存档工作;

车架设计的基础知识

车架设计基础 一、整车对车架的要求 二、车架的受力情况分析 三、车架的结构分析 1.车架的基本结构形式 2.车架宽度的确定 3.纵梁的形式、主参数的选择 4.车架的横梁及结构形式 5.车架的连接方式及特点 6.载货车辆采用铆接车架的优点 四、车架的计算 1.简单强度计算分析 2.简单刚度计算分析 3.CAE综合分析 五、附表 2000年7月1日

一、整车对车架的要求 车架是整车各总成的安装基体,对它有以下要求: 1.有足够的强度。要求受复杂的各种载荷而不破坏。要有足够的疲劳强度,在大修里程内不发生疲劳破坏。 2.要有足够的弯曲刚度。保证整车在复杂的受力条件下,固定在车架上的各总成不会因车架的变形而早期损坏或失去正常工作能力。 3.要有足够的扭转刚度。当汽车行使在不平的路面上时,为了保证汽车对路面不平度的适应性,提高汽车的平顺性和通过能力,要求车架具有合适的扭转刚度。对载货汽车,具体要求如下:3.1车架前端到驾驶室后围这一段车架的扭转刚度较高,因为这一段装有前悬架和方向机,如刚度弱而使车架产生扭转变形,势必会影响转向几何特性而导致操纵稳定性变坏。对独立悬架的车型这一点很重要。 3.2包括后悬架在内的车架后部一段的扭转刚度也应较高,防止由于车架产生变形而影响轴转向,侧倾稳定性等。 3.3驾驶室后围到驾驶室前吊耳以前部分车架的刚度应低一些,前后的刚度较高,而大部分的变形都集中在车架中部,还可防止因应力集中而造成局部损坏现象。 4.尽量减轻质量,按等强度要求设计。 二、车架的受力情况分析 1.垂直静载荷: 车身、车架的自重、装在车架上个总成的载重和有效载荷(乘员和货物),该载荷使车架产生弯曲变形。 2.对称垂直动载荷: 车辆在水平道路上高速行使时产生,其值取决于垂直静载荷和加速度,使车架产生弯曲变形。 3.斜对称动载荷 在不平道路上行使时产生的。前后车轮不在同一平面上,车架和车身一起歪斜,使车架发生扭转变形。其大小与道路情况,车身、车架及车架的刚度有关。 4.其它载荷 4.1汽车加速和减速时,轴荷重新分配引起垂直载荷。 4.2汽车转弯时产生的侧向力。 4.3一前轮撞在凸包上,车架水平方向上产生箭切变形。 4.4装在车架上总成(方向机、发动机、减振器)产生的作用反力。 4.5载荷作用线不通过纵梁的弯曲中心(油箱、悬架)而使纵梁产生局部受扭。 因此车架的受力是一复杂的空间力系,纵梁和横梁截面形状和连接的多变多样,使车架的受载更复杂化。车架CAE分析时一轮悬空这种极限工况,即解除一个车轮的约束,分析车架弯扭组合情况下的最大应力。

车架计算资料讲解

车架计算

汽车车架是整个汽车的基体,是将汽车的主要总成和部件连接成汽车整体的金属构架,对于这种金属构架式车架,生产厂家在生产设计时应考虑结构合理,生产工艺规范,要采取一切切实可行的措施消除工艺缺陷,保证它在各种复杂的受力情况下不至于被破坏。 车架作为汽车的承载基体,为货车、中型及以下的客车、中高级和高级轿车所采用,支撑着发动机离合器、变速器、转向器、非承载式车身和货箱等所有簧上质量的有关机件,承受着传给它的各种力和力矩。为此,车架应有足够的弯曲刚度,以使装在其上的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小;车架也应有足够的强度,以保证其有足够的可靠性与寿命,纵梁等主要零件在使用期内不应有严重变形和开裂。车架刚度不足会引起振动和噪声,也使汽车的乘坐舒适性、操纵稳定性及某些机件的可靠性下降。 车架受力状态极为复杂。汽车静止时,它在悬架系统的支撑下,承受着汽车各部件及载荷的重力,引起纵梁的弯曲和偏心扭转(局部扭转)。如汽车所处的路面不平,车架还将呈现整体扭转。汽车行驶时,载荷和汽车各部件的自身质量及其工作载荷(如驱动力、制动力和转向力等)将使车架各部件承受着不同方向、不同程度和随机变化的动载荷,车架的弯曲、偏心扭转和整体扭转将更严重,同时还会出现侧弯、菱形倾向,以及各种弯曲和扭转振动。同时,有些装置件还可能使车架产生较大的装置载荷。

钢板经冷冲成形后,其疲劳强度要降低,静强度高、延伸率小的材料的降低幅度更大。常用车架材料在冲压成形后的疲劳强度约为140~160Mpa 。轻型货车冲压纵梁的钢板厚度为5.0~7.0mm ,槽型断面纵梁上下翼缘的宽度尺寸约为其腹板高度尺寸的35%~40%. 随着计算机技术的发展,在产品开发阶段,对车架静应力、 刚度、振动模态以至动应力和碰撞安全等已可进行有限元分析,对其轻量化、使用寿命,以及振动和噪声特性也可以做出初步判断,为缩短产品开发周期创造了有利条件。 当车架纵梁承受的是均匀分布的载荷时,车架强度的简化计 算可按下述进行,但须做一定假设。即认为纵梁为支承在前后轴上的简支梁;空车时簧上负荷Gs 均布在左右纵梁的全长上,满载时有效载荷Ge 则均布在车箱长度范围内的纵梁上;忽略不计局部扭矩的影响。 R f 为一根纵梁的前支承反力,由该图可求得: R f = )]2()2([412c c Ge b L Gs l -+- (1) 在驾驶室的长度范围内这一段纵梁的弯矩为 Mx=R f x- 2)(4a x L Gs + (2) 驾驶室后端至后轴这一段纵梁的弯矩为:

车车架的结构设计与强度和刚度分析.

第29卷第7期2007年7月 北J佣maI 京科技大学学报 VoI.29No.7 ofUnive玮ityofscien傥andT∞hnolo科Beijing Jul.2007 SGA92150型半挂车车架的结构设计与 强度和刚度分析 张国芬1’ 张文明1’ 剥、玉亮1’ 董翠燕2) 1)北京科技大学土木与环境工程学院,北京1000832)北京首钢重型汽车制造厂,北京100043 摘要对渊2150型半挂车车架的总体布置、纵梁、横梁、纵梁与横梁的连接等进行了设计.利用有限元软件Ansys workbench对车架进行应力和变形计算,利用Matlab软件采用传统方法对纵梁进行受力分析和应力计算.结果表明车架强度和刚度均满足要求.关键词半挂车;车架;结构设计;强度分析;刚度分析;有限元法;实体单元分类号TD402;U469.5+3;U463.32 SGA92150型半挂车是笔者设计、北京首钢重型汽车制造厂2005年生产的重型运输车辆,它是迄今为止国内载重量最大的半挂车,具有以下四大特点:(1)属非公路平板运输车,适用于露天矿山运输大型设备,工作条件恶劣;(2)载重量大,额定载重质量150t;(3)半挂车车架纵梁长(23m),支点跨距大(18.8m),货箱面积大(17m×6m);(4)半挂车车架采用变截面梁,质量轻(总质量31t).因而,半挂车车架的设计与普通车辆不同,需要考虑每部分应力和变形,而且尽可能减轻自身重量. 由于车架结构复杂,用经典力学方法分析其强 度和刚度不可能得到精确的结果.有限元法以离 鹅颈式.为了具有足够的强度和刚度,所设计车架材料选用16Mn钢板,采用焊接式结构.1.1总体布置 sGA92150型半挂车车架总体布置如图1所示,这里总体布置的几个总成是按照焊接次序分层的,牵引销座属于前部鹅颈总成,轮轴座属于后部轮轴座总

英语翻译岗位说明书

英语翻译岗位说明书 【篇一:英语翻译工作职责】 职责一:英语翻译工作职责 1、负责公司日常文字翻译工作; 2、负责公司网站的翻译工作; 3、公司资料的翻译、公司涉外形象设计; 4、负责公司涉外接待工作; 5、协助培训部门做好员工英语基础培训; 6、公司海内外项目资料的翻译及资料的整理、存档工作; 7、记录并做好与国外公司电话会议的会议记录; 8、做好相关部门商务谈判及对外联络的现场翻译工作; 9、协助公司做好产品说明书翻译工作; 10、上级交办的其他工作。 职责二:英语翻译工作职责 1. 配合推广部编写各推广活动的文案编辑(中英版) 2. 翻译公司产品的宣传资料和产品资料(中英互译) 3. 接受上级分配的其他工作。 职责三:英语翻译工作职责 1、负责日常英语业务的翻译; 2、接受主管的分配的翻译任务;

3、保证翻译质量; 4、翻译资料的整理收集、知识管理; 5、翻译并与翻译团队成员沟通协作; 6、参加部门内开展的专业培训与交流,提高翻译的专业水平。 职责四:英语翻译工作职责 1. 公司日常客户英语资料的翻译,对相关中英文资料进行整理并归档保存; 2. 各种生产资料的中外文互译,协助其他部门完成所需的中英文互译工作; 3. 短期访问外国专家的申请审批、签证变更等工作的办理;外籍专家在我公司指导期间的沟通翻译、生活管理、机场接送等工作; 4. 国外客户沟通、交流及公司高层管理人员与外商谈判翻译工作,跟踪国外客户定单; 5. 海外专家来华对员工指导培训内容的翻译,公司各种会议的会务工作,做好记录并整理存档; 6. 督促员工的英语普及学习工作; 【篇二:翻译主管的岗位职责1】 翻译主管的岗位职责 一、在公司总经理的领导下,建立公司各项工作制度,全面主持完成公司里 的各项工作任务。 二.根据公司档口的实际情况制定本公司各项工作计划及管理目标并组织实

车架有限元分析

1前言 车架是汽车的主要部件。深人解车架的承载特性是车架结构设计改进和优化的基础。过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。 2车架的静态分析 力学模型的选择 有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。组合单元模型则是既采用梁单元也采用板壳单元进行离散。在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。 车架的计算方法 汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽

法语翻译职位说明书

法语翻译职位说明书 岗位描述: 1、负责日常法语业务的翻译; 2、接受主管的分配的翻译任务; 积极履行班主任工作职责,对学生在校的学习、生活全面负责,加强家校联系,所带班班风良好,培优转差工作成效显著。 用英语来表达另一种语言或用另一种语言表达英语,这种英语与其它语言的互相表达活动,称为英语翻译,从事英语翻译的工作者,简称英语翻译 3、保证翻译质量; 4、翻译资料的整理收集、知识管理; 该军事团体的名称涉及沙姆和伊拉克,即地中海东岸和两河流域。这一地区加上尼罗河下游的埃及、叙利亚南部的约旦河流域,因形状像月牙并且土地肥沃,被考古学者定义为新月沃土,曾是人类最初发展农业和家畜的地带。 负责来我院学习的外国留学生和港、澳、台学生的申请审批、签证变更等手续的办理工作;并负责这些境外学生在我院学习期间的教学安排、生活管理、节假日安排和机场接送等工作。 5、翻译并与翻译团队成员沟通协作;

6、参加部门内开展的专业培训与交流,提高翻译的专业水平。 任职资格: 负责来我院学习的外国留学生和港、澳、台学生的申请审批、签证变更等手续的办理工作;并负责这些境外学生在我院学习期间的教学安排、生活管理、节假日安排和机场接送等工作。 负责来我院学习的外国留学生和港、澳、台学生的申请审批、签证变更等手续的办理工作;并负责这些境外学生在我院学习期间的教学安排、生活管理、节假日安排和机场接送等工作。 1、大学本科以上学历,外语类相关专业; 2、外语听说能力良好,笔译功底深厚,精通中外互译,中文文笔优秀; 3、1年以上翻译经验,工作认真细致、思维敏捷,责任心强; 4、有xx、笔译相关工作经验优先考虑。 教师是学校教育工作的主要承担者,在教务处安排下,负责贯彻、实施学校的教育计划,通过教师富有个性的创造性劳动,把学生培养成为合格的企业预备人才。为了更好地规范教师教学行为,特制定以下教师岗位职责:

HyperMesh白车身结构强度分析报告

编号白车身结构强度分析报告 编制:日期: 校对:日期: 审核:日期: 批准:日期:

目录 1.分析目的 (1) 2.使用软件说明 (1) 3.模型建立 (1) 4边界条件 (3) 5.分析结果 (3) 6.结论 (21)

1.分析目的 白车身结构的静强度不足则会引起构件在使用过程中出现失效。本报告采用有限元方法对Q11白车身分别进行了满载、1g制动、0.8g转弯、右前轮抬高150mm、左后轮抬高150mm、右前轮左后轮同时抬高150mm,6种工况的强度分析,观察整车受力状况,找出高应力区,考察其零部件的强度是否满足要求,定性地评价Q11白车身的结构设计,并提出相应建议。 2.使用软件说明 本次分析采用HyperMesh作前处理,Altair optistruct求解。HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct是一个综和隐式和显示求解器与一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。 3.模型建立 对车身设计部门提供的Q11白车身CAD模型进行有限单元离散,CAD模型以及有限元模型如图3.1所示。白车身所有零部件均采用板壳单元进行离散,并尽量采用四边形板壳单元模拟,少量三角形单元以满足高质量网格的过渡需要,网格描述见表3.1。 图3.1Q11白车身CAD以及有限元模型 表3.1网格描述 单元类型四边形单元三角形单元 单元数目46970015543 三角形单元比例 3.4% 焊接模拟Rbe单元及实体单元 涂胶模拟实体单元 单元质量良好

翻译岗位职责书写格式

翻译岗位职责书写格式 翻译岗位职责书写格式 1、负责公司日常文字翻译工作; 2、负责公司网站的翻译工作; 3、公司资料的翻译、公司涉外形象设计; 4、负责公司涉外接待工作; 6、公司海内外项目资料的翻译及资料的整理、存档工作; 7、记录并做好与国外公司电话会议的会议记录; 8、做好相关部门商务谈判及对外联络的现场翻译工作; 9、协助公司做好产品说明书翻译工作; 1.协助领导处理商务谈判、资料翻译、同声传译、法文往来信函等相关工作; 2.外事活动的组织接待工作。陪同领导出席各种会议、典礼等; 3.协助领导进行公司对外公关和宣传管理; 4.协助领导理处理日常事务及工作日程安排; 5.协助安排领导工作计划和出行; 6.负责领导会务的组织安排,会议纪要的编写,并对决议事项进行催办、查办和落实; 7.领导其他行政事务的安排、协调和支持性工作。 1、接受主管的分配的翻译任务; 2、翻译并与翻译团队成员沟通协作;

3、保证翻译质量; 4、翻译资料的整理收集、知识管理; 3、负责来我院讲学的短期访问外国学者的申请审批、签证变更等手续的办理工作;并负责访问学者在我院访问期间的讲座翻译、生活安排、机场接送等工作。 4、负责我院国家公派留学人员参加国家留学基金委和国家卫生部的外语水平考试的申请、组织工作;负责我院国家公派留学人员的联系、申报、审批等手续的办理。 5、负责我院组织的赴国外考察代表团的联系、申请、审批工作;护照、签证的申请、审批、办理工作;并负责代表团在国外访问期间的组织和翻译工作。 6、负责我院参加国际学术会议的专家学者的对外联系、申请审批、护照签证办理等工作。 7、负责省卫生厅在我院各附属医院选拔医护人员参加“援外医疗队”的联系、人员选拔、审批等手续的办理工作。 8、负责我院因私出国留学(或探亲)人员的联系、申请审批、签证变更等手续的办理工作。 9、负责我院外事招待所住宿人员的管理工作,特别是外籍教师和留学生的生活管理,并解决他们遇到的问题。 10、完成院长办公室主任和外事科科长交给的各项任务。 1、树立良好的职业道德观念,加强责任心,认真对待每一次翻译任务。 2、严格执行公司各项规章制度,坚持依法办事、秉公办事,遵守外事纪律,杜绝各种违纪违法现象发生。 3、负责公司外文来电来函的翻译工作,译稿内容准确,并及时呈报领导。

材料力学课程设计(底盘车架的静力分析及强度、刚度计算)

材料力学课程设计 HZ140TR2后置旅游车底盘车架的静力分析 及强度、刚度计算 姓名:吴博宇 学院:汽车工程学院 专业:工科试验班(车辆工程) 学号:42160702 序号:190 题号:7.1题,数据Ⅱ,序号5 指导教师:郭桂凯 日期:2018.10.13

目录 1、设计目的 (3) 2、设计任务和要求 (3) 3、设计题目 (4) 4、心得体会 (30) 5、参考文献 (31) 6、附录 (32)

1、设计目的 本课程设计是在系统学完材料力学课程之后,结合工程实际中的问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合利用材料力学知识解决工程实际问题的目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体,既从整体上掌握了基本理论和现代计算方法,又提高了分析问题、解决问题的能力;既是对以前所学知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)的综合运用,又为后续课程(机械设计、专业课等)的学习打下基础,并初步掌握工程设计思路和设计方法,使实际工作能力有所提高。具体有以下六项: (1)使所学的材料力学知识系统化、完整化。 (2)在系统全面复习的基础上,运用材料力学知识解决工程实际中的问题。(3)由于选题力求结合专业实际,因而课程设计把材料力学与专业结合起来。(4)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 (5)初步了解和掌握工程实际中的设计思路和设计方法。 (6)为后续课程的教学打下基础。 2、设计任务和要求 参加设计者要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算机程序,通过计算机给出计算结果,并完成设计计算说明书。 2.1设计计算说明书的要求 设计计算说明书是该题目设计思路、设计方法和设计结果的说明,要求书写工整,语言简练,条理清晰、明确,表达完整。具体内容应包括: (1)设计题目的已知条件、所求及零件图。 (2)画出结构的受力分析计算简图,按比例标明尺寸、载荷及支座等。 (3)静不定结构要画出所选择的基本静定系统及与之相应的全部求和过程。(4)画出全部内力图,并标明可能的各危险截面。

岗位职责-相关职位英语翻译 精品

相关职位英语翻译 1、工商金融Industrial, mercial and banking munities 会长President 主席Chairman 名誉顾问Honorary Adviser 理事长President 理事Trustee/Council Member 总干事Director-General 总监Director 董事长Chairman 执行董事Executive Director 总裁President 总经理General Manager; C.E.O(Chief Executive Officer) 经理Manager 财务主管Controller 公关部经理PR Manager 营业部经理Business Manager 销售部经理Sales Manager 推销员Salesman 采购员Purchaser 售货员Sales Clerk 领班Captain 经纪人Broker 高级经济师Senior Economist 高级会计师Senior Accountant 注册会计师Certified Public Accountant 出纳员Cashier 审计署审计长Auditor-General, Auditing Administration 审计师Senior Auditor 审计员Auditing Clerk 统计师Statistician 统计员Statistical Clerk 厂长factory Managing Director 车间主任Workshop Manager 工段长Section Chief 作业班长Foreman 仓库管理员Storekeeper 教授级高级工程师Professor of Engineering 高级工程师Senior Engineer 技师Technician 建筑师Architect 设计师Designer 机械师Mechanic 化验员Chemical Analyst 质检员Quality Inspector 会计助理Accounting Assistant 记帐员Accounting Clerk 会计部经理Accounting Manager 会计部职员A ccounting Stall Accounting Supervisor 会计主管Administration Manager 行政经理Administration Staff 行政人员Administrative Assistant 行政助理Administrative Clerk 行政办事员Advertising Staff 广告工作人员 Airlines Sales Representative 航空公司定座员 Airlines Staff 航空公司职员Application Engineer 应用工程师 Assistant Manager 副经理Bond Analyst 证券分析员 Bond Trader 证券交易员Business Controller 业务主任 Business Manager 业务经理Buyer 采购员 Cashier 出纳员Chemical Engineer 化学工程师 Civil Engineer 土木工程师Clerk/Receptionist 职员/接待员 Clerk Typist & Secretary 文书打字兼秘书 puter Data Input Operator 计算机资料输入员 puter Engineer 计算机工程师 puter Processing Operator 计算机处理操作员 puter System Manager计算机系统部经理

相关文档
最新文档